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Abstract  
Background 
Epidemiological studies suggest that paternal obesity may increase the risk of fathering small for 
gestational age offspring. Studies in non-human mammals suggest that such associations could be 
mediated by DNA methylation changes in spermatozoa that influence offspring development in utero. 
Human obesity is associated with differential DNA methylation in peripheral blood. It is unclear, 
however, whether this differential DNA methylation is reflected in spermatozoa. We profiled genome-
wide DNA methylation using the Illumina MethylationEPIC array in matched human blood and sperm 
from lean (discovery n=47; replication n=21) and obese (n=22) males to analyse tissue covariation of 
DNA methylation, and identify whether this covariation is influenced by obesity. 
 
Results 
DNA methylation signatures of human blood and spermatozoa are highly discordant, and methylation 
levels are correlated at only a minority of CpG sites (~1%). While at the majority of these sites, DNA 
methylation appears to be influenced by genetic variation, obesity-associated DNA methylation in blood 
was not generally reflected in spermatozoa, and obesity did not influence covariation patterns. 
However, one cross-tissue obesity-specific hypermethylated site (cg19357369; chr4:2429884; P=8.95 

´ 10-8; beta=0.02) was identified, warranting replication and further investigation. When compared to a 
wide range of human somatic tissue samples (n=5,917), spermatozoa displayed differential DNA 
methylation in pathways enriched in transcriptional regulation.  
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Conclusions 
Human sperm displays a unique DNA methylation profile that is highly discordant to, and practically 
uncorrelated with, that of matched peripheral blood. Obesity only nominally influences sperm DNA 
methylation, making it an unlikely mediator of intergenerational effects of metabolic traits. 
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Background 
Multiple large-scale epigenome-wide association studies in humans have shown that environmental 
and acquired phenotypes, including smoking, ageing and obesity, are associated with altered DNA 
methylation in peripheral blood [1-4]. Whether such phenotypes also have the potential to induce 
epigenetic changes in gametes has generated considerable interest in recent years. Studies in non-
human mammals suggest that the spermatozoal DNA methylome can be influenced by factors such as 
dietary alterations, toxicants and even psychological stress [5-10], although the majority of these results 
have yet to be replicated independently. A small number of studies also suggest that acquired traits in 
male mice induce epigenetic changes in sperm, which in turn influence the physiology of offspring [7, 
11, 12]. 
 
There is little evidence for such inter- and transgenerational effects of acquired phenotypes via 
epigenetic inheritance in humans. This is partly due to the fact that human sperm is rarely analysed 
outside of a reproductive medicine setting and is less accessible than, for example, peripheral blood. 
Further, it is ethically and practically impossible to perform a study of transgenerational effects in 
humans in which all potential external and lifestyle-related confounders are removed, and inter-
individual genetic variation is generally not controllable. In addition, one needs to account for the two-
stage process of epigenetic reprogramming of primordial germ cells and preimplantation embryos that 
occurs between generations [13]. Lastly, epigenetic signatures are highly tissue- and developmental 
stage specific [14, 15], making findings from studies using whole blood as a surrogate tissue for 
spermatozoa difficult to interpret [16]. 
 
Despite these caveats, epidemiological evidence suggests that factors such as advanced paternal age, 
obesity, diabetes and smoking have the potential to negatively impact the development and physiology 
of a man’s offspring [17-19], presumably via alterations to his spermatozoa (Figure 1A). An improved 
understanding of whether and how acquired paternal traits can influence offspring physiology has 
important implications, both scientifically and in terms of public health policy. This is particularly 
pertinent for modifiable traits such as obesity, where timely intervention could reduce any potential 
negative intergenerational effects. 
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Figure 1. Intergenerational epigenetic inheritance via spermatozoa and overview of study cohorts 
A) Mechanism for how acquired paternal phenotypes could alter offspring physiology via epigenetic alterations to a man’s 

spermatozoa. Epidemiological studies suggest that some acquired paternal traits, including obesity and insulin resistance, 
are associated with an increased risk of fathering small for gestational age (SGA) offspring [18, 19, 58]. Studies in non-human 
mammals suggest that such associations could be mediated by DNA methylation alterations in spermatozoa that induce 
metabolic reprogramming in the developing foetus [12].  

B) Overview of study cohorts. The discovery cohort included 47 lean males (BMI 19-25 kg/m2) and the replication cohorts included 
22 lean males (BMI 19-25 kg/m2) and 21 overweight/obese males (BMI >26 kg/m2; ‘the obesity cohort’). Age (years) and BMI 
(kg/m2) are expressed as mean (SD).  

SGA: small for gestational age. SD: standard deviation. 
 
 
 
It will be a long time before studies of DNA methylation in human spermatozoa reach a comparable 
magnitude to those currently available on peripheral blood. Therefore, it is of  
interest to identify CpG sites where DNA methylation levels covary between the two tissues, that is, 
sites at which blood methylation is predictive of sperm methylation, even if the absolute level of 
methylation is different. The extent to which these sites overlap with those identified in blood as 
associated with environmental stimuli or acquired phenotypes will provide new insight into whether the 
sperm methylome may be similarly responsive. At such CpG sites, using blood DNA methylation as a 
proxy for inferring DNA methylation in spermatozoa might be justified. To our knowledge, the largest 
study that analysed genome-wide DNA methylation in an unbiased manner in matched samples of 
blood and sperm to date included a total of eight participants [20]. 
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In this study, we analysed genome-wide DNA methylation using the Infinium MethylationEPIC array in 
matched samples of human blood and sperm from lean (n = 68) and overweight/obese (n = 22; ‘the 
obesity cohort’) healthy males of proven fertility. We interrogated the extent to which obesity-associated 
DNA methylation in blood is reflected in spermatozoa from obese males and identified obesity 
associated CpG-sites in sperm and blood. Spermatozoal DNA methylation data was further compared 
to that of nearly 6,000 somatic tissue samples available on the Gene Expression Omnibus data 
repository [21], allowing us to identify sperm-specific DNA methylation signatures. Together, our 
analyses interrogate the plausibility of spermatozoal DNA methylation as a mechanism for 
intergenerational effects of paternal obesity and whether whole blood can be used as a surrogate tissue 
for analyses of DNA methylation when sperm is unavailable. Further, they provide a unique insight into 
how spermatozoal DNA methylation compares to DNA methylation in a wide range of human somatic 
tissues. 
 

Results 
General characterisation of the sperm DNA methylome 
We used the Illumina MethylationEPIC array to quantify DNA methylation at > 850,000 CpG sites across 
the human genome in matched samples of whole blood and sperm from a discovery cohort of 47 lean, 
healthy males of proven fertility. Following pre-processing, normalization and stringent quality control 
(see Materials and Methods), a total of 704,356 probes were retained for further analyses. Raw and 
pre-processed DNA methylation data is available for download from the Gene Expression Omnibus 
(GEO) at accession number GSE149318. To characterize spermatozoal DNA methylation across 
genomic regions, levels of DNA methylation were divided into three categories; ‘low’, ‘intermediate’ and 
‘high’, corresponding to median beta values < 0.2, 0.2-0.8 and > 0.8 across individuals respectively 
(Figure 2). As observed in other tissues and cell types, CpG islands and shores generally show low 
DNA methylation in sperm. Conversely, sites mapping to the open sea were characterized by overall 
higher DNA methylation (Figure 2A, Table S1). Gene bodies in spermatozoa displayed overall high 
levels of DNA methylation, whilst sparser DNA methylation was seen around transcription start sites 
(TSS) and 5’ untranslated regions (UTRs), as well as the first exons (Figure 2B, Table S2).  
In line with previous reports, we confirmed that the DNA methylation age estimator developed by 

Horvath [4] worked well in whole blood (r = 0.74, P = 2.55 ́  10-9, Pearson’s product moment correlation), 
but not in sperm (r = 0.26, P = 0.07, Figure S1A). This is likely because the Horvath DNA methylation 
was developed using only 45 samples of semen in a total of 7,844 samples (0.6%) of different tissue 
samples, including 4,180 blood-derived samples (53%) [4]. However, age could more accurately be 
predicted using the model recently developed by Jenkins and colleagues [22], which was specifically 

trained on sperm samples (r = 0.68, P = 1.78 ´ 10-7, Figure S1B). 
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Figure 2. DNA methylation distribution of the human sperm DNA methylome.  
A) The percentage of CpG sites that display low (median beta < 0.2), intermediate (median beta between 0.4 and 0.6) and high 

