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Abstract 28 
 29 
The internal workings of biological systems are notoriously difficult to understand. Due to the 30 
prevalence of noise and degeneracy in evolved systems, in many cases the workings of everything 31 
from gene regulatory networks to protein-protein interactome networks remain black boxes. One 32 
consequence of this black-box nature is that it is unclear at which scale to analyze biological 33 
systems to best understand their function. We analyzed the protein interactomes of over 1800 34 
species, containing in total 8,782,166 protein-protein interactions, at different scales. We 35 
demonstrate the emergence of higher order `macroscales' in these interactomes and that these 36 
biological macroscales are associated with lower noise and degeneracy and therefore lower 37 
uncertainty. Moreover, the nodes in the interactomes that make up the macroscale are more 38 
resilient compared to nodes that do not participate in the macroscale. These effects are more 39 
pronounced in interactomes of Eukaryota, as compared to Prokaryota. This points to plausible 40 
evolutionary adaptation for macroscales: biological networks evolve informative macroscales to 41 
gain benefits of both being uncertain at lower scales to boost their resilience, and also being 42 
'certain' at higher scales to increase their effectiveness at information transmission. Our work 43 
explains some of the difficulty in understanding the workings of biological networks, since they 44 
are often most informative at a hidden higher scale, and demonstrates the tools to make these 45 
informative higher scales explicit.  46 
 47 
Introduction 48 
 49 
Interactions in biological systems are noisy and degenerate in their functions, making them 50 
fundamentally noisier and fundamentally different from those in engineered systems (Edelman & 51 
Gally, 2001; Tsimring, 2014). The sources of noise in biology are nearly ubiquitous and vary 52 
widely. Noise may exist a gene regulatory network, wherein a gene might upregulate another gene 53 
but only probabilistically, or they may be noisy in that a protein may bind randomly across a set 54 
of possible pairings. There are numerous sources of such indeterminism in cells and tissues, such 55 
as how cell molecules a buffered by Brownian motion (Einstein, 1905), to the stochastic opening 56 
and closing of ion channels (Colquhoun & Hawkes, 1981), and even to the chaotic dynamics of 57 
neural activity (Başar, 2012). 58 

There are also numerous sources of degeneracy within the cellular, developmental, and 59 
genetic operation of organisms (Brennan, Cheong, & Levchenko, 2012). Degeneracy is when an 60 
end state or output, like a phenotype, can come from a large number of possible states or inputs 61 
networks (Tononi, Sporns, & Edelman, 1999). 62 

Due to this indeterminism and degeneracy, the dynamics and function of biological systems 63 
are often uncertain. This hampers control of system-level properties for biomedicine and synthetic 64 
bioengineering, as well as hampering the understanding of modelers and experimentalists who 65 
wish to build “big data” approaches to biology like interactomes, connectomes, and mapping 66 
molecular pathways (Dolinski & Troyanskaya, 2015; Marx, 2013). While there have been many 67 
attempts to characterize and understand this uncertainty in biological systems (Tononi, Sporns, & 68 
Edelman, 1999), the explanations typically do not extend beyond the advantages of redundancy in 69 
these systems (Whitacre, 2010). 70 

How do noise and uncertainty span the tree of life? Here we examine this question in 71 
biological networks, a common type of model for biological systems networks (Alon, 2003; Bray, 72 
2003). Specifically, we examine protein-protein interactomes from organisms across a wide range 73 
of organisms to investigate whether or not the noise and uncertainty in biological networks 74 
increases or decreases across evolution. In order to quantify this noise and uncertainty we make 75 
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use of the effective information (EI), an information-theoretic network quantity based on the 76 
entropy of random walker behavior on a network. A lower EI indicates greater noise and 77 
uncertainty (a formal mathematical definition is given in the Results). Indeed, the EI of biological 78 
networks has already been shown to be lower in biological networks compared to technological 79 
networks (Klein & Hoel, 2020), which opens the question of why this is the case. 80 

To see how EI changes across evolution, we examined networks of protein-protein 81 
interactions (PPIs) from organisms across the tree of life. The dataset consists of interactomes 82 
from 1840 species (1,539 Bacteria, 111 Archaea, and 190 Eukaryota) derived from the STRING 83 
database (Szklarczyk et al., 2010; Szklarczyk et al., 2017). These interactomes have been 84 
previously used to study evolution of resilience, where researchers found that species tended to 85 
have higher values of network resilience with increasing evolution (wherein “evolution” was 86 
defined as the number of nucleotide substitutions per site) (Zitnick et al. 2019). In our work, we 87 
take a similar approach, highlighting changes in interactome properties as evolution progresses.  88 

Additionally, we focus on identifying when interactomes have informative macroscales. A 89 
macroscale refers to some dimension reduction, such as an aggregation, coarse-graining, or 90 
grouping, of states or elements of the biological system. In networks this takes the form of 91 
replacing subgraphs of the network with individual nodes (macro-nodes). A network has an 92 
informative macroscale when subgraphs of the network can be grouped into macro-nodes such that 93 
the resulting dimensionally-reduced network gains EI (Klein & Hoel, 2019). When such grouping 94 
leads to an increase in EI, we describe the resulting macro-node as being part of an informative 95 
macroscale. Following previous work, we refer to any gain in EI at the macroscale as causal 96 
emergence (Hoel et al., 2013). With these techniques, we can identify which protein-protein 97 
interaction (PPI) networks have informative macroscales and which do not. By correlating this 98 
property with where (in time) each species lies in the evolutionary tree, we show that informative 99 
macroscales tend to emerge later in evolution, being associated more with Eukaryota than 100 
Prokaryota (such as Bacteria).  101 

