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Abstract 

Background: The origin of sex differences in prevalence and presentation of neuropsychiatric 

and behavioral traits is largely unknown. Given established genetic contributions and correlations 

across these traits, we tested for a sex-differentiated genetic architecture within and between 

traits.  

Methods: Using genome-wide association study (GWAS) summary statistics for 20 

neuropsychiatric and behavioral traits, we tested for differences in SNP-based heritability (h2) and 

genetic correlation (rg<1) between sexes. For each trait, we computed z-scores from sex-stratified 

GWAS regression coefficients and identified genes with sex-differentiated effects. We calculated 

Pearson correlation coefficients between z-scores for each trait pair, to assess whether specific 

pairs share variants with sex-differentiated effects. Finally, we tested for sex differences in 

between-trait genetic correlations. 

Results: With current sample sizes (and power), we found no significant, consistent sex 

differences in SNP-based h2. Between-sex, within-trait genetic correlations were consistently 

high, although significantly less than 1 for educational attainment and risk-taking behavior. We 

identified genome-wide significant genes with sex-differentiated effects for eight traits. Several 

trait pairs shared sex-differentiated effects. The top 0.1% of genes with sex-differentiated effects 

across traits overlapped with neuron- and synapse-related gene sets. Most between-trait genetic 

correlation estimates were similar across sex, with several exceptions (e.g. educational 

attainment & risk-taking behavior). 

Conclusions: Sex differences in the common autosomal genetic architecture of neuropsychiatric 

and behavioral phenotypes are small and polygenic, requiring large sample sizes. Genes with 

sex-differentiated effects are enriched for neuron-related gene sets. This work motivates further 

investigation of genetic, as well as environmental, influences on sex differences. 
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Introduction 

Despite widespread evidence of sex differences across human complex traits, including 

neuropsychiatric and behavioral phenotypes [1], the etiology of these differences remains poorly 

understood. Accumulating evidence suggests that sex differences in complex human phenotypes 

are likely to include a genetic component beyond that contributed by sex chromosomes and 

hormones [2–5]. Understanding the biological basis of sex differences in human disease, 

including neuropsychiatric disorders and traits, is critical for developing sex-informed diagnostics 

and therapeutics and realizing the promise of precision medicine [4]. Moreover, genetic variants 

with sex-differentiated effects across multiple traits may influence patterns of comorbidity for 

neuropsychiatric disorders and related behavioral traits, suggesting the need for cross-disorder 

genetic analyses to be evaluated in the context of sex-specific effects [6–11].  

Neuropsychiatric and behavioral phenotypes are generally characterised by a complex and highly 

polygenic etiology [12]. Many of these traits share common variant genetic risks [13,14]. Specific 

genetic loci with pleiotropic effects are known to impact risk for multiple related neuropsychiatric 

and behavioral phenotypes [12]. However, it is not yet known whether these pleiotropic effects 

are consistent across females and males. 

Recent studies have begun to investigate sex-differentiated genetic effects for a number of 

neuropsychiatric traits (see references in Table 1). Given evidence of phenotypic sex differences 

in prevalence and presentation, as well as genetic correlations across these traits [13], we set out 

to systematically test the hypothesis that neuropsychiatric and behavioral phenotypes with 

evidence of sex differences have a partially sex-differentiated autosomal genetic architecture that 

may be shared across traits. In this study, we have characterized the: (1) sex-dependent genetic 

architecture for a range of neuropsychiatric and behavioral traits, (2) degree of shared genetic 

architecture between males and females within each phenotype, and (3) sex-specific patterns of 

genetic effects shared across traits; see Figure 1 for an overview of the analyses.  

Methods & Materials  

Datasets 

We collected sex-stratified GWAS meta-analysis summary statistics for 20 neuropsychiatric and 

behavioral traits (see Table 1 & Supplemental Text), chosen based on data availability. See 

Table S1 for information about data availability. We used a broad definition of brain-based human 

complex traits, given the overwhelming evidence of shared genetic effects across such traits [13]. 
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We used results from European-only meta-analyses to minimize any bias that may arise from 

ancestry differences, and because sufficiently large sex-stratified summary data of other 

ancestries are not currently available for the majority of these traits.  

Estimating sex-specific SNP-based heritability 

For each trait, we calculated sex-specific observed scale SNP-based heritability (h2) using linkage 

disequilibrium (LD) score regression (LDSC) with pre-computed European ancestry LD scores 

(excluding SNPs in the HLA/MHC region; chr6:25-34M) [15]. For 11 binary traits, we also 

estimated SNP-based h2 on the liability scale, using sex-specific population prevalence rates from 

two sources, as described below. For comparison, we also used a second method, LDAK-

SumHer [16], to estimate SNP-based h2, using the LDAK (LD-adjusted kinships) heritability 

model. 