(median beta > 0.8) levels of DNA methylation in spermatozoa are shown according to CpG region.  
B) The percentage of CpG sites that display low, intermediate and high levels of DNA methylation in spermatozoa are shown 

according to their genomic region. 
TSS: transcription start site, UTR: untranslated region 
 
 
 
DNA methylation in imprinted regions 
Genomic imprinting refers to the phenomenon that genes are epigenetically regulated to be expressed 
in a parent-of-origin specific manner [23]. In spermatozoa, imprinted genes should be either completely 
unmethylated or fully methylated depending on the gene [23]. Conversely, in blood, the parent-of-origin 
driven allele-specific methylation should result in methylation values of around 50% for any given 
imprinted site. DNA methylation levels at CpG sites annotated to genes listed in the Geneimprint 
database (http://www.geneimprint.com/site/genes-by-species) were compared between spermatozoa 
and whole blood (Figure S2). In the case of CpG sites annotated to genes that are known to be 
imprinted, we observed an enrichment of sites with median methylation 0.5 in whole blood, particularly 
for paternally imprinted genes (21% sites with median beta between 0.4 and 0.6 vs 3% of sites across 

the array-wide background;  P < 1.00 ´ 10-50, Fisher’s exact test), but also for maternally imprinted 

genes (11% of sites; P = 9.19 ´ 10-9). For genes predicted to be imprinted according to the Geneimprint 
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database, there was a less pronounced enrichment (paternal: 6% of sites; P = 0.01; maternal: 6% of 
sites; P = 0.04). No such enrichment was observed for spermatozoal DNA methylation in any of the 
four categories (P > 0.05). Because gene annotation on the methylation array is based only on 
proximity, this approach includes many CpG sites not actually located in imprinting control regions 
(ICRs). Therefore, we also compared DNA methylation distributions at sites which specifically fall into 
known human ICRs as reported by WAMIDEX (https://atlas.genetics.kcl.ac.uk). This second approach 
further confirmed an enrichment of probes with around 50% methylation located in ICRs in blood 
compared to sperm (Figure S3). Strikingly, of the 169 CpG sites that fell into ICRs, the majority show 

median beta values around 0.5 (57% of sites with beta between 0.4 and 0.6, P < 1.00 ´ 10-50, Fisher’s 
exact test vs array-wide background). On the other hand, nearly all of the 169 sites were completely 

unmethylated in sperm (94% with median beta < 0.2, P < 1.00 ´ 10-50). 
 
The sperm DNA methylome exhibits a more polarised genome-wide DNA methylation profile than blood 
We compared the overall distribution of DNA methylation levels across the blood and sperm genomes. 
Sperm displayed a more polarised methylation profile compared to blood, i.e. that both low and high 
median levels of methylation were more commonly seen in sperm (Figure 3A), with 33% of sites 
showing median beta < 0.2 in sperm vs 27% in blood and 49% of sites with median beta > 0.8 in sperm 
vs 35% in blood. Principal component (PC) analysis was performed across the full discovery dataset 
comprising the 704,356 probes that remained after filtering. The first PC, explaining 51.41% of the 
variance, clearly distinguished between sperm and blood, indicating that the tissue of origin was the 
primary determinant of differences in DNA methylation profiles (Figure S4). At the majority of 
interrogated sites, DNA methylation levels differed significantly between sperm and blood (n = 447,846 

sites (64%), P < 9 ´ 10-8, paired t-test; Table S3). At 62% of these sites (n = 277,831 sites), sperm was 
relatively hypermethylated compared to blood. 
A more detailed characterisation of the differences between the sperm and blood DNA methylomes 
was performed by comparing DNA methylation levels in sperm and blood across different genomic 
regions (Figure 3B-C, Tables S5-S6). CpG islands and CpG island shores were found to be less 

methylated in sperm compared to blood (0.07 and 0.16 lower in sperm respectively, P < 1.0 ´ 10-50 for 
both, paired t-test). CpG island shelves and CpG sites in open seas were relatively hypermethylated in 

sperm compared to blood (0.06 and 0.07 higher in sperm respectively, P < 1.0 ´ 10-50 for both) (Figure 
3B, Table S5). Regions upstream of transcriptional start sites were relatively hypomethylated in sperm 

compared to blood (0.02 lower at TSS200 and 0.11 at TSS1500, P < 1.0 ´ 10-50 for both), as were sites 

mapping to the 3’UTR (0.01 lower, P = 3.81 ́  10-5) or first exon (0.01 lower, P < 1.0 ́  10-50). Conversely, 
other transcribed regions were hypermethylated in sperm compared to blood, including gene bodies 

(0.02 higher, P < 1.0 ́  10-50), 5’UTRs (0.01 higher, P = 1.3.61´ 10-32), and exon boundaries (0.02 higher, 

P = 2.80 ´ 10-22; Figure 3C, Table S6). We replicated these differences in the lean replication (n = 21 
lean males) and obesity cohort (n = 22 obese males) (Supplementary Material: Replication, Figure 
S5, Table S3). 
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Figure 3. Comparison of DNA methylation levels in human sperm and whole blood.  
A) Array-wide comparison of CpG methylation in sperm and blood, showing that both low (< 20%) and high (> 80%) DNA 

methylation levels are more commonly seen in sperm. Plotted is the distribution median DNA methylation levels across all 
individuals in the discovery cohort.  

B) The percentage of CpG sites that are relatively hyper- and hypomethylated in sperm compared to blood, and CpG sites where 
there is no significant difference in DNA methylation between the tissues, are shown according to CpG region. C) The 
percentage of CpG sites that are relatively hyper- and hypomethylated in sperm compared to blood, and CpG sites where 
there is no significant difference in DNA methylation between the tissues, are shown according to genomic region. 

TSS: transcription start site, UTR: untranslated region 
 
 
 
Sperm has a unique DNA methylation profile enriched in pathways relating to transcriptional regulation 
The Gene Expression Omnibus (GEO) is a publicly available data repository that contains DNA 
methylation data from a range of human tissue samples, most of which have been analysed using the 
Illumina Infinium HumanMethylation450 BeadChip (450K array) [21]. In order to investigate how the 
DNA methylation profile of spermatozoa compares to that of somatic tissues, DNA methylation data 
from 371 sperm samples (90 from our discovery, replication and obesity cohorts combined and 281 
samples from GEO) was compared to that of 5,917 somatic tissue samples from male donors available 
on GEO (see Table S7 and Table S8 for details on tissue samples). Restricting analysis to CpG sites 
covered by both the EPIC and 450K arrays (n = 452,626 sites) we used linear regression to identify 
sperm-specific DNA methylation signals across the 6,288 samples. After Bonferroni correction, a total 
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of 133,125 genome-wide significant CpG sites (29%) were identified as differentially methylated 
between sperm and somatic tissues (Table S9). At 18% of these sites (n = 109,290 sites) sperm was 
characterized by higher methylation levels than somatic tissues. This is in contrast to the paired analysis 
with blood and likely due to the nearly exclusive coverage of CpG islands on the 450K array. Gene 
Ontology (GO) enrichment analysis [24] revealed 272 GO terms amongst hypermethylated CpG sites 
(Table S10). The main two categories of enriched pathways related to regulation of gene transcription 
(37 pathways) and neurological traits and functions (67 pathways). The latter is possibly driven by the 
relatively large proportion of brain and neuronal samples amongst the somatic tissues (16%). Of the 37 
GO terms enriched amongst hypomethylated CpG sites, 8 (22%) related to sensory perception, 
particularly smell (Table S11). We repeated the same analysis removing unsorted tissues and tumours 
as well as cell lines (1,046 samples) and replicated virtually the same results. 
 