What is the evolutionary advantage of having informative higher scales? This question is 102 
important because higher scales minimize noise or uncertainty in biological networks. Yet such 103 
uncertainty or noise represents a fundamental paradox. The more noisy a network is, the more 104 
uncertain and the less effective that network is (like being able to effectively transform inputs to 105 
outputs, such as being able to effectively upregulate a particular gene in response to a detected 106 
chemical in the environment). Therefore, we might expect evolved networks to be highly effective. 107 
Yet this is the opposite of what we observe. Instead we observe that effectiveness of lower scales 108 
decreases later in evolution, as higher scales that are effective emerge.  109 

We argue here that this multi-scale behavior is the resolution to a paradox: there are 110 
advantages to being effective, but there are also advantages to being less effective and therefore 111 
more uncertain or noisy. For instance, less effective networks might be more resistant to attack or 112 
node failure due to redundancy. The paradox is that networks that are certain are effective yet are 113 
vulnerable to attacks or node failures, while networks that are uncertain are less effective but are 114 
resilient in the face of attacks or node failures. We argue that biological networks have evolved to 115 
resolve this “certainty paradox” by having informative higher scales. Specifically, we propose that 116 
the macroscales of a biological network evolve to have high effectiveness, but their underlying 117 
microscales may have low effectiveness, therefore making the system resilient without paying the 118 
price of a low effectiveness.  119 

In a biological sense, node failures or attacks in a cellular network may represent certain 120 
mutations in proteins or other biochemical entities, which in turn may prevent regular functioning 121 
of the system (Barabási & Oltvai, 2004). Biological networks should then, over the course of 122 
evolution, develop degeneracy and noise at lower scales to maintain regular functioning, while at 123 
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the same time developing effectiveness at a higher level. This transformation can be achieved by 124 
the action of both neutral and selective processes in evolution. Neutral processes such as pre-125 
suppression, which aided by mutations, increases the number of interactions (Lukeš et al., 2011) 126 
and can therefore decrease network effectiveness. On the other hand, selective processes can weed 127 
out the noise that interferes with the functioning and efficiency of the system (Brunet & Doolittle, 128 
2018). An interplay of these evolutionary processes can lead to a resolution the “certainty paradox” 129 
in cellular networks by the develop of informative macroscales. 130 

This work therefore presents an explanation for the observed trend in increased resiliency 131 
through evolution (Zitnick et al., 2019): informative macroscales make networks more resilient. 132 
Finally, we offer insights into biological processes at molecular level that might be responsible for 133 
the emergence of informative macroscales in protein-protein interaction networks, specifically 134 
looking at the differences between Bacteria, which has a low rate of nucleotide substitutions per 135 
site, and Eukaryota, which exhibit a higher rate. Understanding the basic principles governing the 136 
differences in efficiency and uncertainty between these major divisions of life can help us 137 
comprehend the trade-offs involved in information processes in PPIs across evolution. 138 
 139 
Results 140 
 141 
Effectiveness of protein interactomes across the tree of life. 142 
 143 
Effective information (EI) is a network property reflecting the certainty (or uncertainty) contained 144 
in that network’s connectivity (Klein & Hoel, 2020). It is a structural property of a network 145 
calculated by traversing its topology, and is based on the uncertainty of a random walker’s 146 
transitions between pairs of nodes, and the distribution of this uncertainty throughout the network. 147 
It is calculated by examining the network’s connectivity. 148 

In a protein interactome, the nodes are individual proteins and the edges of the network are 149 
interactions, generally describing the possibility of binding between two proteins. Therefore, the 150 
uncertainty we analyze is uncertainty as to which protein(s) a given protein might interact with, 151 
e.g., bind with. Each node in the network has out-weights, which are represented by a vector 𝑊"

#$%. 152 
For instance, protein A might share an edge with protein B and also protein C. Therefore, 𝑊&

#$%. 153 
is [½, ½]. Since most protein interactome are undirected, its edges are normalized for each node 154 
(such that the sum of 𝑊"

#$% for each node is 1.0). Note that this process of normalization implies 155 
that the probability of binding is uniform across the different possible interactions. This 156 
transformation into a direct network makes the networks amenable to standard tools of network 157 
science, such as analyzing random walk dynamics, and it is also necessary to calculate the EI of 158 
the network. Additionally, the uniform distribution of 1/n is the simplest a priori assumption. 159 
However, the actual probability of binding is dependent on biological background conditions such 160 
as protein prevalence and not included in most open-source models, and therefore our analysis 161 
could change if such detailed probabilities were known.  162 

The uncertainty associated with each protein can be mathematically captured by examining 163 
the entropy of the outputs of a node, 𝐻(𝑊"

