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Abstract:

Intrinsically  disordered  proteins  (IDP)  serve  as  one  of  the  key  components  in  the  global
proteome.  In  contrast  to  the  dominant  class  of  cytosolic  globular  proteins,  they  harbor  an
enormous amount of physical flexibility and structural plasticity enforcing them to be retained in
conformational ensembles rather than well defined stable folds. Previous studies in an aligned
direction  have  revealed  the  importance  of  transient  dynamical  phenomena like  that  of  salt-
bridge formation in IDPs to support their physical flexibility and have further highlighted their
functional relevance. For this characteristic flexibility, IDPs remain amenable and accessible to
different  ordered binding partners, supporting their potential multi-functionality.  The current
study  further  addresses  this  complex  structure-functional  interplay  in  IDPs  using  phase
transition dynamics to conceptualize the underlying (avalanche type) mechanism of their being
distributed across and hopping around degenerate structural states (conformational ensembles).
For  this  purpose,  extensive  molecular  dynamics  simulations  have  been  done  and  the  data
analyzed  from  a  statistical  physics  perspective.  Investigation  of  the  plausible  scope  ‘self-
organized criticality’ (SOC) to fit into the complex dynamics of IDPs was found to be assertive,
relating  the  conformational  degeneracy  of  these  proteins  to  their  multi-functionality.  In
accordance with the transient nature of ‘salt-bridge dynamics’, the study further uses it as a
probe to explain the structural basis  of  the proposed criticality  in the conformational phase
transition among self-similar groups in IDPs. The analysis reveal scale-invariant self-similar
fractal  geometries  in  structural  conformations  of  different  IDPs.  Also,  as  discussed  in  the
conclusion, the study has the potential to benefit structural tinkering of bio-medically relevant
IDPs in the design of biotherapeutics against them.

Keywords:  Intrinsically  disordered  proteins,  Structural  degeneracy,  Self  Organized
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1. Introduction

Complex  systems1 exist  in  nature where  the  structure  of  the  system,  in  an  abstract  sense,
degenerates among some population ensembles of various conformations [1]. Here structure may
refer to the structural conformations in quantum particles  [2,3], isomerism in stereo-chemistry,
rotameric  variation in amino acid side-chains  [4] and to wherever the concept  of degenerate
states in structural ensembles may be applicable. Even  the synchronization pattern of electrical
activities  of  neurons  in  different  parts  of  the  brain  [5] or  pattern  of  economic  consumption
among different social groups [6] may be mapped to an abstract structural ensemble consisting of
degenerate states. Structural degeneracy is important as it provides the system the flexibility to
exhibit different properties, switch between different modus operandii, which, in the context of
living  systems  (or  functional  unit  of  a  living  system,  say,  proteins),  supports  a  variety  of
housekeeping as well as additional functionalities. 

Proteins serve as the prime functional biomolecule of life per se. Their functions vary across a
wide range from serving as enzymes in biocatalysis, signal transducers, transporters, molecular
motors, providing elasticity to soft tissues like hair (fibrous proteins like keratin), tensile strength
as well as flexibility to the muscle (collagen) [7], in the essential construction of the cytoskeleton
(lamin  [8]), acting as channels, gateways, molecular filters (membrane proteins  [9]) and many
more. Other than the special class of anchored (i.e., membrane proteins) and fibrous proteins,
they  generally  remain  in  the cytosol  as  molecular  globules  (globular  proteins)  engaged in  a
certain  type  of  fold  (i.e.,  their  3D  structural  getup)  consistent  with  their  specific  (routine)
function. This gives birth to the classical view of protein folding consistent with the 'sequence–
structure–function'  paradigm. In contrast,  there are multi-functional proteins as well,  wherein,
different parts  of the protein 3D structure (e.g.,  domains,  active and allosteric  sites) serve to
implement the few functions they are evolved to deliver. While, these  molecular evolutionary
strategies serve to construct the general rules of the protein structure-function paradigm, another
variant  has  recently  been discovered  in  the  protein  world,  namely,  fold-switch  proteins  [10]
which switch between (a few) folds to support more than one functionality, generally induced by
their chemical environment  [11]. However, in all these cases, the notion of multi-functionality
only varies within a few types of (premeditated) functions structurally not allowing the scope to
get involved in sudden emergency ad-hoc functionalities as may be required contextually. Along
with the increasing complexity in living systems with time (especially relevant for the modern
human  race)  the  demand  of  multi-functionality  has  increased  in  a  proportionate  manner.
Intrinsically disordered proteins (IDP) [12], yet another relatively recent member of the protein
family, a product of ever-increasing micro-evolutionary stress, has been revealed, unmistakably
to have the potential to perform a various kind of functions to serve in such complex scenario
[13],  even  unprecedented  at  times,  characterized  by  their  ‘unusual’  and  ‘mysterious  (meta)
physics’  [14–17]. This great functional potentiality in these molecules is due to their inherent
structural plasticity  [18] and enormous amount of physical flexibility  [18,19], characterized by

1 Systems that are intrinsically difficult to model due to their inherent dependencies and complexity of their  
interactions
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their  being  present  in  conformational  ensembles  rather  than  one  or  two  single  fold(s)  [20]
throughout their entire life-span. Such conformational ensembles are further characterized by a
population of structurally degenerate states, transitions between which are found to be ranging in
tenths of Å to nm in length and ns to s in time-scale in proteins. Such multi-scale phenomena are
essential for the proposed multi-functionality (even in the case of globular proteins, engaged in
more than one function, say, allosteric signaling). Hence, it is important from a theoretical as
well  as a medical perspective to understand the phase transition phenomena among different
degenerate states in intrinsically disordered proteins. In this paper, different degenerate states
(represented by average temporal2 structures) of a collection of intrinsically disordered proteins
are captured from molecular dynamics simulation (MDS) data using clustering analysis. This
was  followed  by the  implementation  of  statistical  physics  and phase  transition  dynamics  to
capture the equilibrium populations of the states, wherein, a major emphasis has been put to
‘criticality’  which potentially  relates  to conformational  degeneracy and multi-functionality  of
these proteins. 