Covariation of DNA methylation between sperm and blood is limited and most likely explained by 
genetic variation 
We next explored whether, despite the blood and sperm DNA methylomes being highly distinct, there 
were CpG sites where the levels of DNA methylation covaried between the tissues. We used minimum 
variability criteria for sites to be tested to avoid correlations driven by individual outliers, similar to those 
used by Hannon and colleagues [15]: we selected sites for which the middle 80% of samples had a 
beta range ≥ 0.05 in both blood and sperm. This restricted our analyses to 155,269 variable sites. At 
1,513 of these (~1%), DNA methylation levels were significantly correlated between the two tissues (P 

< 9 ´ 10-8, Pearson’s product moment correlation; Figure 4A, Table S12).  
Given the observation of several bi- and trimodal patterns of DNA methylation amongst highly correlated 
sites (Figure 4B), we applied a combination of outlier analysis and k means clustering with manual 
verification, to identify which of the 1,513 significantly correlated CpG sites exhibit these patterns. The 
majority of correlated CpG sites (1,140 sites, 75%) showed a bimodal distribution and 205 sites (14%) 
showed a trimodal distribution of DNA methylation, both of which are suggestive of a strong genetic 
influence on DNA methylation or the measurement. Probes with the highest correlation coefficients 
tended to show clear trimodal patterns (Figure 4B), while a third of bimodally distributed probes (365) 
appear to be driven by single outliers (Figure S6). A subset of correlated sites (30 i.e. 2%) displayed a 
negative correlation between DNA methylation in sperm and blood (Figure 4C) and at a small number 
of sites distinct trimodal methylation patterns are present in only one of the two tissues (Figure 4D). 
We cross-checked all correlated sites for known SNPs in the probe sequence using the dbSNP Human 
Build 151 database [25]. Nearly all probes (1,507; > 99%) were found to have known SNPs in the probe 
sequence, > 90% of which are in the CpG site itself (Figure 5). This would indicate that DNA methylation 
readouts at these sites are most likely measuring genetic variation rather than epigenetic state. Only a 
small subset (n = 6) of the CpG sites that were significantly correlated had no known SNPs in their 
probe sequence. Some of these nevertheless displayed bi- and trimodal patterns of DNA methylation 
suggestive of a genetically driven effect and could potentially constitute strong mQTLs (Figure 4E). 
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Figure 4. Covariation of DNA methylation between blood and sperm.  
A) The observed correlation of DNA methylation levels in sperm and blood (histogram) is plotted against the estimated null 

distribution (red density curve). A small percentage of sites display highly correlated DNA methylation levels (r > 0.8), and 
the observed distribution is overall slightly shifted to the right compared to the null distribution.  

B) cg02024240 (chr5:159669974) shows a strong DNA methylation correlation between blood and sperm and a trimodal 
methylation pattern suggestive of a genetically driven effect (r > 0.99, P = 4.68 ´ 10-48).  

C) cg25317025 (chr18:47019823) is one of 30 sites showing a negative correlation between blood and sperm (r = -0.89,                   
P = 5.14 ´ 10-17).  

D) Some probes display striking differences in variability between the two tissues: cg20673407 (chr10:31040939) is characterized 
by a distinct trimodal pattern in whole blood while showing less overall variability in sperm (r = 0.82, P = 1.45 ´ 10-12).  

E) Only 6 of the significantly correlated probes have no known SNPs anywhere in the probe sequence. cg02486009 (chr15: 
22428395) is one of these (r = 0.96, P= 1.90 ́  10-27). Nonetheless it shows a bimodal DNA methylation pattern in both tissues, 
suggestive of a genetically driven effect. 
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Figure 5. Positions of known SNPs in probe sequences of correlated probes.  
1,507 of the 1,513 significantly correlated probes have known SNPs in their probe sequence. The vast majority of these (> 90%) 
map to the CpG site itself. 
 
 
 
Secondly, we overlapped our correlated CpG sites with a list of recently reported correlated regions of 
systemic interindividual variation (CorSIV) in DNA methylation [26]. Only 0.2% of non-correlated 
variable probes are contained in CorSIVs – in line with the low overall genomic prevalence of these 
regions (0.1% of the human genome). Strikingly, we observe a 10-fold enrichment of this within the 

correlated sites (2.2%, P = 8.85 ´ 10-25, Fisher’s exact test). The observations from the sperm data 
suggest that for sites exhibiting bi- and trimodal methylation patterns there is a likely genetic origin (of 
either a SNP in the CpG site or strong methylation QTL effects). Therefore, this enrichment conflicts 
with the hypothesis that for at least these sites, the origin of cross-tissue covariation is developmentally 
established stable epialleles [27]. Finally, using cis DNA methylation QTL data from whole blood 
published by McClay and colleagues [28] we found that 232 (30%) of the correlated sites also present 
on the 450K array had previously been identified as mQTLs in whole blood, representing a significant 

enrichment over the 16% observed across all variable probes (P = 1.66 ´ 10-33,  Fisher’s exact test). 
Correlations largely replicated in the two replication cohorts. (Supplementary Materials: Replication, 
Table S12) and non-replicating sites were generally driven by outliers in the discovery cohort (examples 
shown in Figure S7).  
  
Limited evidence for converging associations between DNA methylation and obesity from whole blood 
and sperm 
We next investigated whether obesity was associated with DNA methylation in sperm or blood. At the 
697,384 sites that passed quality control in the combined replication cohort, including lean and obese 
males, we used linear regression of DNA methylation on obesity status, controlling for estimated blood 

cell types in the blood dataset. No probes passed array-wide significance (P < 9 ´ 10-8) in blood or 
sperm (Table S13). Given our small sample size, we leveraged published data from a larger EWAS of 
BMI in whole blood [1]; see Materials and Methods). First, we tested whether the 187 replicated array-
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wide significant probes (P < 1.0 ´ 10-7) reported by Wahl and colleagues, which were also present in 
our data, were enriched in lower-ranked P values in our data, and secondly, we compared effect sizes 
at these 187 probes between our cohort and the published data. To make both analyses comparable 
we treated BMI as a continuous measure for these comparisons – as Wahl and colleagues had done 
in the original epigenome-wide association study. Both analyses confirmed enrichments of the reported 

associations in blood but not sperm: lower-ranked P values were enriched in blood (P < 1.3  ´ 10-23, 
Wilcoxon rank sum test) but not sperm (P = 0.06, Figure 6A) and similarly, the reported effects at the 

187 probes were correlated significantly with effects observed in our blood data (r = 0.72, P < 1.0  ´ 

10-50, Spearman’s rank correlation, Figure 6B) but not in sperm (r = 0.13, P = 0.11, Figure 6C). This 
indicates that the associations identified by Wahl and colleagues do not generalize to sperm. Finally, to 
maximise power within our own sample, we ran a linear mixed effects model across the discovery and 
replication datasets, using the 692,265 probes that survived quality control in both datasets. DNA 
methylation was regressed onto tissue (blood versus sperm), age, batch and obesity status, while 
controlling for interindividual variation with a random effect (Table S13). This analysis found that 
methylation at one CpG site, cg19357369 (chr4:2429884), was significantly increased in obese men in 

sperm and blood (beta = 0.02, P = 8.95 ´ 10-8, Figure 6D). 
 
Obesity does not significantly influence the covariation of DNA methylation between sperm and blood 
To investigate whether the covariation of DNA methylation was significantly altered in obesity, we ran 
an interaction model that regressed DNA methylation in blood onto DNA methylation in sperm, obesity 
status and their interaction effect, while covarying for experimental batch and age (see Materials and 
Methods). We identified 98 CpG sites with a statistically significant interaction between obesity and the 

association of blood and sperm DNA methylation (P < 9 ´ 10-8). Interactions at the vast majority of these 
CpG sites (96) were driven by individual outliers in the obese cohort (Figure S8A-C); the remaining two 
sites appear to be driven by outliers in the lean cohort and a batch effect (Figure S8D). We therefore 
conclude that we were not able to identify credible altered DNA methylation covariation patterns 
between blood and sperm that may have arisen as part of a gene-environment interaction. 
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Figure 6. Obesity associated DNA methylation patterns in whole blood and sperm.  
Out of all replicated CpG sites reported to be associated with BMI by Wahl et al. (P < 1.0  ´ 10-7), 187 were also present in our 
replication cohort of lean and obese men. We regressed BMI onto DNA methylation in each tissue, controlling for estimated blood 
cell types in the blood analysis to match the analysis used by Wahl and colleagues. A) Lower-ranked P values were found to be 
enriched amongst these 187 sites in blood (P < 1.3  ´ 10-23, Fisher’s exact test) but not sperm (P = 0.06). B) Effect sizes at the 
187 probes were significantly correlated between our blood data and the summary statistics published by Wahl and colleagues 
(r = 0.72, P < 1.0  ´ 10-50, Spearman’s rank correlation). C) No such correlation was observed for our sperm data (r = 0.13, P = 
0.11). D) In a linear mixed effects model across the discovery and replication datasets, DNA methylation was regressed onto 
tissue (blood versus sperm), age, batch and obesity status, while controlling for interindividual variation. This analysis identified 
significant hypermethylation at one CpG site, cg19357369 (chr4:2429884), in obese compared to lean men across the two tissues 
(beta difference = 0.02, P = 8.95 ´ 10-8). 
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Discussion 
In this study, we characterized the sperm methylome in relation to blood and other somatic tissues, 
investigated covariation between DNA methylation in sperm and whole blood and analyzed DNA 
methylation patterns associated with obesity. We conclude that the DNA methylation profiles of sperm 
and blood are highly distinct, and that there is little evidence of DNA methylation covariation between 
the two tissues, beyond genetic and technical effects. 
 