#$%), wherein a higher entropy indicates more 164 
uncertainty more uncertainty as to interactions (Shannon, 1948). The entropy of the distribution of 165 
weight across the entire network, 𝐻*〈𝑊"

#$%〉-, reflects the spread of uncertainty across the 166 
network. A lower 𝐻*〈𝑊"

#$%〉- means that information is distributed only over a small number of 167 
nodes. A high 𝐻*〈𝑊"

#$%〉- signifies that information is dispersed throughout the network. The EI 168 
of a network can then be defined as the entropy of distribution of weights over the network minus 169 
the average uncertainty inherent in the weight of each node, or: 170 
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 171 
𝐸𝐼 = 𝐻*〈𝑊"

#$%〉- − 𝐻〈*𝑊"
#$%-〉. 172 

 173 

 174 
 175 
Figure 1. Effectiveness of protein interactomes. (A) Effectiveness of all 1840 species with their 176 
superphylum association. Interactomes with a lower number of nucleotide substitutions per site tended to 177 
be Prokaryota (yellow), while those higher tended to be Eukaryota (blue). Solid line is a linear regression 178 
comparing the effectiveness of Bacteria and Eukaryota (𝑟 = −0.40, 𝑝 < 10:;), due to the small number 179 
of Archaea that passed the threshold for reliable datasets (see Results). (B) The effectiveness of prokaryotic 180 
protein interactomes is greater than that of eukaryotic species, indicating that effectiveness might decrease 181 
with more nucleotide substitutions per site. 182 
 183 

EI can itself be further decomposed into the degeneracy and indeterminism of a network 184 
(Klein & Hoel, 2020), where each indicate the lack of specificity in the network’s connectivity or 185 
interactions. Degeneracy indicates a lack of specificity in targeting nodes (many nodes target the 186 
same node), while indeterminism indicates a lack of specificity in targeted nodes (nodes target 187 
many nodes). Note that, if networks are considered deterministic in the physical sense, the 188 
indeterminism term of 𝐸𝐼 still reflects the uniqueness of targets in the network. 189 

A network where all the nodes target a single node will have zero EI (since it has maximum 190 
degeneracy), as will a network where all nodes target all other nodes (complete indeterminism). 191 
EI will only be maximal if every node has a unique output. This forces the EI of a network to be 192 
bounded by	log@(𝑛). Therefore, in order to compare networks of different sizes, EI can be 193 
normalized using the number of nodes in the network, n, and a new quantity, effectiveness, can be 194 
defined as: 195 

effectiveness =
𝐸𝐼

log@(𝑛)
 196 

 197 
To explore the change in effectiveness of biological networks, we examined protein 198 

interactomes of 1840 species divided between Archaea, Bacteria, and Eukaryota (see the Methods 199 
section for details on the origin and nature of these protein interactomes). We found a clear pattern 200 
in the effectiveness of the networks, based on where they are located in the tree of life (Fig. 1), the 201 
position of which is based on each protein interactome’s small subunit ribosomal RNA gene 202 
sequence information (Hug et al., 2016) (see Methods for details). Overall, we found that the mean 203 
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effectiveness of protein interactomes actually decreases later in the tree of life as nucleotide 204 
substitutions occurred. Specifically, Bacteria were found to have a greater effectiveness (0.77) 205 
compared to Eukaryota (0.72) on average (student’s t-test, 𝑝	 < 	10:B). Following Zitnik et al. 206 
(2019), we restricted further statistical analysis to interactomes with more than 1000 citations, in 207 
order use the most well-founded protein interactomes, but the directionality and significance of 208 
the result is unchanged when only those above 100 citations are included as compared to when all 209 
interactomes are included (student’s t-test, 𝑝	 < 	10:CC). Due to the small number of Archaea 210 
interactomes based on above 1000 citations we did not include those samples in Fig. 1B.  211 
 212 
 213 
Causal emergence across the tree of life. 214 
 215 
At first the higher effectiveness in Prokaryota interactomes as compared to that of Eukaryota (as 216 
shown in Fig. 1) may seem counter-intuitive. One might naively expect the effectiveness of cellular 217 
machinery, including or especially interactomes, to increase over evolutionary time, instead of 218 
decreasing as we have shown. 219 
 One hypothesis to explain these results is that, while the protein interactomes get less 220 
effective in their micro-scales over evolutionary time, the interactomes are able to nonetheless be 221 
effective due to the emergence of informative macroscales as evolution proceeds. To examine this 222 
hypothesis, we must first define a procedure for finding macroscales in networks. 223 

Network macroscales are defined as subgraphs (i.e., connected sets of nodes and their 224 
associated links) that can be grouped into single macro-nodes such that the resulting network has 225 
a higher value of EI than the original microscale network (Klein & Hoel, 2020). We denote the 226 
microscale of a network as 𝐺 and the macroscale as 𝐺E, which is composed of both ungrouped 227 
nodes (micro-nodes) and macro-nodes, µ. The macroscale network, 𝐺E, is a dimension reduction 228 
in that it always has fewer nodes than 𝐺. 229 

