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Highlights 19 

• Computational modelling of human (patho)physiology is advancing rapidly, often using and 20 
extrapolating experimental findings from preclinical disease models. 21 

• The lack of in silico models to support in vivo modelling in mice is a missing link in current 22 
approaches to study complex, chronic diseases. 23 

• The development of mechanistic computational models to simulate disease in mice can boost 24 
the discovery of novel therapeutic interventions. 25 

• The ‘Digital Mouse’ is proposed as a framework to implement this ambition. The 26 
development of a Digital Mouse Frailty Index (DM:FI) to study aging and age-related 27 
diseases is provided as an example.  28 

 29 
Abstract 30 
Computational models can be used to study the mechanistic phenomena of disease. Current 31 
mechanistic computer simulation models mainly focus on (patho)physiology in humans. However, 32 
often data and experimental findings from preclinical studies are used as input to develop such 33 
models. Biological processes underlying age-related chronic diseases are studied in animal models. 34 
The translation of these observations to clinical applications is not trivial. As part of a group of 35 
international scientists working in the COST Action network MouseAGE, we argue that in order to 36 
boost the translation of pre-clinical research we need to develop accurate in silico counterparts of the 37 
in vivo animal models. The Digital Mouse is proposed as framework to support the development of 38 
evidence-based medicine, for example to develop geroprotectors, which are drugs that target 39 
fundamental mechanisms of ageing. 40 
 41 
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 46 
1. Introduction 47 

 48 

Regulatory bodies require new medical devices and pharmacological interventions to be tested in 49 

animals before going to clinical trials. Irrespective of development of advanced in vitro systems, such 50 

as organoids and organ-on-a-chip, animal models remain part of the regulatory procedure in the 51 

foreseeable future. In particular mouse models play a role in the development and implementation of 52 

evidence-based interventions. MouseAGE (COST Action BM1402) is a network of academic and 53 

industry scientists, clinicians and regulators that aims  to reach consensus on ways to test pre-54 

clinical interventions in ageing mice, to improve both relevance and reproducibility of experimental 55 

findings, in particular focusing on the multiple facets of frailty [1], [2]. In mice more data on biophysical 56 

and molecular processes are available or can be collected than for humans. Machine learning and other 57 

computational methods become increasingly important to analyse complex biomedical data. 58 

Nevertheless, translation of findings in pre-clinical studies to predict clinical outcome largely relies on 59 

the interpretation by researchers. This way of knowledge transfer by human reasoning appears 60 

inadequate because of its subjective, non-quantitative and often non-systematic nature. Mathematical 61 

models to simulate disease development and treatment response are complementary to data-driven and 62 

statistical models [3]. Mechanistic models are based on a mathematical description of a system using 63 

mechanical, chemical, physical and biological knowledge about a phenomenon or process. Hence, by 64 

definition, these models make use of prior knowledge available in the domain. Simulation models are 65 

well-established in engineering sciences and applied in the design and implementation of complex, 66 

man-made systems. Computer simulation becomes increasingly important in biomedical research and 67 

supports regulatory processes for new medical devices and drugs [4], [5]. However, there is remarkably 68 

little attention for a systematic approach to incorporate differences in in vivo physiology, disease 69 

development and treatment response between humans and animals in the computer simulation models. 70 

We argue that in vivo modelling using mice can be much more effective when it is supported by specific 71 

in silico modelling of the manifestation of the disease in the animal and its response to treatment. 72 

However, research is required to systematically incorporate differences between the ultimate target, the 73 
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human patient, and the main source of data and mechanistic understanding, i.e. animals and other pre-74 

clinical models. To fill this gap, we propose the ‘Digital Mouse’ (DM), which is a framework composed 75 

of multiple, different mechanistic computational models of mouse (patho)physiology. Using frailty as 76 

an example, we outline the opportunities to advance in silico, mechanistic modelling to pre-clinical 77 

studies, calling for scientists from different fields to work together and in close collaboration with 78 

regulatory bodies.  79 

 80 

 81 

2. Virtual Patients in need of a Digital Mouse  82 

 83 

Computational modelling is a rapidly developing area in biomedical sciences, and is becoming mature 84 

for human physiology (e.g. the VPH, [6]) with applications in understanding disease (Systems 85 