Sex-specific trait prevalence  

We obtained sex-specific trait prevalence estimates from the USA and cumulative incidence rates 

from Denmark. The US-based estimates were derived from a hospital-based cohort of 752,436 

patients who meet a medical home definition for Vanderbilt University Medical Center and whose 

de-identified electronic health record (EHR) is in the clinical research database [17]; see Tables 
S2 & S3 for details. The medical home is a heuristic definition aimed at reducing the influence of 

missing data. Individuals meeting the medical home definition must have at least 5 ICD codes 

assigned on unique days over the span of at least 3 years. We used estimates based on adults 

(age >18 years), except for ADHD & ASD, which included pediatric patients. To estimate 

prevalence of each phenotype (Supplementary Table 2), we included individuals with at least 

one ICD code for each phenotype as the numerator, and ‘medical home’ hospital population as 

the denominator. However, hospital-based population prevalence estimates may be biased due 

to over-representation of individuals with more severe health-related conditions and higher levels 

of comorbidity. Additionally, these prevalence estimates may not generalize to populations 

outside of the USA. Therefore, we also used sex-specific cumulative incidence rates at age 50 

years, based on individuals identified through inpatient and outpatient care in Denmark [18], as 

well as childhood-specific (age <18 years) estimates for the 2 neurodevelopmental disorders in 

our analyses (ADHD & ASD), based on a more recent Danish study, as the discovery GWAS for 

these traits were based on samples of mostly children [19]; see Table S2.  

Statistical analysis of sex differences 
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For traits with non-zero SNP-based h2 estimates (i.e. where confidence intervals did not overlap 

with zero) in both sexes, we tested whether these sex-specific SNP-based h2 estimates were 

significantly different, by calculating z-scores using Equation 1 (below), and obtaining 

corresponding p-values from a normal distribution. We corrected for multiple tests using a 

Bonferroni correction for N=12 independent tests (N=5 continuous traits and N=7 binary traits that 

were non-zero in both sexes and were converted to the liability scale; p-value threshold = 0.0042).  

 

Equation 1, where STAT can be any statistic for which we want to assess the difference 

between the sexes, including SNP-based h2, rg, and GWAS betas; SE is the standard error for 

the statistic. This test will be well calibrated as long as STAT/SE is normally distributed and the 

test statistics are independent between sexes, and will be conservative if the statistics are 

positively correlated. 

Estimating genetic correlations 

We used LDSC to estimate genetic correlations (rg): 1) between sexes, within each trait and 2) 

between each trait pair, within sex (see Figure 1). For between-sex, within-trait correlations, we 

tested the null hypothesis that rg was significantly lower than 1 using a one-tailed test compared 

to a normal distribution (z=(1-rg)/SE). We applied a Bonferroni correction to account for multiple 

tests (p<0.0031 based on 16 traits). Next, we tested whether the between-trait rg estimates were 

different for males (rgM) and females (rgF), by using a z-score approximation based on block 

jackknife to estimate the standard error of rgM-rgF in LDSC. As with other LDSC analyses, this 

approach is robust to sample overlap. We applied a false discovery rate (FDR) correction to the 

results to account for multiple tests, given the large number of non-independent genetic 

correlations across phenotypes, which would make a Bonferroni correction overly conservative. 

Genetic correlations were visualized using the Python package Networkx [20] and matplotlib [21]. 
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Between-sex, within-trait genetic heterogeneity  

For each SNP in the sex-stratified GWAS of each trait, we assessed between-sex, within-trait 

heterogeneity using z-scores (which are correlated with Cochran's Q statistic but provide 

directionality of the effect) as in Equation 1. This test quantifies the difference in SNP association 

effect size between the sexes, similar to, although not the same as, an interaction test [22]. Given 

that only summary statistics from sex-stratified GWAS were available, the analysis of sex 

differentiated genetic effects was limited to the z-score approach.  

Sharing of variants with sex-differentiated effects across traits 

To assess which traits share variants with sex-differentiated effects (i.e. variants at the extreme 

ends of the z-score distribution), we assessed the Pearson correlation coefficient between z-

scores (i.e. the differences of betas from male-only and female-only GWAS) for pairs of traits. 