The criticality hypothesis in phase transition dynamics refers to a system that may be poised in a
critical state at a boundary between different dynamic manifolds characterized by its phase. Self-
organized  criticality  (SOC) refers  to  the  property  of  a  large-scale  dynamical  systems where
critical points also play the role of an attractant, such that the collective behavior shows some
invariant  characteristic  of  phase  transitions  in  terms  of  the  critical  point  without  controlling
parameter  values.  These  types  of  systems  are  found  to  exhibit  marginally  stable  behavior,
effectively  tuned  towards  criticality  itself  as  it  evolves,  wherein,  the  event  size  obey  a
characteristic  power-law distribution  [21–24].  The  example  of  SOC ranges  from the  simple
geophysical phenomenon of piling sand to sophisticated phase transition in neural dynamics and
brain functioning mechanism. The typical example of SOC is founded in non-equilibrium non-
linear systems with high degree of freedom. The concept was first introduced by Bak et. al., in a
paper [21] in 1987 and is well accepted as a possible mechanism of emergence of complexity in
nature. This was followed by some studies by Tang and Bak on scaling relation [22], mean field
approximation  [23] for  SOC and relation  of  complexity  with  criticality  [24].  Quickly  these
concepts  were  successfully  applied  across  several  fields  of  complex  dynamics  such  as
geophysics, Plasma physics and cosmology, quantum gravity, sociology, ecology, evolutionary
biology, neurobiology [25–27], economics, optimization, bio-inspired computing [28] and many
others.  Consequently  the  concept  of  SOC  was  applied  to  several  other  fields  of  natural
complexity, which has been already evident for emergence of scale-invariant behaviors in large-
scale physical or social systems. SOC was found to be successful to explain and analyze several
complex  systems  and  phenomenon  like  earthquakes,  landscape  formation,  forest  fires,  solar
flares,  landslides,  epidemics,  fluctuations  in  economic  systems  such  as  financial  markets,
neuronal avalanches in cortex [26,29], biological evolution, 1⁄f noise in the amplitude envelope
of electrophysiological signals  [25] etc. These studies on SOC include attempts to model the
dynamics as well as extensive data analysis to determine the characteristics and condition for
existence of natural scaling laws. Also several recent studies have shown to evolve scale-free

2 For a period of time / time dependent / time-related  - used contextually 
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networks as an emergent phenomenon in SOC  [30]. On the contrary, other researches on the
solvent-accessible surface areas of globular proteins suggest that SOC exist independently of any
physical  space or dynamics  [31].  Also quantification of the differential  geometry of proteins
from  the  SOC  in  its  structural  dynamics  resolves  many  unsolved  questions  regarding  the
biological emergence of complexity [32]. 

In this paper, we focus on the characterization of criticality in the context of conformational
phase  transition  in  IDPs  based  on  their  time-evolved  atomic  coordinates  (i.e.,  Molecular
Dynamic  simulation  trajectories).  This  analysis  is  further  coupled  and complemented  by the
study of salt-bridge dynamics - which has already been revealed  [33] to serve as a meticulous
mechanism to contribute to (and retain) the characteristic physical flexibility in these proteins,
abundant  in  charged amino acids.  Taking an important  bold  step forward,  the  current  study
attempts to use ‘salt-bridge dynamics’ as a probe to investigate (and reveal) the scope of the
aforementioned  criticality in the conformational phase transition among self-similar groups in
IDPs. To that end, the study should potentially serve as an essential footstep in the plausible
control  of  protein  functionality  and in  the design  of  biotherapeutics  particularly  relevant  for
neuro-degenerative disorders given rise by malfunctioning IDPs [34,35]. 

2. Materials and Methods

2.1. Selection of IDPs

Idp’s chosen for the current study were kept precisely the same as that of an earlier study [33],
wherein, four proteins were chosen with their degrees of structural disorder varying from 43 to
100% in their native states. Two partially disordered proteins (IDPRs), namely, the scaffolding
protein GPB from Escherichia  virus phix174, (PDB ID: 1CD3, chain ID: B) and the human
coagulation  factor  Xa, (PDB ID: 1F0R, chain ID: B) along with two completely  disordered
proteins (IDPs), namely, α-synuclein (α-syn) and amyloid beta (Aβ42) were chosen to construct
the set. The sequences of the IDPs were obtained from the DISPROT database [36]. For 1CD3,
1F0R their X-ray structures (resolution: 3.5 Å & 2.1 Å respectively) were obtained from the
Protein Data Bank (PDB) [37]. The missing coordinates corresponding to the disordered regions
were identified by comparing the SEQRES and ATOM records in their corresponding PDB files.
The final atomic models were obtained from the earlier  study after the disordered regions in
1CD3, 1F0R along with the full-length sequences of the completely disordered proteins (α-syn,
Aβ42) were built using MODELLER [38]. 

2.2. Molecular dynamic simulation

As an  improvement  to  the  earlier  studies  [33,39],  an  altogether  different  new protocol  was
adapted for performing the explicit-water Molecular Dynamics (MD) simulation for the chosen
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IDPs, wherein the production phase was made to run for a 5-fold longer period of time (500 ns in
contrast to 100 ns in the earlier studies) in GROMACS v.2018.1 [40] using the latest available
force-field  GROMOS96 54a7  [41] associated  with  the  MD  package  (in  contrast  to  ff99SB
[42,43] in AMBER 12 [44] opted for the earlier studies). Periodic boundary conditions were used
with  the  SPC  [45] water  model  recommended  for  all  available  GROMOS  96  force-fields.
Solvation and charge neutralization of the proteins were subsequently followed by two rounds of
energy minimization (in staid of just one round used in earlier studies [33,39]) using the in-built
minimizer module within GROMOS 96. In the first round, 200 steps of the relatively much faster
steepest descent method was used wherein atoms are moved so as to reduce the net forces on
them leading to an instantaneous freezing of the system. This was followed by 19800 steps of the
more  productive  conjugate  gradient  method  to  remove  unfavorable  steric  interactions.  The
energy minimized protein – solvent system was then equilibrated in an NVT ensemble followed
by an NPT ensemble for 100 ps and 5 ns respectively. The initial temperature set for the NVT
ensemble was 100 K which was gradually raised to 300 K at constant volume and was kept the
same for the entire NPT equilibration while the pressure maintained at 1 bar. The production run
of the MD simulation was done in an NPT mode for 500 ns with a time step of 2 fs for each
equilibrated  protein  –  solvent  system.  To  maintain  constant  temperature,  Berendsen's
temperature bath was used with a coupling constant  of 2 ps,  while barostat  with a coupling
constant  of 1  ps  was used to  regulate  the constant  pressure.  Trajectories  were written at  an
interval of 2 ps, resulting in 2,50,000 frames (or time-stamps). All analyses were performed on
the post-equilibrium 500 ns long trajectories (for all four proteins).  

2.3. Identifying Salt-bridges

As is standard in protein-science literature  [33,46,47], ionic bonds within IDPs were detected
when a positively charged nitrogen atom from the side-chains of lysine, arginine or positively
charged histidine were found to be within 4.0 Å of a negatively charged side-chain oxygen atom
of glutamate or aspartate.