In line with previous, smaller-scale studies, we showed that the sperm DNA methylome is highly 
polarised compared to that of blood, with both low (beta < 0.2) and high (beta > 0.8) levels of DNA 
methylation more frequently observed in sperm than in blood [20]. In contrast to previous research, 
however, we found that the sperm DNA methylome is overall slightly hypermethylated compared to that 
of blood [20, 29, 30]. This finding is potentially influenced by the fact that the previous generations of 
DNA methylation arrays (the 450K array) included a higher proportion of CpG islands, which are 
relatively hypomethylated in spermatozoa [20, 31]. 
 
We identified significant differences in DNA methylation levels at the majority of assayed CpG sites 
when comparing whole blood to sperm. Additionally, in our comparison of the spermatozoal DNA 
methylome to that of almost 6,000 somatic tissue samples, we showed that gene ontology terms 
enriched amongst hypermethylated CpG sites in sperm pointed repeatedly to transcriptional regulation. 
This is an intriguing finding considering that recent research has shown that high overall levels of 
transcription during spermatogenesis facilitate transcription-coupled DNA repair mechanisms through 
so-called “transcriptional scanning” [32]. Given that transcriptional regulation is an essential process for 
all cell-types, it is striking to observe sperm-specific DNA methylation patterns enriched in these 
processes. It could suggest that DNA methylation is involved in widespread transcriptional 
downregulation as cells progress from an active transcriptional stage during spermatogenesis to a more 
transcriptionally repressed stage in mature sperm. 
 
About 1% of variable sites in whole blood and sperm showed a significant correlation of DNA 
methylation between the whole blood and sperm. This is slightly lower than what has been reported for 
comparisons of DNA methylation between whole brain and peripheral tissues [33]. Furthermore, at the 
vast majority of correlated CpG sites, the correlation appeared to be driven by underlying genetic 
variation resulting in characteristic bi- and trimodally clustered distributions of DNA methylation. In most 
of these cases, known SNPs were identified in the CpG site itself or in the single base extension. This 
finding is further supported by the observed enrichment of mQTLs [28] and CorSIVs [26] amongst 
correlated sites. Thus, whilst we lack specific genotyping information on individual participants in this 
study, our findings strongly suggest genetic variation as the underlying cause of DNA methylation 
covariation between blood and sperm. This is despite the fact that we employed stringent filtering of 
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probes in close proximity to SNPs from previously published lists [31, 34, 35], which suggests a need 
to update existing reference lists. 
 
We also identified a small number of CpG sites where DNA methylation was negatively correlated 
between blood and sperm, and sites where DNA methylation exhibited a trimodal distribution pattern in 
one tissue only. It would be of interest to investigate further whether pathophysiological traits are 
associated with an increase in DNA methylation in one tissue and a decrease in the other. In particular, 
whether germ cell or leukocyte specific transcription factors are responsible for the discordant yet 
correlated DNA methylation distribution patterns across blood and sperm. 
 
The small number of sites (6 out of 1,513) where no obvious genetic driver of methylation variability 
was identified are likely too few to be of value in studies where blood is needed as a surrogate tissue 
for sperm. The results of this study are generally in line with similar studies of DNA methylation 
covariation, such as between whole blood and various brain regions [15], albeit more extreme. They 
emphasize the importance of using disease-relevant tissues in epigenomic investigations. These 
findings do not however, generally preclude the use of readily accessible tissues such as blood or saliva 
for identifying DNA methylation biomarkers of conditions relating to germ cell function, such as 
subfertility. For example, if a robust DNA methylation profile of subfertility is identified in blood, this 
could be a helpful test in fertility evaluations without necessarily reflecting the epigenetic profile of 
spermatozoa. 
 
This study identified one CpG site, cg19357369, as hypermethylated in sperm and blood from obese 
versus lean males. The finding should be interpreted with caution as it requires replication and just 
passed the array-wide multiple testing threshold – which was not corrected for the different aspects 
pertaining to sperm DNA methylation across the study (comparison with blood, correlation with blood, 
interaction, single-tissue EWAS, multi-tissue EWAS). The effect size was also comparatively small 
(beta = 0.02). cg19357369 is found upstream of the lncRNA RP11-503N18, which has yet to be 
characterised in terms of biological function [36]. However, previous research has shown that DNA 
methylation at cg19357369 is significantly altered during human fetal brain development [37]. Although 
cg19357369 has previously been identified as differentially methylated in hepatic tissue from obese 
compared to lean males lean males [36], it has not previously been identified in EWASs of obesity or 
BMI when only blood samples have been analysed. If shown to be replicable, it could point towards the 
possibility of an obesity associated signature of spermatozoa.  
 
Overall, we found that differentially methylated CpG sites associated with BMI in a large-scale EWAS 
in blood were not evident in sperm. Therefore, our current understanding of epigenetic associations of 
weight-associated phenotypes, which stems almost exclusively from studies of whole blood, is unlikely 
to give us functional insights into how these may be passed to offspring. 
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There are limitations to our study. First, it constitutes an observational, cross-sectional study and we 
are therefore unable to comment on the causality behind observed associations between obesity and 
spermatozoal DNA methylation. The limited sample size of the obesity cohort (n = 22) reduced our 
ability to detect modest effects of obesity on DNA methylation covariation between sperm and whole 
blood. The obesity cohort included a proportion of overweight males (BMI 25-30 kg/m2), which 
potentially diluted our results. Further, while we used the most comprehensive DNA methylation array 
currently available, the MethylationEPIC array is still biased towards certain parts of the genome (most 
notably enhancer regions, RefSeq genes and CpG islands) and does not give a complete picture of 
genome-wide CpG methylation [38]. Lastly, although we were able to speculate as to the effects of 
genetic variants in CpG sites influencing our results, given trimodal methylation patterns and the 
presence of known SNPs in the CpG site, we did not have the actual genetic sequence of our subjects 
to verify this directly.  
 
The study has several strengths. It constitutes the largest unbiased analysis of DNA methylation in 
matched human sperm and blood samples performed to date, and is one of the largest studies of 
spermatozoal DNA methylation in healthy males of proven fertility. In contrast to several previous 
analyses of DNA methylation in human spermatozoa [39-41], our study includes a replication cohort, 
increasing the robustness of our findings. Crucially, our analyses include the use of large existing 
datasets; blood-sperm correlated CpG sites were interrogated for overlap with previously identified 
mQTLs in whole blood [28] as well as with a list of recently reported CorSIVs [26]. We used findings 
from one of the largest studies of obesity-associated DNA methylation in blood performed to date [1] to 
analyse whether effects of obesity observed in blood overlapped with those observed in sperm. Lastly, 
we used recently developed DNA methylation analysis pipelines for large DNA methylation datasets 
[42] to identify sperm-specific DNA methylation signatures by comparing spermatozoal DNA 
methylation data to that of almost 6,000 somatic tissue samples available on GEO [21]. Together, these 
analyses allowed us to interrogate the spermatozoal DNA methylome in novel ways and provide highly 
suggestive evidence for why DNA methylation as a mechanism for intergenerational effects of obesity 
in humans is unlikely. 
 

Conclusions 
Our data suggests that compared with a wide range of somatic tissues, human sperm displays a unique 
DNA methylation profile, particularly in pathways relating to transcriptional regulation. We show that 
DNA methylation levels in human blood and sperm are only correlated at a minority of CpG sites and 
that at such sites, DNA methylation covariation is most likely due to genetic effects. The use of 
peripheral blood as a surrogate tissue for human spermatozoa is therefore inadvisable. Obesity does 
not generally influence spermatozoal DNA methylation, nor the covariation of DNA methylation between 
blood and sperm. Further, obesity-associated CpG sites identified in peripheral blood do not show 
enrichment in spermatozoa from obese individuals. Taken together, our findings suggest that if there 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 2, 2020. ; https://doi.org/10.1101/2020.05.01.072934doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.01.072934
http://creativecommons.org/licenses/by/4.0/


are inter- and transgenerational effects of human obesity, they are unlikely to be mediated by changes 
in spermatozoal DNA methylation. 
 

