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To estimate the modularity quality index Q for a given subject’s functional brain network, we use 11 

a heuristic1 to maximize Q for a partition M of nodes into k communities. However, maximizing 12 

Q while keeping the structural resolution parameter γ = 1 may result in a different number of 13 

communities k detected for different input data, both across subjects and across FC metrics. 14 

Previous work examining the modularity quality index, Q, as a measure of system identifiability 15 

has failed to account for differences in the number of communities k in the partition M2. In this 16 

work, we address this confound by tuning the structural resolution parameter γ across subjects to 17 

estimate a partition M that results in 6 < k < 8 communities for each FC metric, based on prior 18 

evidence that cortical functional brain networks can be reliably and meaningfully divided into 19 

approximately seven communities3. In this fashion, we obtain a γ for each metric that results in a 20 

similarly sized partition of nodes into k communities.  21 

 22 

Additionally, the average edge weight of a network can be highly associated with Q4–6. Thus, 23 

differences in the mean or distribution of edge weights obtained using different FC metrics (see 24 

Figure 1 in main text) might lead to interpretations of higher system identifiability, when in fact 25 

this is solely a product of differences in the distribution of edge weights. Previous work examining 26 

the modularity quality index, Q, as a measure of system identifiability has failed to account for the 27 

influence of edge weight distributions on Q2. In this work, we address this confound in two ways. 28 

First, in all analyses examining the associations between motion and Q, we control for the average 29 

edge weight of the network. Including the average weight as a covariate ensures that subsequent 30 

results reflect differences in network topology, rather than differences in average connectivity 31 



strength across FC metrics. We computed the partial correlation between the modularity quality 32 

index Q and the relative mean RMS motion for each subject and for each FC metric, while 33 

controlling for average network weight, age, and sex.  The resultant estimate served as a measure 34 

of the extent to which motion was associated with estimates of system identifiability, when 35 

accounting for differences in the average weight of the network, which varies across FC metrics.  36 

 37 

Our first approach accounts only for variation in the average edge weight of the network, however, 38 

and not any variation in the distribution of edge weights across FC metrics. To further ensure that 39 

results are not driven by variability in edge weights across FC metrics, we developed an approach 40 

that preserves the topology of the network while ensuring that both the average edge weight and 41 

distribution of edge weights are the same. We used this approach to examine two boundary cases 42 

from prior results as the FC metrics of interest: Pearson’s correlation and wavelet coherence.  43 

 44 

In this procedure, we designate a weights network, from which we extract actual edge weights, 45 

and an ordering network, from which we calculate the rank order of edge weights, from weakest 46 

to strongest. In this example, the network estimated from Pearson correlations will be our weights 47 

network, with the network resulting from wavelet coherence being our ordering network. We 48 

reorder the edge weight values in the matrix representing our weights network (Pearson) to match 49 

the rank ordering of edge weights in our ordering network (wavelet coherence). This process 50 

preserves the topology of the network contained in the ordering matrix while ensuring that both 51 

the average edge weight and distribution of edge weights are the same as those in the weights 52 

network. We then estimated Q, as above, using the γ appropriate for the distribution of edge weight 53 

values (tuned for 6 < k < 8 for the weights network). We compared this Q, estimated from the 54 

reordered network, to that of the original weights matrix as a measure of network identifiability. 55 

 56 

Finally, to ensure that differences in system identifiability were not driven by differences in 57 

functional systems detected using modularity maximization, we also estimated Q using the 58 

canonical partition for each parcellation. In these analyses, we did not employ a heuristic to 59 

maximize Q; rather, we used the a priori partition of parcels into systems that is associated with 60 

the Gordon 333-node and Schaefer 100-node parcellation7,8. For the Schaefer 100-node 61 

parcellation, we used the 17-system partition. 62 
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Figure S1. Fraction of edges significantly associated with motion for all 4 resting-state scans, with Fisher r-to-z 
transform performed for correlation-based measures. (A) FC estimated using the 333-node parcellation provided by 
Gordon et al. (2016). (B) FC estimated using the 100-node parcellation provided by Schaefer et al. (2017). 
P=Pearson, S=Spearman, MIT=Mutual Information (time), C=Coherence, WC=Wavelet Coherence, MIF=Mutual 
Information (frequency). 