2.4. Clustering of MD Simulation data based on RMS distances among the snapshots

Let the simulated MD trajectories be split from time-step 1 to time-step n + nt, wherein, the first
nt  steps  are  considered  to  be  in  transient  phase  and  are  removed  to  get  the  structural
conformations in the final n steps. Let, A be an n×n matrix where A=(aij )n × n where aij are the

root mean square (RMS) distances between the conformations obtained at ith and jth time-steps.
Also,  let, B be the associated adjacency matrix where the structures at ith and jth time-steps are
connected (or adjascent), if their distance is found to be less than a pre-defined threshold (θ).
Furthermore, the structures considered as nodes of the adjacency matrix were sorted according to
their degree (i.e., the number of structures connected to a particular structure or node). Let I  be
the sorted list of structures,  CC be the list of representative (average) structures defined as the
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cluster centers and CN be the list of cluster numbers for each structure denoting the cluster in
which the structure belongs to.  In the present study, θ was set to 5Å and 7.5Å respectively for
1CD3 and the  rest  of  the three IDPs,  considering  their  relative  abundance  (and scarcity)  of
ordered secondary structural (particularly helical) content  (see section  2.1. Selection of IDPs)
coupled with previous knowledge of relative instability of the proteins [33,39].

The adjacency matrix B can be represented mathematically as the following. 

B=( bij )n ×n , bij={ 1, if a ij<θ1

0 , otherwise
, BS=( β i )1 ×n , β i=∑

j=1

n

b ji

The clustering is done by the following algorithm.

Push first element of I into CC 

For step i=2 to n

Push I(i) into CC if distance between all structures already in CC and the structure at
time step I(i) be greater than θ.

Generate m cluster centers.

For step i=1 to n

Each structure is assigned a cluster number according to the cluster center that lies at
the minimum distance from the structure, 

i.e.,  CN (i )=CC ( j ): min
k=1,2 ,… m

a (CC ( k ) ,i )=a (CC ( j ) , i).

Now, the transition matrix  TM is generated such that  TM=(tmij )m× m where  tmij represents the

number of times the structure was found in CC(i) at the previous time-step and in CC(j) at the
next time-step.

The  transition  probability  matrix  M is  obtained  by  dividing  every  element  of  TM by  its

corresponding row sum, i.e. 
M=( μ )m× m , μ ij=

tmij

∑
i=1

m

tmij

 . These m structures in CC are considered to

be m different average structures or states of the time-evolved biomolecule.

2.5. Efficiency of clustering

The aforementioned  adjacency matrix B can be interpreted in terms of a graph, G=(V,E) having
V as  its  set  of  vertices and  E as  its  set  of  edges.  The  clustering  efficiency  of  G  could  be
determined by the clustering coefficient computed from B in the following way. 
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In the graph G, if the vertices vi and vj are connected by an edge, then the corresponding element
of B, bij  will be 1 or 0 otherwise. The neighborhood Ni of vertex vi is defined as its immediately
connected  neighbors  as   N i= {v j :b ij=1, i , j=1,2 ,…., n }.  Also,  let,  ki denote  the  number  of
vertices in the ith neighborhood, i.e.  |Ni| = ki. The local clustering coefficient Ci for a vertex vi is
then given by the proportion of links between the vertices within its neighborhood divided by the
total number of links that could possibly exist between them. For an undirected graph  G, the
local clustering coefficient of its ith node, Ci can then be defined as follows. 

C i=
(∑ b jk :b ij=1, b ik=1)

k i (k i−1 ) /2

All Ci’s in a graph can further be averaged to return the average clustering coefficient (C) of the
graph. 

Also, the edge density within the clusters and that in between different clusters gives a good
estimation of clustering efficiency of any clustering scheme. We define an ordered parameter op
as the ratio of the intra-cluster edges and the total number of edges, i.e.

op=
Noof edges within clusrers

Total No of edges

op will  trend towards 1 as  the clustering scheme becomes better  in the sense that  a  greater
proportion of edges become intra-cluster.

2.6. Phase transition

In the context of the time-evolved structures of IDPs (obtained from their molecular dynamic
simulation  trajectories),  several  self-similar  conformations  could  be  considered  as  different
structural  phases  of  these  molecules  and  their  intrinsic  disorder  could  be  explained  as  the
transition dynamics among these different  phases. In this  paper,  self-similarities  in structural
conformation of IDPs are grouped on the basis of their relative deviations and is aided in the
formation of the conformational clusters which could be interpreted as structural phases of these
biomolecules. Hence, the intrinsic disorder of IDPs could be explained by the phase transition
dynamics among m different phases which could be parameterized by the transition probability
matrix M directly obtained from the MD simulation trajectories. 

Let, p (i , t ) , i=1,2 , …, m be the probability that the biomolecule is in structure CC(i) at time t and

P(t)=( p(1, t) , p (2 ,t ),…. p(m ,t ))T .  Then the  phase  transition  dynamics  could  be  written  as
follows:

p (i , t+δtt )=∑
j=1

m

M ij p ( j , t )δtt , i=1,2 ,…,m
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⇒P (t+δtt )−P (t )=RP (t ) δtt , R=M−I m

⇒ lim
δtt → 0

P ( t +δtt )−P ( t )

δtt
=RP ( t )⇒

dP ( t )

dt
=RP(t)

Im is the identity matrix of order m. Row sum of each row of M is 1, thus R is a matrix with zero
row sums. Hence R has a fixed Eigenvalue zero and the stability of the dynamics is determined
by its largest Eigenvalue. Also,

dp (i , t )

dt
=∑

j=1

m

Rij p ( j , t ) ,⇒∑
i=1

m dp (i ,t )

dt
=∑

i=1

m

∑
j=1

m

Rij p ( j , t )

⇒∑
i=1

m dp ( i ,t )

dt
=∑

j=1

m

p ( j , t )∑
i=1

m

Rij=0 [Since∑
i=1

m

Rij=0, for j=1,2 , …, m]
Hence, the sum of all probabilities remain unchanged and P forms a simplex in phase transition
between m states.

2.6. Analysis of salt-bridge persistence

Again, a similar protocol was adapted from the earlier study  [33] with only minor contextual
variations. As was done before, simulated conformations were collected at an interval of 50 ps
across the entire 500 ns MD trajectory for each idp, resulting in 10000 protein conformations
spanning the entire length of trajectory.  Each trajectory was then split  into clusters based on
RMS  deviation  (as  detailed  above)  and  in  each  of  these  resulting  clusters,  the  dynamic
persistence (pers) of a particular salt-bridge was calculated as the ratio of the number of protein
conformations to where the salt-bridge was found to form with respect to the total number of
conformations in that cluster. Even a single occurrence of a salt-bridge in a given cluster was
considered  accountable  in  this  analysis.  Normalized  frequency  distributions  of  salt-bridge
persistence were plotted for each cluster from these raw distributions (to be discussed in the next
section). To figure out the representative ‘persistent’ salt-bridges in each cluster, a cut-off of
25% (i.e., pers ≥ 0.25: a salt-bridge found in at least 1/4 th of all sampled frames in a cluster) was
considered optimum (as standardized in an earlier study [33]) and applied. 