Medicine) and development of drugs (Systems Pharmacology) [7]. Mechanistic computer simulation 86 

models are applied for hypothesis generation and testing, to support analysis of complex data, to 87 

discover biological mechanisms, and modelling contributes to the development of medical therapies. In 88 

silico we can describe and study different components of disease without confounding factors of co-89 

occurring pathologies (and treatment) that exist in animal models and humans. Such ‘in silico medicine’ 90 

is already feasible when underlying mechanisms of a disease are (reasonably well) known, and relevant 91 

outcomes (biomarkers) are available [8], [9]. For example, mechanistic models of glucose homeostasis 92 

are accepted by the FDA as part of the pre-clinical testing for the development of an artificial pancreas 93 

[10], [11]. However, similar computer models currently do not exist for complex traits such as age-94 

related chronic diseases (e.g. cardio-metabolic diseases, osteoporosis, frailty).  95 

There exists a rich history of mathematical and computational models to learn about human physiology 96 

and disease. Often, these models are based on observations in human studies in combination with data 97 

and information from other organisms, such as small animals. (One might call these ‘Frankenstein’ 98 

models, alike the creature that was created in the 1818 novel by Mary Shelley.) Though at first sight it 99 

seems efficient to direct the in silico modelling immediately towards its application for human disease, 100 

this approach might actually complicate the translation of pre-clinical findings to clinical research and 101 
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application [12]. Physiological differences between men and mice can be large and in vivo experimental 102 

data collected in mice may better not be directly used as input for in silico models for human 103 

applications. Though the in silico Frankenstein model built from different data sources may provide 104 

insight in generic aspects of biology and disease, it is neither adequately representing the animal, nor is 105 

it accurate for humans. Instead, experimental data from mice should better be analysed and integrated 106 

with dedicated, mouse-specific in silico models. A ‘digital mouse’ next to a ‘virtual patient’ model to 107 

facilitate transfer and translation of findings from one species to the other (Figure 1). Hence, to advance 108 

clinical trials to study human disease and develop therapy we need in silico models of the animal as 109 

well.  110 

 111 

 112 

Figure 1. To study complex, chronic age-associated diseases and develop novel therapies the Digital 113 

Mouse complements and connects developments in three other domains: human studies, in vivo 114 

modelling in mice, and computational modelling of human (patho)physiology.   115 

 116 

The envisioned DM is a framework that collects modules and submodels, based on mechanistic 117 

descriptions of biology, biophysics and physiology that can be simulated to provide quantitative 118 

predictions. It is designed to predict the effect of interventions and to estimate quantities otherwise not 119 

measurable noninvasively and longitudinally in the animal. Examples of existing mechanistic 120 
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computational models specifically for mouse models of disease include metabolism [13] [14] and 121 

excitation-contraction coupling in muscle [15]. For bone biomechanics and mechano-biology [16], [17] 122 

detailed models can be constructed by combining data from in vivo high-resolution imaging [18] with 123 

single-cell "omics" technologies [19]. Mechanistic models and simulation techniques to predict disease 124 

onset and progression in mice have been developed [20], and were applied to predict the effect of 125 

pharmacological interventions in pre-clinical studies with a longitudinal design [21].  126 

The DM is applicable in, what we call, ‘in silico pre-clinical trials’ to simulate the effect of treatments, 127 

taking into account variability in disease development and treatment response in the in vivo model. The 128 

term in silico pre-clinical trials indicates: the use of mechanistic computational models in pre-clinical 129 

research to simulate treatment responses of in vivo and in vitro experimental systems in the development 130 

or regulatory evaluation of medical interventions and biomedical products. Next to in silico trials that 131 

use computer simulations to mimic humans [4], in silico pre-clinical trials provide a complementary 132 

approach to address the imperfection of predictions issued from laboratory and animals studies when 133 

applied to humans. Where found effective, in silico pre-clinical trials will impact the process, 134 

procedures, ethical concerns and costs for the development of new biomedical therapies and products. 135 