Given that there are many non-independent observations, due to SNPs in LD, we used a block 

jackknife approach to estimate the significance of the Pearson correlation [23,24]. SNPs were 

assigned to one of 1000 contiguous blocks based on their genomic position. For each pair of 

traits, Pearson correlation was calculated on the full set of z-scores and then recalculated after 

each block was removed, thus estimating the jackknife error and p-values.  

Gene-based analysis, functional mapping and gene-set enrichment analysis of genes with 
sex-differentiated effects 

We used the Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA) 

SNP2GENE web tool [25], to perform gene-based analysis and positional mapping of variants to 

genes. Z-scores computed for each trait were used as an input. For the gene-based analysis 

implemented via generalized-gene set analysis of GWAS data (MAGMA) [26] in FUMA, we used 

the default setting in which SNPs are mapped to genes if they fall within a window spanning 10kb 

before the start and after the end positions for the gene. In this analysis, the mean of the chi2 

statistic for the SNPs in a gene is calculated and the p-value is obtained from a known 

approximation of the sampling distribution [27,28]. The genome-wide significance threshold is 

defined as 0.05 / number of genes to which the SNPs are mapped.  

After mapping SNPs to genes, we filtered the top 0.1% (with the lowest -log10(p-value) from the 

gene-based MAGMA analysis) as genes with sex-differentiated effects for each trait and 

combined these sets across phenotypes. We selected 0.1% as the cut-off in order to test a set of 

genes with the greatest sex difference in effects, that did not exceed ~2000 genes, which is an 
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input cut-off for the Gene Set Enrichment Analysis (GSEA) tool. We also tested 0.5% as a 

sensitivity check, which results in similar genes sets, but picks up a broader set of genes given a 

larger list of genes. Next we computed a gene set overlap analysis using GSEA 

(https://software.broadinstitute.org/gsea/index.jsp) on the combined set of genes with sex-

differentiated effects with collection C5 (GO biological process, GO cellular component, and GO 

molecular functions) from MSigDB to investigate which gene sets may contribute to phenotypic 

differences observed for the neuropsychiatric and behavioral traits.  

Results 

Sex-stratified SNP-based h2 estimates and assessment of sex differences 

Sex-specific SNP-based h2 estimates using LDSC are presented in Figure 2, with details provided 

in Table S4. Several traits (post-traumatic stress disorder (PTSD) & recurrent major depressive 

disorder (recurrent MDD) in males and autism spectrum disorder (ASD) & alcohol dependence in 

females) did not have sufficient power (or may have been affected by a high degree of 

heterogeneity) and we did not detect a polygenic signal using LDSC and therefore sex differences 

could not be assessed. Thus, although we report sex difference estimates for all traits in Table 
S4, these cannot be reliably interpreted for ASD, recurrent MDD, alcohol dependence, and PTSD, 

since one of the sexes exhibited a near zero or negative SNP-based h2 estimate. The liability 

scale SNP-based h2 estimates using population prevalence from the USA and cumulative 

incidence from Denmark were highly correlated (r2=0.97, p=5.1x10-10); see Figure S1. Age at first 

birth of child was the only trait with a significant sex difference (after multiple testing correction; 

p<0.0042) in SNP-based h2 estimates (females: SNP-based h2=0.052, SE=0.004; males: SNP-

based h2=0.113, SE=0.010); (z-score=-5.81, p=6.43x10-9). 

Observed scale SNP-based h2 estimates based on LDAK-SumHer were somewhat higher than 

those obtained in LDSC and moderately correlated with them (r2=0.53, p=4.4x10-4 for all traits, 

r2=0.73, p=4.1x10-7 excluding traits for which SNP-based h2 could not be reliably estimated in 

LDSC, i.e. PTSD & recurrent MDD in males and ASD & alcohol dependence in females); see 

Table S5 and Figures S1 & S2 for details. Higher estimates from the LDAK model relative to the 

LDSC model have been previously observed for a variety of traits [16,29]. In contrast to LDSC 

results, age at first birth did not show a significant sex difference after multiple testing correction 

(z-score=1.94, p=0.052), with an effect in the opposite direction to that observed using LDSC. 

Using LDAK, the liability scale (adjusted based on each population) SNP-based h2 estimates 

differed by sex for the following traits: recurrent MDD (US: z-score=-4.57, p=4.81x10-6; DK: z-
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score=-4.36, p=1.33x10-5), ASD (US: z-score=2.94, p=0.0033; DK: z-score=3.28, p=0.0011), and 

schizophrenia (DK: z-score=-3.16, p=0.0016). These results were not observed using LDSC, and 

indeed SNP-based h2 could not be estimated reliably in LDSC for ASD in females or recurrent 

MDD in males. The biggest discrepancies between estimates obtained from LDSC and LDAK 

were for the traits with the smallest sample sizes (see Figure S3). 