2.7. Test of Scale-freeness – signature of criticality

Scale-freeness  indicates  criticality  [21,22] in  phase  transition,  wherein,  a  system  smoothly
traverse around multiple unstable steady states. A system here could either be a physical or a
chemical or a biological or any other complex system. For example,  in the context of neural
discharge of neurotransmeters, burst size is known to give signatures of scale-freeness in brain
disorders  (epilepsy  for  example)  [27,29] as  its  distribution  follows  power-law  with  an
appropriate exponent. To test an equivalent scale-freeness, an analogous analysis was adapted in
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the  current  study by studying  the  distribution  of  salt-bridge  persistence  in  each  cluster.  No
persistence cut-offs were used in this analysis, the entire numerical range of persistence (pers)
values [0, 1] was binned in bin-size of 0.1 and normalized frequencies (nf) of salt-bridges with a
given width of persistence (corresponding to a certain bin) were computed and plotted in a log-
log plot (i.e., logarithm of normalized frequency in Y-axis as a function of persistence in X-axis:
log(nf) vs. log(pers)). The bins with zero occupancy when converted to the log count gives a
negative infinity (-Inf). For such instances, the ‘-Inf’ were replaced by contextually determined
arbitrarily large negative finite values based on the range of obtained finite log(nf) values, for
that given plot. Linear least-square fitting was performed on these experimental points, the R2

(coefficient of determination), fitting errors (root mean square deviation of the same) and the
slope of the fitted straight-lines were recorded. 

3. Result and discussion

3.1. Clustering: identification of conformational phases and phase transitions

The prime focus of the study was on the analysis of structural degeneracy of disordered proteins
(from their MD simulation trajectories) and therein the characterization of conformational phases
and transitions between them. Four representative IDPs, namely, 1CD3, 1F0R, α-syn and Aβ42
were selected for this purpose, the first two being partially and the next two being completely
disordered. In the perspective of structural degeneracy of IDPs, it is important to identify the
self-similarities of different structural conformations and club them into appropriate groups to
classify  all  these  conformations  into  few  identifiable  clusters.  Here,  different  structural
conformations  of  IDPs (as  obtained  from MD simulation)  are  categorized  in  several  groups
based on their dissimilarities that can be measured from their RMS deviations. These structural
groups or clusters serve the purpose of characterization of the overall molecular dynamics in
terms of few representative structural ensembles and are considered as dynamical phases in the
molecular dynamics of corresponding IDPs. The phase transition dynamics are, hence, studied to
analyze the persistence and long term behavior of the corresponding IDPs to retain them as a
collection of representative structural conformations. The structural phases of these IDPs are thus
derived as conformational clusters based on RMS distances between conformations by clustering
analysis as elaborated in the Materials and Methods. The transition probability matrix for each
IDP is  extracted from MD simulation  data.  The phase transition dynamics  are  simulated for
individual  IDPs and the  persistence  of  these  phases  or  conformational  clusters  are  analyzed
therein.  The fixed point  or  equilibrium in phase transition dynamics  is  obtained in  terms of
probability of attaining the aforementioned representative structures which could be interpreted
as steady state persistence of each conformational cluster.

For 1CD3, three different structural conformations were found with their cluster centers obtained
at time-stamp 154130, 249130 and 207505 where the corresponding equilibrium (or fixed point)
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in  terms of probabilities  (P) of attaining  a representative  structure were found to be 0.5433,
0.2585,  and  0.1982  respectively.  These  probabilities  can  be  presented  as  an  array  P  (e.g.,
P=[0.5433,  0.2585,  0.1982])  with  their  elements  adding  up  to  1.  Similarly,  for  1F0R,  six
different  structural  conformations  were  found  with  cluster  centers  at  time-stamp  231130,
143755,  175380,  105130,  92505  and  214005  with  the  corresponding  probability  array  as
P=[0.3239,  0.1807,  0.1379,  0.1159,  0.1998,  0.0418].  For  α-syn,  five  different  structural
conformations were found with cluster centers obtained at time-stamp 221505, 116255, 255005,
191630  and  135880  with  P=[0.3706,  0.2145,  0.1556,  0.0857,  0.1736]  while  for  Aβ42,  six
different  structural  conformations  were  obtained  with  cluster  centers  at  time-stamp  210505,
120755, 190380, 134630, 216880 and 126005 with P=[0.3731, 0.1042, 0.0731, 0.2684, 0.1152,
0.0661]. 

Following the  mathematical  part  of  the  clustering  analysis,  visualizations  were  subsequently
done (Figure 1, 2) by (i) superposing the cluster centers (left panels of Figure 1, 2) leading to a
reduced representation of the degenerate structural ensembles of the IDPs and (ii) also looking at
them individually (right panels). The efficiency of clustering (or clustering efficiency) could be
evaluated as the value of the ordered parameter (op) (see  Materials and Methods) which has
been derived and obtained as 0.5488, 0.8349, 0.7424 and 0.9506 respectively for 1CD3, 1F0R,
α-syn and Aβ42. The average clustering coefficient (C) of the associated network (see Materials
and Methods) gives a measure of how densely the clusters are packed. C was obtained to be
0.7836, 0.5818, 0.5948 and 0.5358 respectively for 1CD3, 1F0R, α-syn and Aβ42. From these
numbers,  it  is  evident  that  1CD3 (among the  four  IDPs)  has  the  least  amount  of  structural
degeneracy for having the lowest clustering efficiency (op) and the highest average clustering
coefficient (C) in the whole set. That is to say that the structural conformations for 1CD3 are
relatively more self-similar to each other. This is perhaps meaningful as 1CD3 is the protein that
has the highest secondary structural as well as helical content (Figure 1) among the four IDPs
(see Materials and Methods) and can therefore be interpreted as the closest (out of the four) to
the class of globular proteins. Interestingly, the other partially disordered protein, 1F0R has far
more structural diversity wherein the conformations are substantially different from each other,
as reflected from its  much lower clustering coefficient matching to the order to those obtained
for  the  completely  disordered  proteins.  Six  different  conformational  phases  describe  the
structural diversity in 1F0R and the relatively higher value of clustering efficiency (op) suggests
that there is little structural resemblance among its conformational clusters or in other words the
conformations within each cluster are more self-similar. These behavioral difference of the two
partially disordered proteins, 1CD3 and 1F0R can also be interpreted from the perspective of the
different type of salt-bridge formation in them, to be discussed in the next section. 