To recast a particular subgraph into a macro-node, its connectivity must be modified since 230 
the subgraph is being transformed into a single node. In terms of input to the new macro-node, µ, 231 
all out-weights that targeted nodes in the subgraph now target the macro-node. In terms of output, 232 
each micro-node, 𝑣", inside the subgraph has some 𝑊"

#$%. To recast the nodes inside a subgraph 233 
into a macro-node, we replace the 𝑊"

#$% of the nodes in the subgraph a single 𝑊H#$%, which is a 234 
weighted average of the set of each 𝑊"

#$% in the subgraph. The weight is based off the probability 235 
p of each node 𝑣" in the stationary distribution of the network,	p. This forms macro-nodes (µ|p) 236 
that accurately recapitulate the microscale random walk dynamics at the new macroscale (Klein & 237 
Hoel, 2020). A macroscale is informative if it increases the EI of the network compared to the 238 
original microscale. In order to find macro-nodes that maximally increase EI we make use of a 239 
modified spectral algorithm to find locally optimal micro-to-macro mappings, originally described 240 
in (Griebenow et al., 2019). 241 

Results from this analysis support our initial hypothesis that effectiveness is actually being 242 
transitioned to macroscales of biological networks in Eukaryota over evolutionary time, even 243 
though the microscales become noisy and less effective over evolutionary time. The total amount 244 
of causal emergence (the gain of EI by grouping subgraphs into macro-nodes) was identified for 245 
each protein interactome from each species, normalized by the total size of that protein interactome 246 
(Fig 2A). Across the tree of life we observe that Eukaryota have more informative macroscales 247 
and show a significant difference in the percentage of microscale nodes that get grouped into 248 
macro-nodes than (Fig. 2). 249 
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 250 
 251 
Figure 2. Causal emergence in protein interactomes. (A) The protein interactomes of each species 252 
undergoes a modified spectral analysis in order to identify the scale with EImax. The total dimension 253 
reduction of the network is shown, with there being a greater effect in Eukaryota as more subgraphs are 254 
grouped in macro-nodes. That is, as evolutionary time goes on the coarse-grained networks become a 255 
smaller fraction of their original microscale network size (𝑟 = −0.46, 𝑝 < 10:K). (B) In order to compare 256 
the degree of causal emergence in protein interactomes of different sizes, the total amount of causal 257 
emergence is normalized by the size of the network, log@(𝑛), and we see here a positive correlation between 258 
evolution and causal emergence (𝑟 = 0.457, 𝑝 < 10:N). (C) The amount of normalized causal emergence 259 
is significantly higher for Eukaryota. 260 
 261 
 262 
Macroscales of protein interactomes are more resilient than their microscales. 263 
 264 
Why might biological networks evolve over time to have informative macroscales? As previously 265 
discussed, one answer might be that having multi-scale structure provides benefits that networks 266 
with only a single scale lack. All networks face a “certainty paradox.” The paradox is that 267 
uncertainty in connectivity is desirable since it is protective from node failures. For instance, a 268 
node failure could be the removal of a protein due to a nonsense mutation, or the inability to 269 
express a certain protein due to an environmental effect, such as a lack of resources, or even a viral 270 
attack. In turn, this could lead to a loss of biological function or the development of disease or 271 
even cell death. A protein interactome may be resilient to such node failures by being highly 272 
uncertain or degenerate in its protein-protein interactomes. However, this comes at a cost. A high 273 
uncertainty can lead to problems with reliability, uniqueness, and control in terms of effects, such 274 
as an inability for a particular protein to deterministically bind with another protein. For instance, 275 
in a time of environmental restriction of resources, certain protein-protein interactomes may be 276 
necessary for continued cellular function, but if there is large-scale uncertainty even significant 277 
upregulation of genes controlling expression may not lead reliably to a certain interaction. 278 

Here we explore these issues by examining the network resilience of protein interactomes 279 
in response to node removals, which represent either attacks or general node failures. 280 

In order to measure the resilience of the network in response to a node removal we follow 281 
(Zitnick et al., 2019) by using the change in the Shannon entropy of the component size distribution 282 
of the network following random node removal. That is, if 𝑝O is the probability that a randomly 283 
selected node is in connected component 𝑐 ∈ 𝐶 following the removal of a fraction 𝑓 of the nodes 284 
in the network, the entropy associated with the component size distribution, 𝐻(𝐺T), is: 285 
 286 
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𝐻*𝐺T- = 	−
1

log@(𝑛)
U𝑝O log@(𝑝O)
VW

O

 287 

 288 
where 𝑛O is the number of connected components remaining after 𝑓 fraction nodes have been 289 
removed (note: “removed” here indicates that the nodes become isolates, still contributing to the 290 
component size distribution though not retaining any of the original links). The change in entropy,  291 
 292 