The SNP-based h2 results for ADHD and ASD were similar albeit somewhat higher for both LDSC 

and LDAK when using estimates based on a Danish child-specific study [19], compared to using 

prevalence estimates from the whole Danish population [18]; see Tables S4 and S5. 

Between-sex, within-trait genetic correlation analysis  

We quantified the genetic correlation between males and females for each trait (excluding the 

four traits where SNP-based h2 could not be estimated in both sexes); see Figure 3 and Table 
S6. We found moderate to high genetic correlations for all traits (rg = 0.68 – 1.21); these all differed 

significantly from zero and we also detected a significant difference from 1 for risk-taking behavior: 

rg(se)=0.81(0.04) and educational attainment: rg(se)=0.92(0.02), after correcting for multiple tests 

(p<0.0031), suggesting a modest degree of common variant heterogeneity in males and females 

for these phenotypes.  

Between-sex, within-trait heterogeneity across variants 

To assess sex differences in genetic effects of common variants, for each trait we computed z-

scores and corresponding p-values for each SNP, using Equation 1. Figure S4 shows the 

quantile-quantile (QQ) plots of the z-score p-values for all traits. While the difference in the beta 

estimates between males and females did not reach genome-wide statistical significance (5x10-

8) for any given SNP, we did observe deviation from the expected null distribution (Figure S4) for 

ADHD, lifetime cannabis use, MDD, number of children born, and schizophrenia. Figure 4A 

shows a Miami plot for female-only (top) and male-only (bottom) lifetime cannabis use GWAS, 

where we observed several associations that are stronger in females (e.g. on chromosomes 3, 6, 

16 and 18). Since cohorts for lifetime cannabis use are of very similar size the power to detect 

association in both sexes is similar.  

A gene-based analysis in FUMA revealed several traits with genome-wide significant genes with 

sex-differentiated effects. Gene-based analysis Manhattan plots are shown in Figure S5. Traits 

with significant gene associations include alcohol consumption (gene: PELI2), alcohol 

dependence (ADAM23), anxiety (PRKCH and KLHDC4), lifetime cannabis use (MYOF), number 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2020. ; https://doi.org/10.1101/2020.05.04.076042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.04.076042
http://creativecommons.org/licenses/by/4.0/


 

11 

of children born (GLB1L2), neuroticism (EXTL2), risk-taking behavior (HFE2 and AGO2), and 

schizophrenia (SLTM). Interestingly, SLTM gene,  which is highly expressed in cerebellum (GTEx 

Portal, www.gtexportal.org), was also identified in a gene-based gene-by-sex interaction for 

schizophrenia and across schizophrenia, bipolar disorder, and MDD disorders [30]. 

Shared sexually-differentiated effects across traits 

To assess whether specific pairs of traits share sex-differentiated effects, for each pair of traits 

we calculated the Pearson correlation coefficient between each trait’s SNP z-scores for sex-

differentiated effects. Figure 4B shows a matrix of Pearson correlation coefficients for pairs of 

traits. We find small to moderate, but significant, correlations of z-scores for several traits. 

Interestingly, we find that the correlation of z-scores between MDD and recurrent MDD is high, 

but not equal to 1 (Pearson correlation coefficient = 0.77, p<0.001), indicating that there are both 

shared and trait-specific variants with sex-differentiated effects for these two definitions of MDD. 

Furthermore, we find cross-trait sharing of sex-dependent genetic effects between ASD and 

ADHD and also bipolar disorder and schizophrenia, to name a few examples.  

Gene set overlap analysis of genes with sex-differentiated effects across traits  

To investigate the biological function of the genes harboring SNPs with sex-differentiated genetic 

effects, we selected the top 0.1% of genes from each trait (Table S7), resulting in 349 genes that 

were mapped for GSEA. The gene sets overlapping genes with sex-differentiated effects (FDR 

q-value < 0.01) are listed in Table S8. Interestingly, the gene sets significantly enriched for genes 

with sex-differentiated effects (FDR q-value < 0.01) included neurogenesis, regulation of neuron 

projection development, signaling receptor binding, regulation of neuron differentiation, neuron 

differentiation, and neuron development, and synapse maturation gene sets.  