On the other hand, the completely disordered proteins, α-syn and Aβ42 naturally have substantial
diversity in their structural conformations as reflected from their corresponding lower values of
clustering  coefficients.  Among  these  two  completely  disordered  proteins,  Aβ42  has  been
classified into six conformational  clusters  (phases) which are fairly  diverse from each other,
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wherein, the phases show a high degree of self-similarity within themselves (and higher than that
of the other three proteins) as suggested by the highest value of its clustering efficiency (op) in
the  set.  In  case  of  α-syn,  the  value  of  clustering  efficiency  (op)  is  moderately  high  which
suggests that α-syn also has fairly diverse structural conformations, wherein, the segregation of
these conformations into five different phases are fare. These observations can be extended to
infer that  the molecular  dynamics of α-syn is more continuous in nature than Aβ42 and the
difference between self-similar groups in the former is relatively less. Overall, from this analysis
we can conclude that 1CD3 has the most regular structure among the four, α-syn has a fairly
diverse structure yet a continuous transition behavior, while 1F0R and Aβ42 both have proper
diverse structural phases with substantial self-similarity among the conformational phases.

To understand the relative intensities of the conformational phases along time, the time-evolution
of the probabilities of attaining different states or conformational clusters were plotted together
(Figure 3). The equilibrium values of these probabilities were presented in the aforementioned
array P. Here, it is interesting to find that ~55% of the population ensemble for 1CD3 solely
represent its first conformation, C1. For 1F0R, the first two conformations, C1 and C2 add up to
more than half  of its  population ensemble.  Similarly,  almost  sixty percent  of the population
ensemble for α-syn map to two of its most populated conformations: C1 and C2 while more than
sixty percent of the population ensemble for Aβ42 are distributed between C1 and C4. This give
a  nice  structural  insight  into  the  conformational  degeneracy  of  these  IDPs  which  could  be
interpreted in terms of few representative conformations. 

3.2. Transient Salt-bridge Dynamics 

The  transient  nature  of  salt-bridge  dynamics,  or,  in  other  words,  the  flitting  character  of
ephemeral salt-bridges across the whole protein chain was previously revealed [33] to be crucial
in retaining the conformational flexibility of disordered proteins. This, in turn, was found to be
essential (at least  in-silico) for such protein functions (in the binding of their globular partner
proteins).  From a  mechanistic  point  of  view,  it  was  further  revealed  that  these  salt-bridges
consisted of charged atom pairs  continuously changing their  ionic-bond partners and thereby
collectively  supporting  different  conformations.  The  mechanism  thus  functions  as  a
‘conformatonal  switch’  in  the context  of idp-dynamics.  Again,  being evolved primarily  as  a
‘structural’ switch, the phenomenon has the potential to turn on another ‘functional’ switch from
the ‘intra-’ to ‘inter-chain’ salt-bridges in the idp when its (globular) binding partner become
available and accessible for binding. As a matter of fact, it is largely the short-lived salt-bridges
of the idp (i.e., the ‘intra-chain’ salt-bridges) which collapses momentarily before concomitantly
reuniting with charged groups coming from its globular partner (giving rise to formation of the
‘inter-chain’ ones) as they remain functionally far more open-ended and amenable as compared
to  the  persistent  salt-bridges  of  the  idp.  Overall,  the  transient  salt-bridge  dynamics  in  IDPs
potentially serves as an initiation and stabilization mechanism for protein-protein binding in the
context of an idp and its globular partner. 

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2020. ; https://doi.org/10.1101/2020.03.30.016378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.30.016378
http://creativecommons.org/licenses/by-nc-nd/4.0/


For the current study, salt-bridges were first identified in each conformational cluster and their
persistence  computed  in  that  cluster.  Likewise  that  of  the  earlier  study  [33] even  a  single
occurrence  of  a  salt-bridge  in  a  cluster  was considered  important  and recorded.  The overall
trends of the distributions of salt-bridge persistence (i.e., frequency vs. persistence) were found
(Figure  4)  reasonably  similar  to  the  one  obtained  for  the  entire  trajectory  [33],  wherein,
persistence bins above the cut-off of 0.25 (which was the previously standardized threshold to
define ‘persistent salt-bridges’ [33]) were found to be roughly equally populated, followed by a
long raised tail (left-peak in the plot) comprising of a high fraction of short-lived salt-bridges.
The  distributions  visually  resembled  power  series  decays  along  the  direction  of  increasing
persistence and could best be fitted to rectangular hyperbola’s (y=k/x) where the proportionality
constants (k) were determined based on the scale of the Y-axis. From the distributions, it was
clear that, in each cluster, there were some persistent salt-bridges (potentially representative of
that  conformation)  along with  a  large  fraction  of  flitting  salt-bridges  over  the  whole  chain,
analogous to the invariant and variable parts of an equation respectively. It was also realized that
to  switch  to  another  conformation  (or  conformational  cluster)  the  protein  has  to  undergo
modulation in the two types of salt-bridges (persistent and ephemeral) at different degrees. In
other  words,  for  persistent  salt-bridges,  some  of  them  may  remain  common  or  conserved
between two or more conformational clusters, while the others may vary, and, the ubiquitous
presence of the ephemeral salt-bridges across the dynamic protein chain may simply provide the
matrix (acting as if like a buffer) to switch between conformations. That is to say that during this
confromational switch, one or more persistent salt-bridges may break open and be replaced by
other  newly  formed  persistent  salt-bridges  while  the  ephemeral  salt-bridges  may  simply
rearrange themselves to fit the new conformation. 

The presence of the conserved salt-bridges across conformations (some of them even across the
whole molecular dynamic trajectory) is meaningful and important, since, even IDPs in water (or
in the cytosol) does not remain as completely extended elongated random coils or ‘ideal chains’3

rather undergo sequence dependent dynamic bending (primarily due to extensive electrostatic
interactions  throughout the whole chain).  Hence,  likewise the globular  proteins,  they too are
physically restricted by some amount of local rigidity as imparted by short-range persistent salt-
bridges by often creating fairly stable loops and turns (sometimes even a short helix as is the case
of Aβ42). Such constraints make them structurally approach porous globule – as was reflected
from their shape factor profiles [33]. Broadly speaking, the short-range (sequence separation of
less than ten amino acids) persistent salt-bridges thus could be envisaged essential for their basic
time-evolved structural getup. On the other hand, the long or medium ranged salt-bridges across
time can potentially give an idp its desired variation in structural identity across conformations,
by  preferring  to  form  and  remain  persistent  within  certain  conformational  clusters  while
remaining absent in the others. The third prototype, a large abundance of the ephemeral salt-
bridges form and collapse momentarily in each conformational cluster, providing the necessary
conformational entropy and flexibility required (even) within a cluster.  