 293 
 294 
Figure 3. Resilience of micro- and macro-nodes following causal emergence in interactomes. The 295 
resilience of a species interactome changes across the tree of life, as shown in previous research (Zitnick et 296 
al., 2019). Using the mapping generated by computing causal emergence (Fig. 2B), we calculate the 297 
resilience of the network, isolating the calculation to nodes that are either part of the macroscale or 298 
microscale. Points are color-coded according to the evolutionary domain; points with dark outlines are 299 
associated with micro-nodes that have been grouped into a macro-node (macroscale), while the points with 300 
light outlines have not been grouped into a macro-nodes (microscale). Nodes at the microscale contribute 301 
less to the overall resilience of a given network (0.331) compared to nodes that contribute to macro-nodes 302 
(0.543) on average (t-test, 𝑝	 < 	1.0:CX). Note: plotted are the microscale and macroscale resilience values 303 
for each interactome in the dataset, and the difference in resilience across scales holds even when only 304 
including species with more than 10, 100, or 1000 citations. 305 
 306 
 307 
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𝐻(𝐺T), as 𝑓 increases from 0.0 to 1.0 corresponds to the resilience of the network in question. 308 
Specifically, this resilience is defined as follows: 309 

Resilience	(𝐺) = 1 −U
𝐻*𝐺T-
𝑟T

C

TYX

 310 

 311 
where 𝑟T is the rate of node removal (i.e., the increment that the fraction 𝑓 increases from 0.0 to 312 
1.0). In this work, we default to a value of 𝑟T = 100, which means that the calculation of a 313 
network's resilience involves iteratively removing 1%, 2%, ... 100% of the nodes in the network. 314 
For each value of 𝑓, we simulate the node removal process 20 times. 315 

Our hypothesis is that biological networks deal with this “certainty paradox” by 316 
maintaining uncertainty at their microscale. This gives a pool of noise and degeneracy, leading to 317 
resilience. Meanwhile, at the macroscale, the networks can develop a high effectiveness, wherein 318 
sets of proteins deterministically and non-degenerately interact. To explore this hypothesis, we 319 
compare the network’s resilience to removing micro-nodes that are members of subgraphs grouped 320 
into macro-nodes to the network’s resilience to removing micro-nodes that remain ungrouped 321 
(shown in Fig. 3).  322 

By isolating the calculation of network resilience to only the micro- or macro-nodes of a 323 
network, we see a stark trend emerge wherein nodes inside highly informative macro-nodes are 324 
more resilient than nodes outside. That is, nodes in the original interactome that were grouped into 325 
a macro-node contribute more to the overall resilience of the interactome. This not only supports 326 
our hypothesis that biological networks resolve the “certainty paradox” by building multi-scale 327 
structure, but also provides further explanation and contextualization for the recent findings of 328 
increasing resilience across evolutionary time (Zitnick et al., 2019).  329 

 330 
Discussion 331 
 332 
In this work, we analyzed how the informativeness of protein interactomes changed over 333 
evolutionary time. Specifically, we made use of the effective information (EI) to analyze the 334 
amount of uncertainty (or noise) in the connectivity of protein interactomes. We found that the 335 
effectiveness (the normalized EI) of protein interactomes decreased over evolutionary time, 336 
indicating that uncertainty in the connectivity of the interactomes was increasing over evolutionary 337 
time. However, we discovered that this was due to eukaryotic protein interactomes possessing 338 
higher (informative) scales, such that they had more EI when recast as a coarse-grained network—339 
a phenomenon known as causal emergence. This lower effectiveness and higher causal emergence 340 
in eukaryotic species was due to the indeterminism and degeneracy in the network structure of 341 
their protein-protein interactions. 342 

We used a dataset from the STRING database (Szklarczyk et al., 2010; Szklarczyk et al., 343 
2017) that spans more than 1800 species (1,539 Bacteria, 111 Archaea, and 190 Eukaryota), which 344 
has been shown to have considerable advantages compared to previous collections of protein 345 
interactomes (Zitnik et al., 2019). However, we cannot rule out the possibility that biases might 346 
exist in the specific manner of data collection, such as high under-representation of specific types 347 
of difficult-to-detect interactions, which could potentially introduce errors in the calculations of 348 
effectiveness in eukaryotic interactomes. As such, we conducted a series of statistical robustness 349 
tests that accounted for potential biases in both the data collection and network structures of 350 
interactomes in our dataset (see Fig. 4 in Methods for further details about these statistical tests). 351 
In short, the results we observed in this study cannot be explained by two plausible sources of bias: 352 
1) Random rewiring of network edges does not produce similar results and 2) Network null models 353 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 3, 2020. ; https://doi.org/10.1101/2020.05.03.074419doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.03.074419
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

of each interactome in this study produce only a fraction of the observed causal emergence in our 354 
dataset (the maximum causal emergence values for a species’ network null model only reached 355 
3% of the causal emergence of the original interactome). Notwithstanding these statistical tests, as 356 
technology and methods continue to improve these results and hypothesis must be tested rigorous. 357 

To analyze why macroscales of biological networks evolved, we calculated how resilience 358 
differed for nodes inside of or outside of macro-nodes. We found that resilience of nodes left 359 
outside the macro was far lower, on average, than the resilience of nodes grouped into macro-360 
nodes. This indicates that there are benefits of having macroscales, such as increased resilience, 361 
and that systems with informative macroscales can still have a high effectiveness but also maintain 362 
the benefits of having low effectiveness at a microscale. This is in line with the existing research 363 
showing that resilience increases with evolution (Zitnik et al., 2019).  364 