Between-trait, within-sex genetic correlation analysis  

The genetic correlation results are presented as network plots (Figure 5) and heatmaps (Figure 
S6). The overall pattern of between-trait genetic correlations was similar in males and females 

(Figure 5B, C). We detected several significant sex differences in between-trait genetic 

correlations; see Table 2 and Figure 5A for top results and Table S9 for full details. The genetic 

correlation (rg) between educational attainment and risk-taking behavior was positive in females 

but negative in males, while for lifetime cannabis use and neuroticism, the correlation was 

negative in females but positive in males. The magnitude of rg was significantly greater in females 

than males for a number of traits (e.g. risk-taking behavior & schizophrenia) and significantly 
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smaller in females than males for several trait pairs (e.g. number of children born & risk-taking 

behavior). However, for a number of these trait pairs, the estimated rg in one sex did not 

significantly differ from zero (see Table S9), suggesting that either there was no significant genetic 

correlation between a given pair of traits in one sex or the power to estimate this effect was too 

low.  

Discussion 

We investigated sex differences in the genetic architecture of 20 neuropsychiatric and behavioral 

traits, using sex-stratified autosomal GWAS summary statistics. We used three complementary 

approaches, including estimation of SNP-based heritability, genetic correlation, and heterogeneity 

analyses, to evaluate sex differences within traits and across pairs of traits. As expected, most 

common autosomal genetic effects are shared across sexes. However, a number of notable sex 

differences were detected.  

For a large number of traits and cross-trait pairs, we detected no consistent evidence of sex 

differences in SNP-based heritability and the genetic correlations between males and females 

were moderate-to-high (mostly rg>0.8). The phenotypes that showed sex differences were among 

those with the largest available sample sizes, indicating that large sample sizes make the 

detection of sex differences more likely and consequently, the lack of significant sex differences 

for a given phenotype may be due to small sample sizes. For example, a recent analysis of 

schizophrenia, bipolar disorder and MDD with a larger sample size has revealed significant 

associations for schizophrenia and MDD [30]. We found that some pairs of genetically correlated 

traits also share sex-differentiated associations (e.g. ASD and ADHD; bipolar disorder and 

schizophrenia). Taken together, these findings suggest that sex differences in the genetic 

architecture of neuropsychiatric and behavioral traits exist, but are small and polygenic. They 

further support the hypothesis that SNPs with sex-differentiated genetic effects for one trait are 

also likely to exhibit sex-differentiated effects in phenotypically associated traits [31,32]. 

Moreover, we found that the genes with the most sex-differentiated effects across all traits are 

enriched for neuron- and synapse-related gene functions.  

For two specific traits with well-powered GWAS (educational attainment and risk-taking behavior), 

several interesting results emerged. Both educational attainment and risk-taking behavior 

demonstrated similar SNP-based h2 in males and females, indicating that there was no 

appreciable difference in the overall burden of genetic factors accounting for phenotypic variance 

in each sex. Also, neither trait demonstrated an excess of variants with sex-differentiated effects, 
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showing that (at current sample sizes) there were few detectable sex differences in SNP effects 

for either trait. However, while the genetic correlation between males and females was high 

(educational attainment: 0.92(0.02), as previously reported [33]; risk-taking behavior: 0.81(0.04)), 

it was significantly less than 1 for both traits. Moreover, these two traits were positively genetically 

correlated with each other (rg=0.19) in females but negatively correlated in males (rg=-0.14). 

These results may be explained by circumstances in which there exists a large number of SNPs 

with very small sex-differentiated effects, which we remain underpowered to detect at individual 

loci, but can observe in analyses of cumulative sex differences. An alternative possibility is that 

there are sex differences in ascertainment and measurement of these two phenotypes (e.g. males 

and females interpreting the question about being a risk-taker differently), thus resulting in 

analysis of slightly different traits in males and females. In general, ascertainment effects (e.g. 

potential recruitment and participation biases) and measurement issues (e.g. phenotyping biases) 

should be carefully considered in future genetic studies of sex differences. Many of the GWAS of 

behavioral traits are based on data from UK Biobank (which is an older sample of relatively 

healthier and wealthier individuals compared to the general UK population) [34], whereas the 

case-control neuropsychiatric traits are frequently ascertained from clinical populations.  

These observations have important implications for the future of sex differences research. 

Although the majority of genetic effects for neuropsychiatric and behavioral traits are similar for 

males and females, sex-differentiated genetic effects can be identified. The full characterization 

of these effects will require larger sample sizes than for detection of main effects because of 

reduced statistical power in assessing the interaction between sex and genotype. We expect that 

as sample sizes increase, sex differences will emerge but will be small in magnitude, reflecting 

the polygenic architecture of the phenotypes and the sex differences. Furthermore, the large sex 

differences in prevalence of psychiatric disorders are unlikely to be explained entirely by sex 

differences in common genetic associations or global burden of autosomal genetic factors. 