Materials and Methods 
Samples 
Whole blood and semen samples were collected from participants recruited from University College 
London Hospital (UCLH) May 2016 - March 2019. Participants were phenotyped with regards to BMI, 
waist circumference, systolic and diastolic blood pressure, blood lipids, fasting insulin and glucose 
levels and C-reactive protein (CRP). Phenotypic information about participants is detailed in Table S4. 
Participants provided information about their medical history and lifestyle via questionnaires, and were 
excluded if they suffered from significant medical conditions or took regular medications. All participants 
were of proven fertility. Peripheral blood samples were centrifuged at 3000g for 15 minutes within one 
hour of venepuncture and the buffy coat was used for DNA extraction.  
 
Semen samples were processed within one hour of sample production as per UCLH protocol and 
analysed for sperm concentration, motility and average progressive velocity using the 
Sperminator/Computer Assisted Sperm Analysis system (Pro-Creative Diagnostics, Staffordshire, UK). 
Semen sample parameters are detailed in Table S14. All semen samples were within normal 
parameters according to World Health Organization criteria [43]. Samples underwent gradient 
centrifugation (45 and 90% PureSperm medium; PureSperm 100®, Nidacon Laboratories, PS100-100) 
to select for motile spermatozoa as described elsewhere [44]. The processed samples were 
microscopically assessed for cell purity such that only samples with no visible cells other than 
spermatozoa were included in downstream analyses. 
 
DNA extraction 
DNA from 200 µL buffy coat derived from whole blood was extracted using Qiagen QIAamp DNA Blood 
Mini Kit (Qiagen, Cat No. 51104) according to manufacturer’s instructions [45]. DNA from the pellet of 
motile spermatozoa was extracted using a standard phenol-chloroform extraction method as described 
previously [46]. DNA extracted from whole blood and sperm was quality controlled using a Qubit 3.0 
Fluorometer (Life Technologies, Cat No. Q33216). DNA was stored in -80°C prior to bisulphite 
conversion. 
 
Methylomic profiling 
DNA (500 ng) from each sample was sodium bisulphite-treated using the Zymo EZ 96 DNA methylation 
kit (Zymo Research, Cat No. D5004) according to the manufacturer’s instructions. DNA methylation 
was quantified using the Illumina Infinium MethylationEPIC BeadChip [38] using an Illumina iScan 
System [47]. Samples were assigned a unique code for identification and randomized with regards to 
cohort and other variables to avoid batch effects, and processed in two batches. The Illumina Genome 
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Studio software was used to extract the raw signal intensities of each probe (without background 
correction or normalization). Raw DNA methylation data is available for download from GEO (accession 
number GSE102538). 
 
Data pre-processing 
Data analysis was performed in R version 3.6.2. DNA methylation data was processed and analysed 
using the wateRmelon package in R [48]. An initial outlier analysis was performed using the outlyx() 
function in wateRmelon based on 1) the interquartile range of the first principal component and 2) the 
pcout algorithm [50] detecting outliers in high dimensional datasets, leading to the removal of 1 
individual from the discovery cohort, 2 individuals from the obesity cohort and 3 Individuals from the 
lean replication cohort. The 59 non-CpG SNP probes on the array were used to confirm that the 
genotypes at these 59 probes were identical for the matched samples. 
 
Prior to data analysis, 9,779 probes were removed from the discovery data because more than 5% 
samples displayed a detection P value > 0.05. Furthermore, 3,337 probes were removed because of 
having a bead count < 3. Probes containing SNPs in close proximity to the CpG site (within 10 base 
pairs) as well as potentially cross-reactive probes were filtered using annotated lists from three sources 
[31, 34, 35], leading to the removal of 149,105 CpG sites. The final discovery data set comprised 
704,356 CpG sites. Data was normalized in the R package wateRmelon using the dasen() function as 
previously described [48]. The lean and obese replication cohort were processed together 
experimentally and therefore jointly pre-processed and normalised using the same parameters as for 
the discovery dataset. A total of 697,442 probes survived quality control and filtering in the replication 
data. DNA methylation was analysed and reported as beta values, which is the ratio of methylated 
probe intensity over the overall intensity and approximately equal to the percentage of methylated sites 
(% DNA methylation). For plotting purposes, beta values are shown and described and shown as 
percent DNA methylation. 
 
Data analysis 
Characterization of DNA methylation in sperm 
CpG sites were assigned to chromosomes, locations, genes, and genomic regions using the Illumina 
manifest for the EPIC array (hg19 reference). CpG sites were classified as having either ‘high’ (median 
beta > 0.8) or ‘low’ (median beta < 0.2) DNA methylation. Enrichments of each genomic or CpG region 
amongst ‘high’ and ‘low’ methylation sites were calculated against the background (sites showing 0.2-
0.8 median beta values) using a Fisher’s exact test. 
 
DNA methylation age estimates 
DNA methylation age was estimated on the discovery sample from both blood and sperm DNA 
methylation using Horvath’s DNA methylation age estimator [4]. We additionally estimated DNA 
methylation age from sperm using the method described by Jenkins and colleagues [22]. 
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Annotation of imprinted genes/ imprinting control regions 
CpG sites were annotated to imprinted genes using the Illumina manifest for the EPIC array and the list 
of imprinted genes published in the Geneimprint database (http://www.geneimprint.com/site/genes-by-
species). Enrichments of intermediate methylation levels were calculated as Fisher’s exact tests of 
number of sites with median beta levels between 0.4 and 0.6 annotated to imprinted genes against the 
array-wide background. For known human imprinting control regions (ICR) we used the locations 
reported by WAMIDEX (https://atlas.genetics.kcl.ac.uk), these were lifted to hg19 and overlapped with 
CpG locations using the R package GenomicRanges [51]. Enrichments for intermediately methylated 
(median beta between 0.4 and 0.6) and unmethylated (median beta < 0.2) sites were calculated as 
Fisher’s exact tests. 
 
DNA methylation differences between blood and sperm 
Sites characterized by differences in DNA methylation between whole blood and sperm were identified 
by a paired t-test of matched samples. Comparison of the difference in DNA methylation levels between 
sperm and blood at different genomic regions was performed by calculating a paired t-test of median 
DNA methylation in sperm vs blood across all sites annotated to a specific genomic or CpG region. 
 
GEO analysis 
DNA methylation data for 6,288 samples was downloaded from the Gene Expression Omnibus (GEO) 
including 281 sperm samples and 5,971 somatic tissue samples from male donors, profiled using the 
450K or EPIC arrays. Statistical analyses were performed using the bigmelon package in R and 
statistical tests were performed using limma [42, 49]. In the comparison of DNA methylation between 
sperm and tissue samples from males on GEO, a linear model was fitted using the lmFit() function from 
the limma R package [49] across the 452,626 CpG sites that are present on both the EPIC and 450K 
arrays. The model regressed DNA methylation onto tissue (sperm vs not sperm) and included age and 
array type (450K or EPIC) as covariates. For sperm samples from GEO which lacked recorded age, 
the estimated age based on Jenkin’s model was used instead. The data was not normalised because 
global large-scale differences between somatic tissues and sperm were expected, and because the 
high number of different types of samples included was expected to ameliorate issues around technical 
noise. The gene ontology (GO) pathway analysis was performed using the gometh() function from the 
missMethyl R package [52], which removes ambiguously assigned probes from the enrichment 
analysis. 
 
Correlation between whole blood and sperm DNA methylation 
In order to minimise the effect single outliers would have on the correlation analysis, a subset of 
‘variable’ probes was identified by calculating the DNA methylation difference between the 10th and 90th 
percentile across all samples, and selecting sites where this was at least 0.05 in both whole blood and 
sperm (n = 155,269 sites). This approach is similar to the one described by Hannon and colleagues 
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previously [15]. Correlated CpG sites between sperm and blood were identified by Pearson’s correlation 
test across all variable probes. In order to establish the  matching null distribution, samples were 
permuted 100 times and correlations between DNA methylation in whole blood and sperm were 
recalculated across all variable sites. The density curve of these simulated correlations was added to 
the histograms of the empirical correlation coefficients to represent the null distribution (Figure 4). To 
investigate the clustering of DNA methylation patterns at significantly correlated CpG sites, a two 
dimensional outlier test was used by adapting the rosnerTest() function from the EnvStats R package 
[53] to exclude unimodal distributions. Next, k means clustering was applied for 2 and 3 clusters as 
implemented in the function pamk() of the R package cluster [54]. This function determines the best 
fitting number of clusters (two or three – corresponding to bi- and tri-modal methylation distributions). 
We manually checked and, if necessary, reassigned clusters which exhibited low between-cluster to 
within-cluster variance ratios (ratio < 2). 
 