These findings present evidence that biological systems are sensitive to the tradeoff 365 
between of effectiveness and robustness by examining whether evolution brings about multi-scale 366 
structure in biological networks. Systems with a single level of function face an irresolvable 367 
paradox: uncertainty in the connections and interactions between nodes leads to resilience to attack 368 
and robustness to node failures, but this decreases the effectiveness of that network. However, 369 
multi-scale systems, defined as those with an informative higher scale, can solve this “certainty 370 
paradox” by having high uncertainty in their connectivity at the microscale while having high 371 
certainty in their connectivity at the macroscale. The tradeoffs between being effective at a 372 
microscale (typically in prokaryotes, e.g. Bacteria) and being noisy at microscale, while 373 
transitioning the information to higher scales (Eukaryota) might have played a key role in 374 
evolutionary dynamics. Indeed, the drive from a prokaryotic ancestor to a eukaryotic one might 375 
have occurred based on this trade-off, however explaining such a phenomenon is outside the scope 376 
of the current work. 377 

While we have illuminated many of the advantages of biological macroscales and posited 378 
a functional reason for their existence as the solution to the “certainty paradox,” what are the 379 
biological mechanisms behind the evolution of multi-scale structure? We offer here a few 380 
hypotheses about biological mechanisms that are concordant with the hypothesis of multi-scale 381 
advantages in terms of having both effectiveness and robustness. 382 

Notably, evolution can proceed both via neutral processes and selection-based contexts. A 383 
well-known neutral process that affects interactions at cellular scale, such as those between 384 
proteins, is pre-suppression (also termed constructive neutralism) (Brunet & Doolittle, 2018). This 385 
refers to the complexity arising in the dependencies between interacting molecules in the absence 386 
of positive selection (Lukeš et al., 2011). Simply put, the likelihood of maintaining independence 387 
between partners is less than that of moving away from the original state (by accumulating 388 
changes), and therefore, random changes can increase the number of interactions between proteins 389 
in a system by chance alone, and result in “noisiness” in the interactions. This may offer a 390 
biological mechanism behind the result in low effectiveness in an interactome. Because Eukaryota 391 
have both larger number of proteins and a higher substitution rate than bacteria (Zitnik et al., 2019), 392 
eukaryotic interactomes might be expected to feature a higher number of neutral processes, all of 393 
which would combine to make interaction networks noisier and less effective. One hypothesis is 394 
that neutral evolution specifically drives the noise at the microscale but not the macroscale. At the 395 
macroscale interactomes would be trimmed and evolved under evolutionary constraints and 396 
selective pressures (Jain, Rivera, & Lake, 1999), which would eventually reinforce beneficial 397 
relationships, thinning out those that can cause negative effects on survival or growth (Brunet & 398 
Doolittle 2018). These processes may lead to formation of sub-groups of proteins in the network 399 
with more and stronger interactions within the group compared to fewer or weaker interactions 400 
between those in different subgroups (Brunet & Doolittle, 2018; Martin & Koonin, 2006)—401 
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thereby leading to the emergence of modular, macroscale structures in these networks, which we 402 
hypothesize to be correlated with organismal function (Alon, 2003). 403 

Another possible explanation as to the biological mechanism behind our observed results 404 
of a decrease in effectiveness is that prokaryotes are more metabolically diverse than eukaryotes, 405 
possessing more metabolic processing pathways (Carlile, 1982). Together with changed usage 406 
patterns (such as carbon catabolite repression in Bacteria), this specificity of metabolite processing 407 
reduces energy demand and allows for more effective usage of resources (Gorke & Stulke, 2008). 408 
These processes would make biochemical inputs and outputs more streamlined and efficient in 409 
prokaryotes, which in turn, should increase the effectiveness of their protein interactomes, given 410 
energy and genomic size constraints (Giovannoni, Thrash, & Temperton, 2014). In contrast, 411 
Eukaryota, as a group, are less constrained by energy than prokaryotes (Lane, 2011) but must 412 
contend with a constrained number of metabolites, channelizing them to perform cellular functions 413 
in morphologically more complex environments (Carlile, 1982; Lane, 2011). Eukaryotic cells are 414 
about three orders of magnitude larger than prokaryotes (Lane, 2011), requiring more and different 415 
sets of controls and organizational processes. Prokaryotes depend on free diffusion for intracellular 416 
transport whereas Eukaryota have elaborate mechanisms for targeted transfers (Dacks, Peden, & 417 
Field; 2009). This reliance on cellular transport mechanisms can lead to higher modular (and thus 418 
more degenerate or indeterministic) structure in protein interactomes and other intracellular 419 
entities, which, as we show here, can be associated with less noise at higher scales of interaction. 420 
These higher-scale inter-module transfer mechanisms ensure the proper and less noisy flow of 421 
important molecules among these modules (such as protein or metabolite transport among 422 
organelles) (Alon, 2003). Each of these larger-scale processes, such as transport among organelles, 423 
relies on only a handful of inputs and outputs from outside its module, as compared to much more 424 
diverse interactions within the modules themselves (Alon, 2003), which arise due to both 425 
functional and neutral processes. In terms of networks, this hierarchical organizational structure is 426 
apt to lead to a higher network effectiveness score at the module/process scale compared to the 427 
micro-scale.  428 