Additional studies investigating the interaction between cumulative genetic effects (including non-

autosomal and rare variation) and the environment (e.g. hormonal and social factors) will be 

needed to understand the origins of these differences. 

Limitations and Considerations  

We focused on neuropsychiatric and behavioral traits with available sex-stratified GWAS 

summary statistics. The comprised cohorts were of European ancestry and due to limited data 

we were unable to assess and compare results across ancestry. Furthermore, lack of access to 
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genotype-level data restricted our analyses to methods developed for summary statistics. We 

also note that our analyses can be impacted by the number of cases and controls and the ratio of 

females to males in each cohort (e.g. [35,36]). Indeed, estimation of SNP-based h2 relies on 

several important assumptions (e.g. regarding the underlying genetic architecture and number of 

causal variants per LD block) [15,16] and can be influenced by many factors (e.g. sex-specific 

population prevalences, gender-dependent ascertainment methods for cases and controls, 

different sample sizes in males and females) [37–39]. Accurate estimation of sex-specific 

population prevalences is complex given that there could be sex differences in referral, with 

under-diagnosis in one sex (e.g. as is the case for ADHD [40]). To account for the difficulties in 

estimation of SNP-based h2, we used two different methods (LDSC & LDAK) and prevalence 

estimates from two different populations (Denmark & USA). Estimates based on the two different 

population prevalence estimates were highly correlated, but there were substantial differences in 

estimation based on either LDSC or LDAK, likely due to the different model assumptions related 

to genetic architecture; the biggest discrepancies were for the traits with the smallest sample sizes 

(see Figure S5); the true SNP-based h2 estimate is likely to fall in between these estimates. 

Furthermore, it is likely that some of the GWAS summary statistics may have included data from 

‘super-screened’ and unscreened controls, which may have biased upwards the genetic 

correlation estimates [41]. 

The most direct method to identify SNPs with sex-dependent effects is to perform a genotype-by-

sex interaction test. However, this requires individual-level genotype data. A sex-stratified 

analysis followed by a difference test, such as the z-score used here, is equivalent to a genotype-

by-sex interaction test when there is no interaction between covariates (e.g. PCs, age) and the 

strata (e.g. male and female), and the trait variances are equivalent in the two strata [22]. If those 

assumptions hold, then our stratified analyses will be conservative. Conversely, if those 

assumptions are violated then our stratified analysis will be robust to those covariate interactions 

and differences in residual variances when evaluating whether the common variant effects are 

heterogeneous across sex. Subsequent testing in larger cohorts may illuminate whether these 

assumptions are violated and their impact on the interpretation of variants with sex-differentiated 

effects. 

Another important limitation of our study is that we only assessed the genetic effects on the 

autosomes. The sex chromosomes are very frequently excluded from GWAS, due to special 

consideration required for quality control and analyses, with many methods not allowing for the 
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inclusion of sex chromosomes, and summary statistics were not available for the present 

analyses. 

Conclusion 

Through within- and between-trait analyses, we find evidence of sex-dependent autosomal effects 

for several neuropsychiatric and behavioral phenotypes among European ancestry cohorts. 

However, the effects are small and polygenic and therefore larger samples are needed for 

identifying such effects and understanding their functional contribution to complex traits. 

Furthermore, studies of sex differences taking into account non-autosomal and rare genetic 

variants, as well as environmental and hormonal influences, including ethnic and cultural 

differences are also needed. 
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Tables 
Table 1: Summary of analyzed datasets of neuropsychiatric and behavioral traits 

Phenotype (full name) Acronym 
# of 

Female 
Cases 

# of 
Female 

Controls 

# of 
Male 
Cases 

# of 
Male 

Controls 

M:F 
case 
ratio 

Sample type Reference 

Attention-deficit hyperactivity disorder ADHD 4,945 16,246 14,154 17,948 2.86 Clinical case-control [35] 

Alcohol dependence ALCD 2,504 6,033 5,932 9,412 2.37 Clinical case-control [42] 

Anxiety disorders ANX 3,148 191,005 1,813 165,175 0.58 General population (UK) [43] 
Autism spectrum disorder ASD 7,498 24,309 30,168 32,417 4.02 Clinical case-control [32,44] 
Bipolar disorder BD 10,879 14,226 7,406 13,573 0.68 Clinical case-control [30] 
Cannabis use (ever) CUE 17,244 71,742 17,414 50,737 1.01 General population (UK) N/A 
Insomnia INS 19,521 39,846 12,863 40,776 0.66 General population (UK) [45] 