Figure S2. Fraction of edges significantly associated with motion for all 4 resting-state scans, with absolute values. 
(A) FC estimated using the 333-node parcellation provided by Gordon et al. (2016). (B) FC estimated using the 100-
node parcellation provided by Schaefer et al. (2017). P=Pearson, S=Spearman, MIT=Mutual Information (time), 
C=Coherence, WC=Wavelet Coherence, MIF=Mutual Information (frequency). 
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Figure S3. Fraction of edges significantly associated with motion for all 4 resting-state scans, with negative edges 
zeroed out. (A) FC estimated using the 333-node parcellation provided by Gordon et al, (2016). (B) FC estimated 
using the 100-node parcellation provided by Schaefer et al. (2017). P=Pearson, S=Spearman, MIT=Mutual 
Information (time), C=Coherence, WC=Wavelet Coherence, MIF=Mutual Information (frequency). 

Figure S4. Fraction of edges significantly associated with motion for all 4 resting-state scans, with CompCor 
preprocessing. (A) FC estimated using the 333-node parcellation provided by Gordon et al. (2016). (B) FC estimated 
using the 100-node parcellation provided by Schaefer et al. (2017). P=Pearson, S=Spearman, MIT=Mutual Information 
(time), C=Coherence, WC=Wavelet Coherence, MIF=Mutual Information (frequency). 
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Figure S5. Average QC-FC correlation heatmaps are shown for the REST1_LR scan and the 333-node Gordon 
parcellation. Each entry in the heatmap is the average QC-FC correlation between the corresponding systems, with 
edge weights estimated using (A) Pearson correlation, (B) Spearman correlation, (C) mutual information (time), (D) 
coherence, (E) wavelet coherence, and (F) mutual information (frequency). A=auditory; CO=cingulo-opercular; 
CP=cingulo-parietal; D=default; DA=dorsal attention; FP=fronto-parietal; N=none; RT=retrosplenial temporal; 
SH=sensory, motor, hand; SM=sensory, motor, mouth; S=salience, VA=ventral attention; V=visual. 
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Figure S6. Boxplots of intra-system QC-FC correlations are shown for the REST1_LR scan and the 333-node 
Gordon parcellation, with descending median absolute QC-FC correlation from left to right. A=auditory; 
CO=cingulo-opercular; CP=cingulo-parietal; D=default; DA=dorsal attention; FP=fronto-parietal; N=none; 
RT=retrosplenial temporal; SH=sensory, motor, hand; SM=sensory, motor, mouth; S=salience, VA=ventral 
attention; V=visual. 
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Figure S7. Residual distance-dependence of motion artifact for different FC estimation methods, shown for all 4 
resting-state scans, with CompCor preprocessing. (A) FC estimated using the 333-node parcellation provided by 
Gordon et al. (2016). (B) FC estimated using the 100-node parcellation provided by Schaefer et al. (2017); P=Pearson, 
S=Spearman, MIT=Mutual Information (time), C=Coherence, WC=Wavelet Coherence, MIF=Mutual Information 
(frequency). Notches represent mean and error bars show standard deviation. 

Figure S8. Modularity quality index estimated on networks containing only edges in the bottom 20% of absolute QC-FC 
correlation values across 4 runs. (A) FC estimated using the 333-node parcellation provided by Gordon et al. (2016). (B) 
FC estimated using the 100-node parcellation provided by Schaefer et al. (2017). P=Pearson, S=Spearman, MIT=Mutual 
Information (time), C=Coherence, WC=Wavelet Coherence, MIF=Mutual Information (frequency). 
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Figure S9. Modularity quality index estimated on networks containing only absolute values of edge weights. The 
weighted generalization of modularity maximization (Rubinov & Sporns, 2017) was used for all networks in this 
analysis. Modularity quality values are more comparable across metrics than when using signed matrices. (A) FC 
estimated using the 333-node parcellation provided by Gordon et al. (2016). (B) FC estimated using the 100-node 
parcellation provided by Schaefer et al. (2017). P=Pearson, S=Spearman, MIT=Mutual Information (time), 
C=Coherence, WC=Wavelet Coherence, MIF=Mutual Information (frequency). 

Figure S10. Modularity quality index estimated on networks using the a priori corresponding set of communities. 
For the Gordon parcellation, the accompanying 13-community partition was used. For the Schaefer 100-region 
parcellation, the 17-community partition was used.  (A) FC estimated using the 333-node parcellation provided by 
Gordon et al. (2016). (B) FC estimated using the 100-node parcellation provided by Schaefer et al. (2017). P=Pearson, 
S=Spearman, MIT=Mutual Information (time), C=Coherence, WC=Wavelet Coherence, MIF=Mutual Information 
(frequency). 
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