Annotation of SNPs and genetic enrichments 
To annotate SNPs to their location within probe sequences we used the Illumina EPIC hg38 manifest 
and dbSNP database build 151 in the SNPlocs.Hsapiens.dbSNP151.GRCh38 R package. SNPs were 
mapped to probes using the GenomicRanges R package [51] and the distance to the CpG site of the 
closest SNP in the probe sequence was calculated for each of the 1,513 probes with significant 
correlations between sperm and blood. We downloaded the locations of the 9,226 correlated regions 
of systemic interindividual variation (CORSIV) in DNA methylation recently published by Gunasekara 
and colleagues [26]. These were overlapped with the locations of CpG sites using the hg38 manifest 
and the GenomicRanges R packages. Finally, we downloaded the list of cis methylation QTLs (mQTLs) 
in blood reported by McClay and colleagues [28]. These were identified using the 450K array, which 
meant we had to restrict this annotation to probes present on both the EPIC and 450K array. 
Enrichments for CORSIVs and mQTLs were calculated by Fisher’s exact test against the background 
of non-correlated variable probes. 
 
Obesity and DNA methylation in blood and sperm 
Two models were used to investigate the association between obesity and DNA methylation in sperm 
and blood. First, DNA methylation was regressed onto obesity status in the combined replication cohort, 
in blood and sperm separately. This analysis was controlled for estimated blood cell counts in blood. 
Secondly, a mixed effects model was run across both the discovery and replication cohorts using the 
lmer() function from the lme4 package in R [55], regressing DNA methylation onto tissue (blood versus 
sperm), age, batch and obesity status, while controlling for interindividual variation with a random effect: 
 lmer(Methylation ~ Tissue + Age + Batch + Obesity +(1|ID)) 
Given our small sample size – especially in the obese group -  we downloaded summary statistics from 

an EWAS of BMI in whole blood [1]. 187 of the replicated array-wide significant probes (P < 1.0 ´ 10-7) 
reported by Wahl and colleagues were also present in our dataset. To make our data comparable we 
treated BMI as a continuous measure for these comparisons, regressing BMI onto obesity status and 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 2, 2020. ; https://doi.org/10.1101/2020.05.01.072934doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.01.072934
http://creativecommons.org/licenses/by/4.0/


controlling for estimated blood cell proportions in the blood analysis. We tested for an enrichment of 
lower ranked P values amongst the 187 previously reported probes in our analysis using a Wilcoxon 
rank sum test. Secondly, we looked at correlations of effect sizes reported by Wahl and colleagues and 
observed in our data across the 187 probes using Spearman’s rank correlation to allow for study-
specific biases. 
 
Interaction between obesity, tissue and DNA methylation 
To detect and interaction between obesity and the association between blood and sperm DNA 
methylation we ran linear model regressing DNA methylation in blood onto DNA methylation in sperm, 
obesity status and their interaction effect, while covarying for experimental batch and age: 
lm(MethylationBlood ~ Methylationsperm * Obesity + Age + Batch) 
 
Cell-type composition 
As whole blood represents a heterogenous tissue where the composition of leukocytes can introduce 
bias in the interpretation of DNA methylation analysis findings, blood cell type counts of monocytes, 
granulocytes, NK-cells, B cells, CD8+-T-cells, and CD4+-T-cells were estimated from the DNA 
methylation data using the method described by Houseman [56]. These estimates were included in all 
analyses that were run on the blood dataset alone as described above. 
 
Multiple testing correction 
For agnostic analyses across the whole EPIC array (including those restricted to variable probes), the 

threshold P < 9 ´ 10-8 as reported in recently published statistical guidelines for the EPIC array [57]. 
For the GEO analysis only the set of probes present on both the 450K and EPIC array were used. We 
applied Bonferroni correction across these 452,626 sites. 
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Supplementary Material 
 
Replication  
 
The majority of DNA methylation differences observed between whole blood and sperm replicated in 
the lean replication (n = 21 lean males) and obesity cohort (n = 22 obese males) across the 692,219 
probes that survived quality control in these cohorts: 288,062 of significant sites that were also present 
in the replication cohorts showed significant differences between blood and sperm in the replication 

cohort (65%; P < 9 ´ 10-8, paired t-test), and 306,023 sites (69%) in the obesity cohort. The effect sizes 
at the 441,764 significant probes from discovery, which were also present in the replication cohorts, 

were highly correlated with those observed in the replication cohorts (lean cohort: r = 98%, P < 1.0 ´ 

10-50; obese cohort: r = 0.99, P < 1.0 ´ 10-50; Figure S5, Table S3). 
 
Correlations between whole blood and sperm DNA methylation were replicated in the two replication 
cohorts. 1,250 of the 1,513 significantly correlated sites had also passed quality control in the replication 

cohorts and 455 (36%) of these were significantly correlated in the lean replication cohort (P < 9 ´ 10-

8, Pearson’s product moment correlation), 502 (40%) in the obesity cohort (Table S12). Given the 
reduced power to detect significant correlation in these two cohorts of reduced size, we further 
characterized sites showing very little evidence of correlation in the replication of cohorts (r < 0.3 in both 
cohorts). These 173 sites (14%) are all driven by groups of outliers in the discovery cohort resulting in 
bi- or tri-modal distribution in the discovery sample, that were not present in the replication cohorts 
(examples shown in Figure S7). The majority (127 sites; 73%) were characterized by a bimodal 
distribution with a single outlier in the discovery. 
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Supplementary Tables 
 

CpG region DNA 
methylation 

P OR 

Island High 3.90E-15 0.85 

Island Low < 1.00E-50 35.60 

Shore High < 1.00E-50 0.27 

Shore Low < 1.00E-50 1.95 

Shelf High 0.11 1.02 

Shelf Low < 1.00E-50 0.11 

Open sea High < 1.00E-50 2.19 

Open sea Low < 1.00E-50 0.07 

 
Supplementary Table 1. Enrichments of CpG region annotations across sites showing extreme methylation values in 
sperm.  
Sites showing > 0.8 median beta value were classified as “high”, sites with median beta < 0.2 as “low”. Enrichments of each 
region amongst “high” and “low” methylation sites were calculated against the annotation of intermediately methylated sites 
(median beta between 0.2 and 0.8) using a Fisher’s exact test. 
OR = odds ratio 
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Region DNA 
methylation 

P OR 

TSS1500 High < 1.00E-50 0.41 

TSS1500 Low < 1.00E-50 2.12 

TSS200 High < 1.00E-50 0.66 

TSS200 Low < 1.00E-50 6.59 

5'UTR High 2.21E-16 0.91 

5'UTR Low < 1.00E-50 1.78 

Body High < 1.00E-50 1.59 

Body Low < 1.00E-50 0.40 

1st exon High < 1.00E-50 0.67 

1st exon Low < 1.00E-50 6.17 

Exon boundary High 5.39E-46 1.62 

Exon boundary Low < 1.00E-50 0.22 

3'UTR High 3.81E-10 1.13 

3'UTR Low < 1.00E-50 0.36 

Not annotated High < 1.00E-50 0.87 

Not annotated Low < 1.00E-50 0.31 

 
Supplementary Table 2. Enrichments of genomic region annotations across sites showing extreme methylation values 
in sperm.  
Sites showing > 80% median DNA methylation were classified as “high”, sites with < 20% methylation as “low”. Enrichments of 
each region amongst “high” and “low” methylation sites were calculated against the annotation of intermediately methylated sites 
(20-80% median DNA methylation) using a Fisher’s exact test. 
OR = odds ratio 
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Supplementary Table 3. Summary statistics for differences in DNA methylation between whole blood and sperm.  
We used a paired t-test to identify DNA methylation differences between whole blood and sperm across all 704,356 probes 
passing quality control in the discovery dataset. Summary statistics are reported for all sites in the discovery dataset. Summary 
statistics from the replication cohort are reported for sites that also passed quality control in our replication dataset. 
IlmnID = Illumina CpG identifier, chr = chromosome, location = position on chromosome in hg19 reference, P = p-value in the 
discovery data, effect = effect size in the discovery data, P_rep = p-value in the lean replication cohort, effect_lean = effect size 
in the lean replication cohort, P_ob = p-value in the obese replication cohort, effect_ob = effect size in the obese replication 
cohort. 
 