Major depressive disorder MDD 10,711 11,745 5,021 11,226 0.47 Clinical and population 
case-control [30] 

Major depressive disorder N/A* 13,492 180,661 7,156 159,832 0.53 General population (UK) [43] 
Major depressive disorder recurrent MDDR 6,739 8,949 2,934 8,162 0.44 Clinical case-control [30] 
Obsessive compulsive disorder OCD 1,525 4,307 1,249 2,789 0.82 Clinical case-control [46] 
Post-traumatic stress disorder PTSD 968 2,457 585 4,025 0.60 Clinical case-control [47] 
Risk-taking behavior RTB 32,285 143,678 51,392 100,984 1.59 General population (UK) [48] 
Schizophrenia SCZ 9,854 16,785 18,366 17,122 1.86 Clinical case-control [30] 
Smoking (current) SMKC 16,995 176,392 20,093 146,226 1.18 General population (UK) [43] 
Smoking (previous) SMKP 62,305 131,082 65,245 101,074 1.05 General population (UK) [43] 

Phenotype Acronym # of Females # of Males 
M:F 
ratio 

Sample type Reference 

Alcohol use ALCC 59,088 53,088 0.90 General population (UK) [49] 
Alcohol use N/A* 85,800 55,120 0.64 General population [50] 
Age at first birth AFB 189,656 48,408 0.26 General population [51] 
Educational attainment EA 182,286 146,631 0.80 General population [52] 
Number of children ever born NEB 225,230 103,909 0.46 General population [51] 
Neuroticism NEU 144,660 142,875 0.99 General population (UK) [33] 

 
* These summary statistics were not used for analysis (see Supplemental Text for details). 
PGC: Psychiatric Genomics Consortium; iPSYCH: The Lundbeck Foundation Initiative for Integrative Psychiatric Research. 
  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 5, 2020. ; https://doi.org/10.1101/2020.05.04.076042doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.04.076042
http://creativecommons.org/licenses/by/4.0/


 

2 

Table 2: Top results of sex differences in cross-trait genetic correlation estimates 

Trait 1 Trait 2 
Females Males Sex difference 

rg SE q-valueR rg SE q-valueR z-score q-value 

EA RTB 0.187 0.033 6.38x10-8 -0.144 0.033 4.29x10-5 -8.353 7.98x10-15 

AFB RTB -0.035 0.046 0.52 -0.344 0.054 1.23x10-9 -4.906 5.58x10-5 

EA NEU -0.22 0.029 1.72x10-13 -0.064 0.029 0.051 4.421 3.94x10-4 

CUE NEU -0.142 0.055 0.022 0.124 0.054 0.044 3.866 3.32x10-3 

NEB RTB 0.116 0.063 0.12 0.413 0.074 1.43x10-7 3.582 8.19x10-3 

ALCC EA 0.276 0.047 2.52x10-8 0.043 0.049 0.47 -3.53 8.30x10-3 

SCZ SMKC 0.034 0.045 0.52 0.214 0.046 1.54x10-5 3.301 0.013 

ALCC SMKC 0.013 0.058 0.86 0.292 0.069 8.97x10-5 3.326 0.013 

BD MDD 0.565 0.079 4.95x10-12 0.057 0.142 0.74 -3.367 0.013 

RTB SCZ 0.326 0.043 3.13x10-13 0.157 0.038 1.07x10-4 -3.088 0.024 

AFB NEU -0.173 0.037 1.44x10-5 -0.028 0.048 0.63 2.95 0.035 

Z-scores were calculated using Equation 1. AFB: Age at first birth; ALCC: Alcohol use; BD: Bipolar disorder; CUE: Cannabis use 
(ever); EA: Educational attainment; MDD: Major depressive disorder; NEB: Number of children ever born; NEU: Neuroticism; RTB: 
Risk-taking behavior; SCZ: Schizophrenia; SMKC: Smoking (current). 
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Figures 
 

 
 