Such mechanistic biological explanations for why we might observe these differences in 429 
effectiveness are in line with the theoretical reasoning that biological systems need to resolve the 430 
paradox they face at individual scales and therefore construct multi-scale structure. We seek to tie 431 
the “certainty paradox” directly to the notion of scale in biological systems and provide a means 432 
for researchers to reduce the “black box” nature of these systems by searching across scales for 433 
models with low uncertainty. Understanding the mechanics of information transfer and noise in 434 
biological systems, and how they affect functionality, remains a major challenge in biology today. 435 
One can imagine that the drive from unicellular to multicellular life was based on some form of 436 
similar trade-offs, as those between prokaryotes and eukaryotes, that allowed multicellular life to 437 
operate via effective macro-states while reserving a pool of noise and degeneracy. Thus, 438 
understanding the information structure of these interactomes lends us an eye into the inner 439 
workings of long-term evolutionary processes and trade-offs that might have resulted in the two 440 
biggest phenotypic splits in evolutionary history—that of prokaryotic and eukaryotic cells, and of 441 
unicellular and multicellular life. We hope this developed framework is applied to other 442 
interactomes and other biological networks, such as GRNs, or even functional brain networks, to 443 
examine both how uncertainty plays a role in robustness, how informative higher scales change 444 
across evolution, and what fundamental tradeoffs biological systems face.  445 

 446 
Methods 447 
 448 
Protein interactomes. 449 
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 450 
Protein interactomes are complex models of intracellular activity, often based on high-throughput 451 
experiments (Rual et al., 2005; Rolland et al., 2014). Here protein interactomes formed from a 452 
curated set of high-quality interactions between proteins (protein-to-protein interactions, or PPIs) 453 
are taken from the STRING database (Szklarczyk et al., 2010; Szklarczyk et al., 2017) the curation 454 
of which is outlined in (Zitnick et al., 2019). In this curation the STRING database (Search Tool 455 
for the Retrieval of Interacting Genes/Proteins, found at http://string-db.org) is used to derive a 456 
protein interactome for each species. Each PPIs in the protein interactome is an undirected edge 457 
where the edges are based on experimentally-documented physical interactions in the species itself 458 
or on human expert-curated interactions (e.g., no interactions are based on text-mining or 459 
associations). The dataset is curated to only include interactions derived from direct biophysical 460 
protein-protein interactions, metabolic pathway interactions, regulatory protein-DNA interactions, 461 
and kinase-substrate interactions. The details of the curation of these can interactomes can be found 462 
in (Zitnick et al., 2019). 463 

The evolutionary history of the set of PPIs was obtained by (Zitnick et al., 2019) and is 464 
derived from a high-resolution phylogenetic tree (Hug et al., 2016). The tree is composed of 465 
Archaea, Bacteria, and Eukaryota and captures a diversity of species in each lineage. The 466 
phylogenetic tree is used to characterize the evolution of each species based on the total branch 467 
length (which takes the form of nucleotide substitutions per site) from the root of the tree to the 468 
leaf of the species. The phylogenetic taxonomy, the names of species, and lineages of each species 469 
were taken from the NCBI Taxonomy database (Federhen, 2011). Details of how this is associated 470 
with each species can be found at (http://snap.stanford.edu/tree-of-life), and we refer to (Zitnick et 471 
al., 2019) for further specifics on how each species was assigned an average nucleotide substitution 472 
rate. Ultimately these protein interactomes are incomplete models that may change as time goes 473 
on. Because we do not wish to bias our results, our statistical analyses were performed only over 474 
the interactomes of the species based on more than 1000 citations in the literature. 475 
 476 
Spectral analysis to find macroscales with 𝐸𝐼Z[\. 477 
 478 
Spectral methods have proved to be successful in identifying good graph partitions in a wide 479 
variety of applications (Guattery & Miller, 1995). Given an undirected network, we take the 480 
degree-normalized adjacency matrix 𝐴 and compute the eigendecomposition 𝐴 = 𝐸𝛬𝐸_, where 481 
the 𝑖%a column of 𝐸 is the normalized eigenvector corresponding to the 𝑖%a eigenvalue, and 𝛬 is 482 
the matrix with the 𝑖%a eigenvalue on the 𝑖%a diagonal and zeros elsewhere. The eigenvector matrix 483 
𝐸 contains rich information about the structure of the network, including information about the 484 
optimal scale of a network. The rows of 𝐸 correspond to nodes in the network, so we construct a 485 
vector representation of each node’s contribution to the network topology by weighting the 486 
columns of 𝐸 by their corresponding eigenvalues, removing columns that correspond to null 487 
eigenvalues, and associating the resulting row vectors with the nodes of the network. We construct 488 
a distance metric that reflects similarity in causal structure between pairs of nodes by taking the 489 
cosine similarity between the vectors corresponding to nodes. If a pair of nodes are not in each 490 
other’s Markov blankets, coarse graining them together cannot increase the effective information, 491 
so we define the distance between them to be ∞ (or simply very large, in this case, 1000). We use 492 
this metric to cluster the nodes of the network using the OPTICS algorithm (Ankerst et al., 1999) 493 
which we can interpret as a coarse-graining to construct a macroscale network, where micro-nodes 494 
are placed in the same macro-node if they are placed in the same cluster. Note that this method for 495 
detecting causal emergence in networks is explore in detail in other sources (Klein & Hoel, 2020). 496 
 497 
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Robustness of causal emergence differences across species interactomes. 498 
 499 
To ensure that the differences observed in the causal emergence values of the protein-protein 500 
interaction networks were not merely a statistical artefact, we conducted a series of robustness 501 
tests of our analysis. These tests were necessary for two key reasons. First, the nature of interaction 502 
data in biology is inherently difficult to obtain. While many of the tools we use to collect, clean, 503 
and interpret biological systems are sophisticated, they are nonetheless subject to potential biases. 504 
However, if there were systematic biases in the network construction process for the protein 505 
interactomes used in this study (for example, if the interaction networks of eukaryotic species 506 
systematically over-estimated certain interactions), randomization procedures should clarify the 507 
extent to which the results we observed are truly a property of the species themselves. 508 
Second, these robustness tests offer insights into whether there is anything intrinsic to the network 509 
structures of the eukaryotic or prokaryotic species that could be contributing to their causal 510 
emergence values. For example, the protein interaction networks of the eukaryote, Rattus 511 
norvegicus (the common sewer rat), has a certain amount of causal emergence. Would an arbitrary, 512 
simulated network with the same number of nodes and edges, connected randomly, also have a 513 
similar amount of causal emergence? By performing a series of robustness tests on the protein 514 
interaction networks in our study, we can get closer to the question of whether or not there is 515 
anything intrinsic to the protein interaction network of Rattus norvegicus, or any other species, 516 
that makes it particularly prone to displaying higher-scale informative structures? 517 
 518 