Table S3 is part of the electronic appendix:  
SupplementaryTable3_BloodSpermDiff.csv 
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Supplementary Table 4. Phenotype characteristics of participants included in the discovery, replication and obesity cohorts. 
Reference ranges are derived from the UCLH Clinical Biochemistry Test Information sheet available from (1). The reference range for HOMA-IR is derived from (2). SD = Standard Deviation, IQR = 
interquartile range, BMI = Body Mass Index, SBP = Systolic Blood Pressure, DBP = Diastolic Blood Pressure, HOMA-IR = Homeostatic Model Assessment of Insulin Resistance, CRP = C-Reactive 
Protein, HDL = High Density Lipoprotein, LDL = Low Density Lipoprotein

 
Discovery 

cohort 
Lean 

replication 
cohort 

Obesity 
cohort 

P 
(difference between 

cohorts) 

P 
(discovery vs 
replication) 

P (discovery 
vs obesity) 

P 
(replication vs 

obesity) 
Age (years). Mean (SD) 36.3 (5.2) 34.1 (4.6) 35.1 (4.1) 0.192 

   

BMI (kg/m2). Mean (SD) 23.4 (4.6) 22.3 (1.1) 29.1 (3.2) <0.001 0.060 <0.001 <0.001 

Waist circumference (cm). Mean (SD) 84.4 (4.8) 82.4 (6.4) 99.4 (8.7) <0.001 0.436 <0.001 <0.001 

SPB (mmHg), average of two measurements. Mean 
(SD) 

119 (11) 121 (10) 126 (9) 0.052 
   

DPB (mmHg), average of two measurements. Mean 
(SD) 

77 (8) 78 (6) 81 (8) 0.050 
   

Total cholesterol (mmol/L). Mean (SD) 4.7 (0.7) 4.9 (0.9) 4.9 (1) 0.614 
   

HDL cholesterol (mmol/L). Mean (SD) 1.6 (0.3) 1.5 (0.3) 1.4 (0.3) 0.060 
   

LDL cholesterol (mmol/L). Mean (SD) 2.7 (0.7) 2.9 (0.8) 2.9 (0.9) 0.330 
   

Fasting glucose (mmol/L). Median (IQR) 4.8 (0.5) 4.6 (0.4) 4.7 (0.6) 0.018 0.003 0.088 0.105 

Fasting insulin (mIU/L). Median (IQR) 5.3 (3.4) 5.1 (3.0) 8.9 (7.2) 0.002 0.309 <0.001 0.004 

HOMA-IR. Median (IQR) 1.2 (0.8) 1.1 (0.6) 1.9 (1.4) <0.001 0.285 <0.001 0.005 

HOMA2-IR. Median (IQR) 1.1 (0.5) 0.6 (0.4) 1.1 (0.9) 0.014 0.048 0.414 0.003 

CRP (mg/L). Median (IQR) 0.6 (0.3) 0.6 (0.1) 1 (1.8) <0.001 0.105 0.001 <0.001 

Triglycerides (mmol/L). Median (IQR) 0.9 (0.5) 0.9 (0.7) 1.2 (0.6) 0.282 0.335 0.056 0.157 
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CpG region Probes P DNA methylation 

difference (beta) 
Island 132,883 < 1.00E-50 -0.07 

Shore 128,079 < 1.00E-50 -0.16 

Shelf 48,301 < 1.00E-50 0.06 

Sea 395,093 < 1.00E-50 0.07 

 
Supplementary Table 5. Blood and sperm DNA methylation difference by CpG region.  
Using a paired t-test the DNA methylation difference between the median methylation in blood and sperm was calculated for 
each region. The DNA methylation difference is shown with respect to blood (a positive value indicating higher average DNA 
methylation in sperm). 
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Region Probes P DNA methylation 

difference (beta) 
TSS1500 103,486 < 1.00E-50 -0.11 

TSS200 64,958 < 1.00E-50 -0.02 

5'UTR 92,296 3.61E-32 0.09 

Body 297,434 < 1.00E-50 0.02 

1st exon 38,767 < 1.00E-50 -0.02 

Exon boundary 6,462 2.80E-22 0.02 

3'UTR 20,248 3.81E-05 -0.01 

Not annotated 191,155 < 1.00E-50 0.02 

 
Supplementary Table 6. Blood and sperm DNA methylation difference by genomic region.  
Using a paired t-test the DNA methylation difference between the median methylation in blood and sperm was calculated for 
each region. The DNA methylation difference is shown with respect to blood (a positive value indicating higher average DNA 
methylation in sperm). 
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Tissue Number of 
samples 

Adipose 42 

Blood 2317 

Brain 868 

Buccal 214 

Cartilage 60 

Chorion 3 

Colon 170 

Epithelial 183 

Fibroblast 54 

Intestines 1 

Kidney 45 

Liver 90 

Lung 103 

Lymph node 24 

Mucosa 95 

Muscle 17 

Neuron 71 

Neutrophils 69 

Pancreas 112 

Rectum 13 

Saliva 146 

Skin 38 

T cells 136 

Unsorted cell lines 9 

Unsorted tissues 863 

Unsorted tumours 174 

 
Supplementary Table 7. Details on non-sperm tissue samples in the GEO analysis. The corresponding accession 
numbers are provided in Table S8. 
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Supplementary Table 8. Accession numbers of all DNA methylation samples downloaded from GEO. 
 
Table S8 is part of the electronic appendix: 
SupplementaryTable8_GEOAccessionNumbers.csv 
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Supplementary Table 9. Summary statistics for differences in DNA methylation between sperm and somatic tissue 
samples from GEO.  
We compared DNA methylation in 371 sperm samples (including 90 samples from our cohorts) to that of 5,917 somatic tissue 
samples from GEO using linear regression. This analysis was conducted across all 452,626 sites that are present on both the 
450K and EPIC array. Summary statistics are reported for all sites. 
IlmnID = Illumina CpG identifier, chr = chromosome, location = position on chromosome in hg19 reference, P = P value for 
difference between sperm and somatic cell DNA methylation, P_Bonferroni = Bonferroni-adjusted P value, effect = DNA 
methylation difference (beta) – negative values indicate lower DNA methylation in sperm compared to somatic tissues. 
 
Table S9 is part of the electronic appendix: 
SupplementaryTable9_GEOSummaryStatistics.csv 
 
  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 2, 2020. ; https://doi.org/10.1101/2020.05.01.072934doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.01.072934
http://creativecommons.org/licenses/by/4.0/


Supplementary Table 10. Significantly enriched Gene ontology terms amongst CpG sites identified to be 
hypermethylated in sperm compared to somatic tissues.  
GO analysis identified 272 pathways enriched amongst hypermethylated sites. Of note, 37 of these (14%) related to 
transcriptional regulation, while 67 (25%) were related to brain and neurological categories. 
GO ID = Gene Ontology identifier, N = number of genes in the GO term, DE = number of genes that were differentially methylated, 
P.DE = P value for over-representation of the GO term, ONTOLOGY: BP = biological process, CC = cellular component, MF = 
molecular function 
 
Table S10 is part of the electronic appendix: 
SupplementaryTable10_HyperPathways.csv 
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Supplementary Table 11. Significantly enriched Gene ontology terms amongst CpG sites identified to be 
hypomethylated in sperm compared to somatic tissues.  
GO analysis identified 37 pathways enriched amongst hypomethylated sites. Eight of these pathways were related to sensory 
perception, specifically smell. 
GO ID = Gene Ontology identifier, N = number of genes in the GO term, DE = number of genes that were differentially methylated, 
P.DE = P value for over-representation of the GO term, ONTOLOGY: BP = biological process, CC = cellular component, MF = 
molecular function 
 
Table S11 is part of the electronic appendix: 
SupplementaryTable11_HypoPathways.csv 
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Supplementary Table 12. Summary statistics for correlation of DNA methylation between whole blood and sperm.  
We used a Pearson’s correlation test to identify CpG sites where DNA methylation was significantly correlated between whole 
blood and sperm This analysis was restricted to the 155,269 sites that showed met minimum variability criteria in both tissues 
(range of middle 80% > 5%). Summary statistics are reported for all sites in the discovery dataset. Summary statistics from the 
replication cohort are reported for the sites that also passed quality control in our replication dataset. 
IlmnID = Illumina CpG identifier, chr = chromosome, location = position on chromosome in hg19 reference, P = p-value in the 
discovery data, r = correlation coefficient in the discovery data, P_rep = p-value in the lean replication cohort, r_lean = correlation 
coefficient in the lean replication cohort, P_ob = p-value in the obese replication cohort, r_ob = correlation coefficient in the obese 
replication cohort. 
 