3 Ideal chains in polymer science are characterized by a theoretical shape factor of 1.5
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The Persistence vs. Contact Order profile (individually as well as when merged for all clusters,
Figure 5) also largely followed a power series decay and could best be fitted to a rectangular
hyperbola – meaning that the (high) persistent bins of salt-bridges were more populated with
short-range than long-range contacts while the ephemeral salt-bridges had no such contact order
preferences. To make a comprehensive test of the above hypothesis, the Contact Order (CO) vs.
Persistence  of  salt-bridges  were plotted  individually  for  each protein  twice:  (i)  for  their  full
molecular  dynamic  trajectories  (represented  by  black  open  circles  in  Figure  5)  and  (ii)  for
individual clusters (blue dots in  Figure 5). Here, in this figure, it is to be carefully noted that
points in Figure 5 having the same abscissa (CO) and only differing within a narrow range of
their ordinate (pers) actually correspond to the same salt-bridge. Among such a cluster of points,
the encircled point correspond to the whole MD trajectory which only get split into different
conformational clusters. We can consider the whole range of salt-bridges categorized into three
classes (i) long range persistent salt-bridges (ii) short and moderate range persistent salt-bridges
and (iii) ephemeral (i.e., short-lived) salt-bridges. The former class was found to be only little
populated (occurred just twice for the two partially disordered proteins: 1CD3, 1F0R) while the
later  was  heavily  populated  (with  virtually  no  correlation  with  contact  order)  adding to  the
conformational entropy (as discussed earlier in this section). The second class having the highest
X-width  (i.e.,  persistence  range)  was  of  prime  importance,  wherein,  persistence  generally
followed an inverse trend with respect to contact order. From a structural perspective, this class
of salt-bridges appears to be potentially important for (a) creating small to moderate lengths of
‘loops and turns’ in the protein at different temporal phase and (b) remaining intact in/across
conformation(s) (some of them even throughout the whole MD trajectory). They therefore impart
a  varying  degree  of  local  temporal  structural  constraints  to  the  protein,  which,  in  turn,
collectively contributes to its unique 3D conformational getup corresponding to the cluster(s). It
naturally follows that these may be envisaged as representative salt-bridges for the cluster(s). 

Looking closely into the two instances of long range persistent salt-bridges, they were found to
represent two opposite end of the spectrum of possible molecular dynamic events. The one in
1CD3 (2-Glu ~ 108-Arg) had an overall persistence of 0.819 (the only encircled point in Figure
5 panel A, right-top part of the plot) for the whole MD trajectory varying only from 0.747 to
0.864 among the three conformational clusters in the protein. Here we must recall the fact that
the protein is partially disordered, having the highest percentage of secondary structural content:
56.7%  [33].  From a  detailed  structural  view (Figure  6),  the  salt-bridge  was  found  to  form
between two anti-parallel beta strands coming from the two termini (N’ and C’-) which remain
intact throughout the entire course of its dynamics, bringing and retaining the two end of the
protein in close proximity and giving the protein its desired dynamic bending. The case therefore
represents  a  salt-bridge  mediated  long  range  secondary  structural  association  which  is  a
conserved structural feature of the protein along the dynamics of its conformational variations. 

The other long range persistent salt-bridge found in 1F0R (Figure 7) represented an exactly
opposite case. Here the salt-bridge (41-Asp ~ 129-Lys) persisted only briefly (pers: 0.084: i.e.,
8.4% of the time) with respect to the whole MD trajectory wherein it primarily supported two
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conformations (cluster-4, 5 with pers: 0.446, 0.133) persisting almost half the time in one of the
two clusters (cluster-4) and one eighth in the other (cluster-5), while, its appearance in the rest of
the clusters (cluster-1, 2, 3, 6) were virtually of flitting nature (pers: 0.002, 0.019, 0.018, 0.012).
Clearly this is a representative case of conformational preference of a salt-bridge having a long
range  contact  order  (i.e.,  bringing  together  two  far-apart  regions  of  the  disordered  chain
temporally for certain phases). Hence, this salt-bridge is exemplary to demonstrate the case of a
representative salt-bridge particularly for cluster-4 in 1F0R. 

3.3. Representative Salt-bridges for conformational clusters 

As standardized earlier  [33], a persistence cut-off of 0.25 (25%) was used to define the ‘high’
persistent salt-bridges. Among the persistent salt-bridges found in each conformational cluster
(for each protein) there were virtually two prototypes: (1) those persisted in all or most clusters
(i.e., throughout the whole MD trajectory) and (2) those persisted in certain individual cluster(s).
It naturally follows that the first prototype would give rise to high ‘overall’ persistence values
(i.e., persistence calculated for the whole MD trajectory) which would generally decrease for the
second.  The  first  prototype  of  salt-bridges  are  therefore  dynamically  conserved  in  the  idp,
imparting  general  structural  constraints,  ‘common’  to  all  possible  conformations  while  the
second represents ‘unique’ temporal constraints particular to certain coformation(s). 

As it turned out to be, the average persistence of salt-bridges computed cluster-wise (let’s call it
cluster-persistence) were found to be much higher for the aforementioned ‘common’ prototype in
comparison to the ‘unique’. A thorough statistics of the data further revealed that the average
persistence of a salt-bridge generally increased with its cluster-occupancy (i.e., the number of
confomational cluster the salt-bridge is found to be present in, with a ‘high’ persistence). This is
perhaps reasonable, though not obvious, since, here, the analysis is based on cluster-persistence
(i.e.,  persistence  calculated  per  cluster),  rather  than  overall  persistence  (i.e.,  persistence
calculated for the whole trajectory). To elaborate the above point, let’s assume the case of a salt-
bridge found to be present throughout a particular cluster but absent otherwise across the (rest of
the) MD trajectory. Such representative salt-bridges ‘unique’ to single conformational clusters
would have retained really high cluster-persistence for the given cluster. In reality, the highest
cluster-persistence for this category of salt-bridges (‘unique to a single cluster’) was found to be
no more than 0.589 (for the salt-bridge 4-Lys ~ 9-Glu in 1F0R), followed by 0.560 (for 16-Lys ~
22-Glu  in  Aβ42),  and,  0.495  (for  32-Lys  ~  98-Asp  in  α-syn)  while  the  average  cluster-
persistence was found to be 0.367 (±0.115) over 14 such ‘unique to single cluster’ instances of
salt-bridges found across the four IDPs (Table 1). On the other hand, for salt-bridges found at
high cluster-persistence among all clusters or throughout the whole molecular dynamic trajectory
(the so called ‘common’ prototype) of salt-bridges,  the same average was found to be 0.684
(±0.205), again, for 14 instances. 