 519 
 520 

Figure 4. Statistical controls and network robustness tests. (A) As a greater fraction of network links are 521 
randomly rewired, we observe a decrease in the causal emergence values of the resulting networks 522 
(normalized by the causal emergence value of the original network). This appears not to be dependent on 523 
evolutionary domain, network size, density, or other network properties. (B) A second statistical control 524 
known as a soft configuration model assesses whether there is anything intrinsic to the network’s degree 525 
distribution that could be driving a given result. Here, we divide the average causal emergence of 10 such 526 
configuration model networks by the causal emergence values of the original protein interactome and 527 
observe that the null model networks preserve only a small fraction of the original amount of information 528 
gain (at most, the configuration models may show 3% of the original causal emergence). 529 
 530 

To address the two concerns above, we performed two separate but similar robustness tests. 531 
The first uses a network null model known as the configuration model in order to randomize the 532 
connectivity of the protein interactomes while also preserving the number of nodes, edges, and 533 
distribution of node degree (Garlaschelli & Loffredo, 2008). The second robustness test involves 534 
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random edge rewiring (Karrer, Levina, & Newman, 2007). For each network in our study, we 535 
iteratively increased the fraction of random edges to rewire in the network; an edge, eij, that 536 
connects nodes vi and vj, becomes re-connected to a new node, vk, forming a new edge, eik, instead 537 
of the original eij. We do this with an iteratively-increasing fraction of edges, starting with 1% of 538 
edges and increasing until 100% of the network’s edges are rewired.  539 

If the causal emergence values of the networks in this study decrease following the 540 
robustness tests above—and in particular if they decrease differently for Eukaryota and 541 
prokaryotes—then the differences we observe are unlikely to have arisen simply from chance, 542 
noisy/biased data, or otherwise coincidental, ad hoc network properties. Instead, our testing of the 543 
robustness of our analysis  lend credence to the main finding of this paper, which is that species 544 
that emerged later in evolutionary time are associated with more informative macroscale protein 545 
interaction networks.  546 

In Fig. 4A, we show how the causal emergence of Archaea, Bacteria, and Eukaryota 547 
interactomes all decreases as a higher and higher amount of network edges are rewired, indicating 548 
that random rewiring has a similar effect on all datasets. This analysis suggests that if there were 549 
significant noise in the network data itself (i.e., connections between proteins where there 550 
otherwise should not be or a lack of connections where there should be), we should not expect to 551 
see the magnitude of causal emergence values that we indeed do see. This adds evidence that the 552 
inherent noise in the data collection process is not sufficient to produce the results we see. 553 

In Fig. 4B, we show that random null models of the networks used in this study are 554 
characteristically unlikely to have values for causal emergence values that are at all similar to the 555 
original interactomes. On the contrary, the maximum average causal emergence value for any of 556 
the networks used here reaches only 3% of the original network’s values. This suggests that 557 
random null models of networks are less likely to contain higher scale structure but also that the 558 
observed differences in the causal emergence values for prokaryotic and eukaryotic species is 559 
unlikely to be driven merely due to basic properties like their edge density or degree distribution. 560 

While it is impossible to exhaust all possible sources of bias or confounding variables in 561 
biological networks, the two statistical controls performed here get us closer to validating the 562 
hypotheses underlying this work: that evolution brings about higher informative scales in protein 563 
networks. 564 
 565 
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