Table S12 is part of the electronic appendix: 
SupplementaryTable12_Correlations.csv 
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Supplementary Table 13. Summary statistics for the association between DNA methylation and obesity in whole blood 
and sperm.  
We regressed DNA methylation onto obesity status in our replication cohort, separately in whole blood and sperm, controlling for 
estimated blood cell type proportions in the blood analysis. We furthermore used a linear mixed effects model across the 
combined discovery and replication datasets, regressing DNA methylation onto obesity status, tissue type and batch while 
controlling for interindividual variation. Summary statistics for both analyses are reported – the LME results are restricted to sites 
available in both the discovery and replication datasets.  
IlmnID = Illumina CpG identifier, chr = chromosome, location = position on chromosome in hg19 reference, P_blood = p-value in 
blood analysis, effect_blood = effect size in whole blood, P_sperm = p-value in sperm analysis, effect_sperm = effect size in 
sperm, P_mix = p-value in the mixed effects model, effect_mix= effect size in the mixed effects model. All effect sized are reported 
using the lean men as reference group. 
 
Table S13 is part of the electronic appendix: 
SupplementaryTable13_ObesityAssociations.csv 
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Discovery 
cohort 

Lean 
replication 
cohort 

Obesity cohort Reference 
range 

P 

Volume (sperm, mL).  
Mean (SD) 

2.9 (1.1) 2.9 (1.4) 2.6 (1.5) > 1.5 mL 0.538 

Concentration (sperm, millions). Mean 
(SD) 

55.4 (37.2) 47.9 (33.9) 57.4 (31) > 15 
millions/mL 

0.608 

Total count per ejaculate (millions). 
Mean (SD) 

161 (150.4) 149 (140.5) 157 (131.5) > 39 million 0.953 

Percentage A sperm. Mean (SD) 14.8 (10.6) 15.4 (10.6) 17.4 (10.3) N/A 0.610 

Percentage B sperm. Mean (SD) 23.9 (9.5) 22.1 (9.4) 20.4 (8.6) N/A 0.348 

Percentage C sperm. Mean (SD) 12.1 (3.7) 11.4 (3.7) 11.1 (4.3) N/A 0.589 

Percentage D sperm. Mean (SD) 49.3 (18.1) 50.5 (18.7) 51.1 (18.8) N/A 0.926 

Average motile speed. Mean (SD) 18.6 (2.6) 19.2 (4.4) 19.4 (2.3) N/A 0.603 

 
Supplementary Table 14. Semen sample parameters for the discovery and replication cohorts (the lean replication 
cohort and the obesity cohort). Semen sample parameters were measured using the Computer-Assisted Sperm Analysis 
(CASA)/Sperminator software (Pro-Creative Diagnostics, Staffordshire, UK). V = volume, C = concentration, SD = Standard 
Deviation, WHO = World Health Organization. Percentage A-D sperm refer to the proportion of spermatozoa in different motility 
grades where A = most motile and D = least motile. Reference ranges derived from (3). 
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Supplementary Figures 
 
A      B 

 
 
Supplementary Figure 1. DNA methylation age prediction in whole blood and sperm.  
A) As reported previously, the DNA methylation age predictor by Horvath was able to accurately predict chronological age from 

DNA methylation in whole blood (r = 0.74, P = 2.55 ´ 10-9, Pearson’s product moment correlation) but not in sperm (r = 0.26, 
P = 0.07).  

B) However, chronological age could be more accurately predicted from DNA methylation in sperm using the predictor more 
recently developed by Jenkins and colleagues (r = 0.68, P = 1.78 ´ 10-7). 
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Supplementary Figure 2. DNA methylation at CpG sites annotated to imprinted genes is enriched in intermediate levels 
of DNA methylation in blood, but not sperm.  
DNA methylation annotated to known imprinted genes (Geneimprint database; http://www.geneimprint.com), showed a 
characteristic enrichment in sites with beta around 0.5 (+/- 0.1) in whole blood – particularly, those genes known to be paternally 
imprinted (P < 1.00 ´ 10-50, Fisher’s exact test), but also for maternally imprinted genes (P = 9.19 ´ 10-9) and a less pronounced 
enrichment in genes predicted to be imprinted paternally (P = 0.01) or maternally (P = 0.04). No such enrichment was observed 
in sperm (P > 0.05 for all four tests). 
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Supplementary Figure 3. Imprinting control regions are around 50% methylated in whole blood, while being nearly 
completely unmethylated in sperm.  
Nearly all of the 169 CpG sites that are located in known imprinting control regions (ICRs, WAMIDEX database; 
https://atlas.genetics.kcl.ac.uk) display intermediate DNA methylation levels in blood (57% of sites with median beta between 0.4 
and 0.6; P < 1.00 ´ 10-50, Fisher’s exact test). Simultaneously, they appear to be completely unmethylated in sperm (94% of sites 
with median beta < 0.2, P < 1.00 ´ 10-50). 
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Supplementary Figure 4. Load of DNA methylation on first 20 principal components (PCs) in whole blood and sperm.  
The first PC, which explained 51.41% of the total variance, clearly distinguishes between blood and sperm, making tissue/cell 
type the single biggest factor contributing to variation in DNA methylation across our samples. 
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Supplementary Figure 5. Differences observed between whole blood and sperm DNA methylation replicated across two 
replication cohorts.  
The effect sizes at the 441,764 significant probes from discovery, which were also present in the replication cohorts, were highly 
correlated with those observed in the replication cohorts (lean cohort: r = 98%, P < 1.0 ´ 10-50; obese cohort: r = 0.99, P < 1.0 ´ 
10-50). 
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A      B  

 
C 

 
 
Supplementary Figure 6. 365 of the 1,513 significantly correlated sites were driven by single outliers.  
Shown is DNA methylation in whole blood and sperm from the discovery and replication cohorts at  
A) cg02474032 (chr16:87678659),  
B) cg25554892 (chrX:70434406), and  
C) cg07636088 (chr13: 31734946). We observed higher measured DNA methylation in the individual outlier at less than 2% of 
these 365 sites. 
  

0

25

50

75

100

0 25 50 75 100
DNA methylation (%) in whole blood

DN
A 

m
et

hy
la

tio
n 

(%
) i

n 
sp

er
m

Cohort
Discovery

Replication

Obesity
●

●

Control

Obese

cg02474032

0

25

50

75

100

0 25 50 75 100
DNA methylation (%) in whole blood

DN
A 

m
et

hy
la

tio
n 

(%
) i

n 
sp

er
m

Cohort
Discovery

Replication

Obesity
●

●

Control

Obese

cg25554892

0

25

50

75

100

0 25 50 75 100
DNA methylation (%) in whole blood

DN
A 

m
et

hy
la

tio
n 

(%
) i

n 
sp

er
m

Cohort
Discovery

Replication

Obesity
●

●

Control

Obese

cg07636088

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 2, 2020. ; https://doi.org/10.1101/2020.05.01.072934doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.01.072934
http://creativecommons.org/licenses/by/4.0/


A     B 

 
C     D 

 
 
Supplementary Figure 7. Correlations which did not replicate were driven small numbers of individual outliers in the 
discovery cohort.  
Of the 1,250 correlated probes also present in the replication cohorts 173 (13%) show no evidence of correlation in the replication 
cohorts (r < 0.3 in both cohorts)  
A) The majority of these sites (127 sites; 76%) were characterized by a single outlier in the discovery cohort, without any outliers 

in the replication cohorts. One example is found at cg27045994 (chr16:87678659).   
B) cg25253080 (chr10:14795564) represents the only incidence where a group of 5 outliers did not replicate in either replication 

cohort.  
C) The biggest outlier group which did not replicate contained 6 individuals, with no outliers in the replication data and was found 

at cg27045994 (chr8:284126).  
D) The only trimodal distribution which did not replicate was observed at cg17118288 (chr1:218563763). 
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A      B 

 
C      D  

 
 
Supplementary Figure 8. Statistically significant interaction effects were driven by outliers in either the obese or lean 
group.  
The majority of significant interactions between sperm and blood DNA methylation and obesity were driven by single or very few 
outliers in the obesity group.  
A) At cg23132872 (chr2:191882300), the correlation in obese individuals is driven by a single outlier.  
B) At cg22086461 (chr8:77343728) the correlation in obese individuals is driven by two outliers.  
C) At cg17166874 (chr7:155381422) the correlation in lean men is driven by four outliers in the discovery cohort and methylation 

at this site is also characterized by substantial batch effects.  
D) At cg19778375 (chr12:297831) there appears to be a batch effect between the discovery and replication cohort that contributes 

to an observed correlation in the lean men from the discovery cohort, which is not present in the replication datasets. 
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