In silico approaches targeted to preclinical studies with animals, in the long term, will contribute to the 136 

reduction, refinement and replacement (3R) of animal experiments. Effective deployment of both 137 

clinical and pre-clinical in silico trials can reduce and partially replace clinical trials as they are being 138 

performed today.  139 

 140 

 141 

3. Application in aging and associated diseases: frailty  142 

 143 

Geroprotectors are a novel class of drugs that target fundamental mechanisms of ageing and offer an 144 

interesting new avenue for therapeutic research [22]. Since it is a new field it could be argued that 145 

innovative, in silico approaches are more easily adopted compared to disease areas with a long history 146 

and established ‘modus operandi’ to develop and evaluate drugs and other interventions. The 147 

establishment of aging as a ‘drugable target’ will require basic research involving in vivo models 148 
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(especially mouse models), to identify underlying mechanisms and define endpoints and biomarkers 149 

that are translatable to humans [23]. In the development of geroprotectors and other new drugs it is 150 

critical to identify off-target effects and other side-effects before first in human trials [24], [25] and 151 

develop an understanding of how pharmacokinetic parameters translate from animals to man [26]. 152 

Frailty has been conceptualised as a physiological syndrome of decreased reserve and resilience, 153 

resulting in progressive functional decline, increased vulnerability to many stressors, and an increase in 154 

negative health outcomes and dependence [27]. Frailty is a suitable starting point to develop the Digital 155 

Mouse concept in the context of aging and age-associated diseases. Recently, a frailty index (FI) for 156 

mice has been presented [28], which is similar to the frailty index for humans according to Rockwood 157 

c.s. [29]. The FI considers frailty to be related more to the number rather than to the nature of the health 158 

problems, and is defined as the ratio of the number of health deficits accumulated by the individual on 159 

the total number of potential deficits evaluated (approximately 30 parameters). This method has been 160 

demonstrated to be robust, i.e. not sensitive to the choice of particular items, and to allow the estimation 161 

of survival probability without reference to chronological age. For these reasons it has been adopted, 162 

with several variations, as a proxy measure of aging and mortality. We can imagine the development of 163 

an in silico version of the frailty index: the Digital Mouse Frailty Index (DM:FI), which includes 164 

attributes that we obtain from simulation of different computational models. Similar to the pre-clinical 165 

and clinical FI, the underlying computational models can reflect very different aspects (molecular 166 

mechanisms, pathways, tissues and organ systems), of what we consider relevant to describe frailty in 167 

a quantitative and predictive manner (Figure 2). Existing computational models and new ones should 168 

be simulated in response to multiple stressors and both quantitative and qualitative outcomes should be 169 

analysed and transferred into frailty related deficits that can be scored. Existing computational models 170 

could be adapted and refined to fit the purpose as submodel of the DM:FI. Computational models of 171 

missing parts are to be developed.  172 

 173 
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 174 

Figure 2. The Digital Mouse Frailty Index (DM:FI) is composed of modules and each module contains 175 

several submodels. Modules and submodels can be used and reused in different configurations.  176 

 177 

 178 

4. Outlook  179 

 180 

The DM to study ‘virtual’ pathophysiology of chronic age-associated diseases and its application in in 181 

silico pre-clinical trials to enhance translation offer a unique opportunity for collaborative research at 182 

the interface of the physical and life sciences. Endeavours such as outlined here come with many 183 

challenges, including technologies needed to build multi-scale and modular models. Another challenge 184 

is the development of credible models despite the presence of uncertainty in model components and in 185 

the experimental data used for model calibration. Sources of uncertainty include so-called structural 186 

uncertainty in the model and uncertainty (variance) in experimental data [30]. Structural uncertainty 187 

resides in simplifications that are inherent to the process of model building and assumptions that are 188 

made in case molecular mechanisms are unknown or disputed in the field. It is important that models 189 
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are not only evaluated to describe a certain dataset, but also carry physiological realism [31]. Whereas 190 

some model parameters can be directly measured, many will need to be inferred using parameter 191 

identification approaches. When model parameters are estimated by calibrating the model to 192 

experimental data, uncertainty in the data (noise, errors) will propagate into the parameter estimates 193 