The  degree  of  structural  variation  among  the  conformational  clusters  (or,  in  short,
conformational  variation)  was  estimated  by  the  average  of  the  pairwise  root  mean  square
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deviation  in Cα  atoms between central  conformations  representative  of  each cluster.  Overall,
conformational variation among clusters in an idp was found to follow an inverse trend with the
fraction  of  its  ordered  secondary  structural  content,  also  constrained  by  the  number  of
representative salt-bridges in it. In other words, less number of salt-bridges and lesser degree of
secondary structural content imparted more variation among the conformations. 1CD3, being the
idp with the highest secondary structural content (56.7%) had the least variations (5.731 ±0.127
Å) among its three conformational clusters, constrained by 15 representative (7 common + 8
unique) salt-bridges. Furthermore for having two fairly long helices, the three clusters had clear
visual resemblance in their overall shape wherein the variation indicated extensive movements of
disordered loops connecting the helices,  triggered and constrained by the representative  salt-
bridges. Interestingly, in spite of being a partially disordered protein and having as many as 23
representative salt-bridges, 1F0R (among the four IDPs) exhibited the highest structural variation
(10.850  ±3.00  Å) across  its  conformational  clusters  (also reflected  visually,  Figure 8).  This
apparently anomalous feature can be explained by the abundance of anti-parallel beta strands
rather  than  helices  as  secondary  structural  elements  in  the  protein  chain  resulting  in  a
corresponding local clustering of the representative salt-bridges at different structural regions of
the dynamic chain. It is a well known fact in protein science that proteins containing greater beta
sheet content undergo far more severe deformations [48,49] than helical proteins, for beta sheets
(and strands) are structurally less stable and geometrically less ordered than helices for more than
one reason: (i) beta sheets get stabilized by inter-chain hydrogen bonding as compared to intra-
chain  for  helices  and therefore  are  not  self-sustainable  like  helices  (ii)  the  influence  of  the
backbone N-Cα -C (τ) bond-angle variation is much more pronounced in beta sheets compared to) bond-angle variation is much more pronounced in beta sheets compared to
helices.  For  the  completely  disordered  proteins,  Aβ42  had  a  slightly  higher  degree  of
conformational variation (10.042 ±2.389 Å) than  α-syn (8.500 ±1.840 Å).  Aβ42 is  constrained
by a brief dynamic appearance of a small helix and only 4 representative salt-bridges, wherein,
the  conformations  indicated  open  ended  free  movements  of  the  overall  protein  chain,  also
contributed by its much smaller length (42 amino acids). On the other hand, α-syn did not give
rise  to  any  appreciable  secondary  structural  presence  in  any of  its  conformations  and  were
constrained by 9 representative salt-bridges. The much larger length (140 amino acids) of α-syn
as compared to Aβ42 also potentially contributes to the lesser degree of variation in the former as
it  significantly  enhances  the  influence  of  electrostatic  interaction  globally  throughout  the
structure making the chain dynamically bent and concomitantly decreasing the scope and extent
of open ended free movements (likewise to that of Aβ42). 

3.4. Scale-freeness and Criticality in salt-bridge dynamics and phase transitions

As  discussed  vividly  in  the  introduction,  self-organized  criticality  (SOC)  has  often  been
characterized by scale-free distributions of appropriate representative parameters across physical,
chemical, biological as well as other complex systems. In the current context of IDPs, it appears
from the above analyses that salt-bridge formation (and the associated transient dynamics) can
indeed be viewed as an indispensable aspect of the criticality associated to the complex phase
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transitions of these proteins among their structural conformations. In order to further verify the
plausibility of the hypothesis, the distribution of ‘cluster persistence’ for the whole repertoire of
salt-bridges  (i.e.,  without  using  any  persistence  cut-off)  were  plotted  in  log-log  plots.
Interestingly, all the plots (without hitting a single exception) could best be fitted to straight-lines
with  descending  (i.e.,  negative)  slopes,  and,  thereby  demonstrating  power  law  distributions
(y=k.x-γ) with lower order fractional exponents (Figure 9, Figure S1-S4 in the Supplementary
Materials). This also is a strong indication of the scale invariant self-similar fractal geometries
in the structural conformations of these IDPs . 

In  the  log-log  plots  (Figure  S1-S4 in Supplementary  Materials)  of  the  frequency  versus
‘cluster  persistence’  of  salt-bridges  are  plotted  individually  for  the  structural  conformations
(clusters)  corresponding to  1CD3,  1F0R,  α-syn,  Aβ42 respectively  followed by linear  least-
square fitting of the data. The least square fitted straight-lines are drawn in red. The associated
goodness of fit were measured by the corresponding coefficients of determination (R2) which
were  found  to  be  fairly  high  (averages  over  all  clusters  were  0.904,  0.800,  0.922,  0.811
respectively  for  1CD3,  1F0R, α-syn,  Aβ42) and statistically  significant  (p-values  ≤  0.05)  as
suggested by their corresponding p-values (average over the whole set: 0.0074 ±0.014). Hence,
the frequency distributions of ‘cluster persistence’ of the salt-bridges were indeed found to carry
signatures  of  power  law  distributions  as  is  reflected  from the  values  of  the  corresponding
fractional  exponents  (i.e.,  the  slopes  of  the corresponding best  fitted  straight-lines:  -1.259,  -
1.023, -1.26, -0.599 averaged over all clusters for 1CD3, 1F0R, α-syn, Aβ42 respectively). 

The whole analysis gives us the essential insight that the transient nature of salt-bridge dynamics
not only plays a pivotal role in retaining the overall desired confromational flexibility in IDPs (as
was  also  revealed  earlier  [33])  but  also  further  helps  them  to  attain  their  quasi-stable
conformational phases and traverse around these phases. The continuous transition among these
conformational phases makes the IDPs behave like gels rather than crystalline solids to which
the  class  of  well  folded  (and  perhaps  more  importantly  well  packed)  globular  proteins
considerably resemble [50]. Therefore, in the current context of molecular dynamics of IDPs, the
whole mechanism of salt-bridge formation can be envisaged equivalent to physical avalanche in
sand-pile  model  [21] or  neural  avalanches  [26,29],  wherein,  scale-freeness  may  potentially
indicate emergence of self-organized criticality. 