Figure 1. Schematic illustration of the key analyses used to investigate between-sex, within-trait 
and between-trait, within-sex differences.  
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Figure 2. Estimates of sex stratified SNP-based heritability (h2) on (A) the observed scale for 
continuous traits, and the liability scale, using population prevalence based on (B) DK 
(Denmark) and C) the USA. Estimates were obtained from LDSC. Points represent the 
estimated SNP-based h2 in males (blue) and females (red), while bars represent standard errors 
(SE) of the SNP-based h2 estimates. Significant sex difference in heritability is denoted with an 
asterisk, as follows: * p<0.0042 (adjusted p-value threshold corrected for multiple testing using 
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Bonferroni). # denotes traits for which significance in difference is not interpretable due to 
negative or non-significant from zero SNP-based h2 value for one of the measurements. 
Phenotype abbreviations are as follows: ADHD: Attention-deficit hyperactivity disorder; AFB: 
Age at first birth; ALCC: Alcohol use; ALCD: Alcohol dependence; ANX: Anxiety disorders; ASD: 
Autism spectrum disorders; BD: Bipolar disorder; EA: Educational attainment; INS: Insomnia; 
MDD: Major depressive disorder; MDDR: Major depressive disorder recurrent; NEB: Number of 
children ever born; NEU: Neuroticism; OCD: Obsessive compulsive disorder; PTSD: Post-
traumatic stress disorder; SCZ: Schizophrenia. 
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Figure 3. Within-trait, between-sex genetic correlation (rg) estimates using LDSC. Points 
represent the estimated rg and bars represent standard errors (SE) of the rg estimates. 
Significant deviation from 1 is denoted with an asterisk, as follows: * p<0.0031 (adjusted p-value 
threshold corrected for multiple testing using Bonferroni). Phenotype abbreviations are as 
follows: ADHD: Attention-deficit hyperactivity disorder; AFB: Age at first birth; ALCC: Alcohol 
use; ANX: Anxiety disorders; BD: Bipolar disorder; CUE: Cannabis use (ever); EA: Educational 
attainment; INS: Insomnia; MDD: Major depressive disorder; NEB: Number of children ever 
born; NEU: Neuroticism; OCD: Obsessive compulsive disorder; RTB: Risk-taking behavior; 
SCZ: Schizophrenia; SMKC: Smoking (current); SMKP: Smoking (previous). 
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Figure 4. Sharing of variants with sexually-differentiated effects between-traits. (A) Miami plot 
for female-only (top) and male-only (bottom) GWAS for cannabis use (ever); female cases: 
N=17,244; male cases: N=17,414. For each SNP, we computed z-scores using Equation 1. (B) 
Matrix of Pearson correlation coefficients for pairs of traits. We performed Pearson correlation of 
z-scores and a block jackknife approach to estimate the significance of the correlation for all 
pairs of traits. Asterisks indicate the estimated significance of the coefficients, as follows: * 
p<0.05, **p<0.01, ***p<0.001. Color coding represents positive (red) or negative (blue) 
correlation. Phenotype abbreviations are as follows: ADHD: Attention-deficit hyperactivity 
disorder; AFB: Age at first birth; ALCC: Alcohol use; ALCD: Alcohol dependence; ANX: Anxiety 
disorders; ASD: Autism spectrum disorders; BD: Bipolar disorder; CUE: Cannabis use (ever); 
EA: Educational attainment; INS: Insomnia; MDD: Major depressive disorder; MDDR: Major 
depressive disorder recurrent; NEB: Number of children ever born; NEU: Neuroticism; OCD: 
Obsessive compulsive disorder; PTSD: Post-traumatic stress disorder; RTB: Risk-taking 
behavior; SCZ: Schizophrenia; SMKC: Smoking (current); SMKP: Smoking (previous). 
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Figure 5. (A) A network plot showing between-trait genetic correlations with a significant sex 
difference as computed by a z-score. The edge color represents the absolute value of the z-
score for the difference in genetic correlation between the same two phenotypes in females vs. 
males. Only pairs of traits with an FDR corrected q<0.05 sex difference are shown.  
(B & C) Between-trait, within-sex genetic correlation analysis. Network plots for genetic 
correlation estimates (rg) for pairs of traits in (B) males and (C) females, where each node 
represents a trait, and the edge represents positive (red) or negative (blue) genetic correlation. 
The thickness of the edge represents -log10(q-value) of correlation significance. Only genetic 
correlations with FDR corrected q<0.05 are shown.  
Phenotype abbreviations are as follows: ADHD: Attention-deficit hyperactivity disorder; AFB: 
Age at first birth; ALCC: Alcohol use; ANX: Anxiety disorders; ASD: Autism spectrum disorders; 
BD: Bipolar disorder; CUE: Cannabis use (ever); EA: Educational attainment; INS: Insomnia; 
MDD: Major depressive disorder; NEB: Number of children ever born; NEU: Neuroticism; OCD: 
Obsessive compulsive disorder; RTB: Risk-taking behavior; SCZ: Schizophrenia; SMKC: 
Smoking (current); SMKP: Smoking (previous). 
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