[32], which subsequently will limit the accuracy of model predictions [33], [34]. The complexity of the 194 

computational models, the limitations in the amount of experimental data that can be collected per 195 

individual animal, and the inherent uncertainties and variance among individuals in the measurements, 196 

require a careful strategy to build and test the models, such as the VVQU paradigm (Verification, 197 

Validation and Uncertainty Quantification) used by engineers and adopted by the FDA [35]. This is to 198 

guarantee that the models are applicable in the context for which they are developed and can make 199 

reliable predictions. Development of the in silico models requires experimental data of high quality, in 200 

particular data collected in longitudinal study designs. It is important that the models describe not only 201 

the average disease phenotype in a population, but also account for the heterogeneity to explain 202 

variability in treatment responses for individuals. One approach to achieve this is to sample the 203 

uncertainty in the model parameters and generate parameter sets for which the model simulations 204 

capture the variability in the experimentally observed parameters. Next, the 'virtual population' is 205 

stratified and divided in subgroups to reflect the distribution of population-level treatment response data 206 

[36], [37].  207 

The DM can make use of progression in the field driven by in silico modelling of human 208 

(patho)physiology. Developments in the field of artificial intelligence (AI) (i.e. machine learning, deep 209 

learning) offer opportunities to couple mechanistic and data-driven models. The ‘black box’ methods 210 

offered by AI can be used to generate input data for the mechanistic models, or to explain the ‘residuals’, 211 

that is information contained in the data that cannot be captured by the mechanistic model. AI, data 212 

science and mathematical modelling are also combined in ‘digital twins’, which are computational 213 

simulation models of complex systems [38]. In the healthcare domain a digital twin can be a computer 214 

model of an individual, that simulates reality (the other twin) and its outputs provide actionable 215 

knowledge and facilitate decision making, such as identification of the individually best therapy. 216 

Potential applications could be in surgical simulations and virtual reality in computer assisted surgery 217 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 5, 2020. ; https://doi.org/10.1101/2020.05.04.075812doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.04.075812
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

[39]. The DM provides a framework to develop digital twinning for mice (Figure 3), in which the mouse 218 

and the corresponding virtual model are connected by different types of data, and the model 219 

automatically updates as the biological counterpart changes. Integration of AI approaches to improve 220 

the predictive ability of mechanistic models is a highly relevant topic for future research.  221 

 222 

 223 

Figure 3. Digital Twinning for mice and humans. The combination of in silico models for the same 224 

disease and treatment in both animal models (left) and in humans (right) is expected to improve transfer 225 

of knowledge and translatability of pre-clinical data.  226 

 227 

We encourage the scientific community to further develop the DM concept, via inclusive and 228 

multidisciplinary collaborative networks. This paper could serve as template for grant applications in 229 

the European Union, but also world-wide. The development of digital twinning for the life sciences and 230 

health and medical care is gaining momentum1. The DM could also serve as challenge for scientific 231 

team competitions, for example in the form of a ‘modelathon’2.  232 

 233 

In conclusion, motivated by an increasing role for mechanism-based mathematical models and 234 

computer simulations in the approval process for new medical devices and drugs by regulatory bodies, 235 

 
1 For example, FET Proactive call FETPROACT-EIC-07-2020 Digital twins for the life-sciences, 
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/fetproact-eic-07-
2020, website visited 04/05/2020. 
2 A hackathon aimed at modelling, as recently organized by one of the co-authors, http://multisim-
insigneo.org/modelathon-2020-optimisation-of-interventions-for-osteoarthritic-patients-with-multi-scale-
modelling/, website visited 04/05/2020. 
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we identify opportunities to systematically develop mechanistic computational models of mouse 236 

(patho)physiology. The combination of in silico models of response to treatment in both animal models 237 

and in humans could drastically improve our accuracy of predicting clinical outcomes from pre-clinical 238 

data. The lack of in silico models to support in vivo modelling in mice is a missing link in current 239 

approaches to study aging and age-related diseases. The DM is proposed as concept and framework to 240 

improve the translation of preclinical research to successful intervention in human patients. The 241 

development of computational models to simulate frailty in mice will contribute to the unveiling of new 242 

aspects of the biology of ageing and can boost the discovery of novel therapeutic interventions that 243 

prevent frailty and increase resilience to age-related disorders.  244 

 245 
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