4. Conclusion

The primary objective of this paper was to analyze the structural disorder in IDPs and to find out
the  plausibility  and  extent  of  any  hidden  order based  on  self-similarity  which  might  be
responsible  for  their  degenerate  conformations.  MD  simulation  of  several  IDPs  reveal  its
different  possible  structural  conformations  among  which  the  molecular  structures  get
transformed  in  a  self-organized  fashion  to  allow  the  degeneracy  and  become  intrinsically
disordered.  In  this  paper,  different  structural  conformations  of  IDPs  (as  obtained  in  MD
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simulation)  are  cauterized  in  several  groups  based  on  their  structural  difference  or  RMS
deviations.  These  structural  groups  or  clusters  are  considered  as  dynamical  phases  in  the
molecular dynamics of corresponding IDPs. Hence, the phase transition dynamics are studied to
analyze the persistence and long term behavior of the corresponding IDPs to be retained in the
form of a bunch of representative structural conformations. It has also been revealed that the
‘transient dynamics’ of salt-bridges, which was earlier found to be a key to retain their structural
flexibility [33], furthermore supports the aforementioned structural degeneracy and the proposed
self similarity. Overall, the salt-bridges could be broadly classified into two groups: persistent
and ephemeral. While persistent salt-bridges were found to be largely responsible in providing
the desired structural formations to the corresponding IDPs even as they continuously undergo
transitions  among  conformational  clusters  (phases),  the  ephemeral  salt-bridges  provided  the
essential conformational entropy among as well as within the clusters. The study also reveals that
the transient dynamics of salt-bridges being a critical phenomenon in the molecular dynamics of
IDPs  allows  these  proteins  to  retain  their  criticality  and  complex  phase  transitions  among
different structural conformations. Also, it is observed that the overall distribution of persistence
of salt-bridges in different structural phases could be characterized by power-law distributions
with  lower-order  fractional  exponents.  This  indicates  scale-invariant  self-similar  fractal
geometries in structural conformations of different IDPs. Thus, the salt-bridge dynamics could be
compared with the avalanche mechanism in molecular dynamics. The scale-free behavior of salt-
bridge formation and dynamics might be an indication that IDPs are also retained around some
critical points and allow themselves to transit between consecutive structural phases through self-
organized criticality. The phase transition dynamics revealed that the structures, in the course of
the equilibrium of the given IDPs resemble with one or two average structures (phases) for at
least  more  than  fifty  percent  of  the  ensembles.  In  itself,  it  is  a  strong  insight  in  terms  of
understanding the overall  structural  degeneracy of  the  IDPs which may potentially  facilitate
structural  tinkering,  for  example,  in  drug  design  for  IDPs  that  are  responsible  for  deadly
neurodegenerative  disorders.  In  more  elaborate  terms,  each  conformational  cluster  (or  each
structural  phase)  from  a  time-evolved  IDP  structure  may  be  individually  surveyed  for  its
druggability  or  functional  characterization  computationally  (e.g.,  protein-protein  binding)  –
which would definitely aid benefits to the corresponding excercise.  
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Tables.

Table 1. Average persistence of representative salt-bridges for each conformational cluster
(standard deviations given in parentheses) as a function of their cluster occupancy. Cluster
Occupancy refers to the number of clusters a salt-bridge is found to be present in, with a high
persistence (pers ≥ 0.25). The entries without a corresponding standard deviation refer to the
ones with single occupancy (C1, C6 for Aβ42). 

Idp Average cluster-Persistence as a function of Cluster Occupancy 

Cluster-
number: 

C1 C2 C3 C4 C5 C6

1CD3 0.282

(±0.040)

0.350

(±0.063)

0.635

(±0.225) - - -

1F0R 0.391

(±0.118)

0.583

(±0.124)

0.419

(±0.090)

0.429

(±0.117)

0.582

(±0.166)

0.719

(±0.173)

α-syn 0.403

(±0.131)

0.329

(±0.022) -

0.430

(±0.004)

0.704

(±0.324) -

Aβ42 0.560 0.350

(±0.119) - - -

0.850
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Figures

Figure 1. Upper Row: Structural conformations of 1CD3. The conformational clusters (phases)
represented by the corresponding cluster centers: a) C1, b) C2, & c) C3 with time stamp 154130,
249130 & 207505 respectively presented individually on the right and superposed on the left.
Lower Row: The same for 1F0R: a) C1, b) C2, c) C3, d) C4, e) C5 & f) C6 with time stamp
231130, 143755, 175380, 105130, 92505 & 214005 respectively.
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Figure 2. Upper Row: Structural conformations of α-syn. The conformational clusters (phases)
represented by the corresponding cluster centers: a) C1, b) C2, c) C3, d) C4 & e) C5 with time
stamp 221505, 116255, 255005, 191630 & 135880 respectively presented individually on the
right and superposed on the left. Lower Row: The same for Aβ42: a) C1, b) C2, c) C3, d) C4, e)
C5 & f) C6 with time stamp 221505, 116255, 255005, 191630 & 135880 respectively.
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Figure  3.  Simulated  phase  transition  dynamics  presented  by  the  probabilities  of  attaining
different states with respect to time for the four IDPs: A) 1CD3, B) 1F0R, C) α-syn & D) Aβ42.
The simulations were done till equilibriation of the dynamics with a non-dimensionalized time-
scale. The time axis is presented in arbitrary units. 
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Figure 4. Distribution of salt-bridge persistence plotted for the first clusters (C1) of A) 1CD3, B)
1F0R, C) α-syn & D) Aβ42. The distributions could best be fitted to rectangular hyperbola’s. 
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Figure 5.  Persistence (pers) vs. Contact Order (CO) profiles for the IDPs. Persistence values for
the full molecular dynamic trajectories are represented by black open circles while the same for
individual clusters (i.e., ‘cluster persistence’) are presented as blue dots. 
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Figure 6. The long range persistent salt-bridge in 1CD3 demonstrating a case of a salt-bridge
mediated long range secondary structural association. 
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Figure 7. The long range persistent salt-bridge in 1F0R demonstrating a case of conformational
preference of a salt-bridge having a long range contact order. 
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Figure  8. The  conformational  phases  (presented  by cluster  centers)  and their  corresponding
representative salt-bridges for the four IDPs (1CD3, 1F0R, α-syn, Aβ42 presented in rows 1-4
respectively). 
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Figure 9. The log-log plot of the frequency versus persistence of salt bridges. Clusters with the
highest absolute values of fractional exponents for the four proteins are plotted in A) 1CD3, B)
1F0R, C) α-syn & D) Aβ42. 
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