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Summary 

 

Cellular decision making often builds on ultrasensitive MAPK pathways. The phosphorylation 

mechanism of MAP kinase has so far been described as either distributive or processive, with 

distributive mechanisms generating ultrasensitivity in theoretical analyses. However, the in 

vivo mechanism of MAP kinase phosphorylation and its regulation by feedback loops remain 

unclear. We thus characterized the regulation of the MAP kinase Hog1 in Saccharomyces 

cerevisiae, which is transiently activated in response to hyperosmolarity. Specifically, we 

combined Hog1 activation data from different modalities and multiple conditions. We 

constructed ODE models with different pathway topologies, which were then assessed via 

parameter estimation and model selection. Interestingly, our best fitting model switches 

between distributive and processive phosphorylation behavior via a positive feedback loop 

targeting the MAP kinase-kinase Pbs2. Simulations further suggest that this mixed mechanism 

is required not only for full sensitivity to stimuli, but also to ensure robustness to different 

perturbations. 
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Introduction 

Pathways integrating extracellular inputs often display an ultrasensitive response, in 

which beyond an input threshold, small changes in the input lead to large changes in the 

output. This behavior results in an essentially binary response, acting as a switch in the overall 

signaling cascade (Figure 1A) (Altszyler et al., 2017). Ultrasensitivity has been experimentally 

observed in various signaling systems and plays an important role in cellular decision making 

(Ferrell and Ha, 2014). Theoretical studies suggest that multi-tiered multisite phosphorylation 

cascades are inherently able to create ultrasensitivity (Huang and Ferrell, 1996), with even 

single multisite phosphorylation resulting in ultrasensitivity and bistability (Markevich et al., 

2004). In particular, the specific type of phosphorylation mechanism can alter signal response 

dynamics (Salazar and Hofer, 2009). For dual phosphorylation, two distinct mechanisms are 

recognized (Figure 1B). A distributive mechanism involves two consecutive reaction events, 

with kinase and substrate dissociating after each phosphorylation step, while for a processive 

mechanism, two phosphorylation reactions are induced in a single concerted reaction event 

(Salazar and Hofer, 2009). Dual phosphorylation is a particularly widespread mechanism 

involved in activating mitogen-activated protein (MAP) kinases, which regulate the cellular 

responses to many intra- and extracellular signals. However, investigating the impact of 

different phosphorylation mechanisms is challenging and normally relies on mathematical 

models integrating typically difficult-to-measure temporal dynamics of specific protein 

species. The majority of theoretical studies have reduced assumptions to “all-or-none” 

conditions - either distributive or processive - with distributive mechanisms correlating with 

ultrasensitivity while processive mechanisms associate with a graded, non-ultrasensitive 

response (Patwardhan and Miller, 2007). Thus to date, theoretical studies generally suggest 

that ultrasensitive kinase phosphorylation events in vivo should be governed by a distributive 

phosphorylation mechanism (Huang and Ferrell, 1996; O'Shaughnessy et al., 2011), and some 

experimental data from mammalian cells support this hypothesis (Burack and Sturgill, 1997; 

Ferrell and Bhatt, 1997). However, in more complex cases of multisite phosphorylation with 

more than two phospho-sites, behaviors have been observed that are not well explained by 

either a processive or distributive mechanism (Jeffery et al., 2001). Some of these multisite 

phosphorylation events involve different kinases with distinct kinetic properties, which may 

complicate the analysis (Koivomagi et al., 2011). Altogether, understanding kinase 
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phosphorylation mechanisms governing ultrasensitive responses has proven particularly 

challenging in cases of multisite phosphorylation and other feedback regulation, and requires 

additional studies to explore the theoretical potential and experimental validation of mixed 

phosphorylation mechanism.  

 To address these questions, we choose to investigate the mechanisms conferring 

ultrasensitivity in the High Osmolarity Glycerol (HOG) pathway in Saccharomyces cerevisiae, 

a well-studied MAP-kinase pathway which requires dual phosphorylation of the MAP kinase 

Hog1. Hog1 activation is needed to re-establish the balance between internal and external 

pressures upon osmotic shock. Upon exposure of cells to high osmolarity conditions, the two 

membrane-localized osmo-sensors Sho1 and Sln1 activate either the MAPKKKs Ste11 or 

Ssk2,22, which converge on the MAPKK Pbs2 (Figure 1C). Activated Sho1 recruits Pbs2, which 

acts both as a MAPKK to phosphorylate the MAP kinase Hog1 and as a scaffold recruiting 

other upstream kinases including its own activator Ste11. Additionally, Ste50 and the three 

transmembrane proteins Msb2, Hrk1 and Opy2 are needed for full Ste11 activation by 

recruiting various co-stimulators to the cell membrane (Ekiel et al., 2009; Tanaka et al., 2014). 

The partially redundant Sln1 branch uses a histidine phospho-relay system, which inhibits the 

kinase Ssk1 in the absence of osmotic stress through the intermediate histidine phosphate 

transfer protein Ypd1 (Posas et al., 1996). Upon Sln1 activation in response to osmotic stress, 

Ssk1 inhibition will be relieved resulting in phosphorylation of its downstream MAPKKKs Ssk2 

and Ssk22. Like Ste11, these interact and phosphorylate Pbs2, which in turn doubly 

phosphorylates Hog1, leading to its rapid translocation into the nucleus to launch a 

transcriptional program. In addition to altered gene expression, particularly induction of Gpd1 

(Babazadeh et al., 2014), Hog1-mediated cytoplasmic changes such as the closure of water 

channels are of great importance to rapidly reestablish osmotic balance (Westfall et al., 2008). 

Dephosphorylation and inactivation of Hog1 is carried out by an array of phosphatases that 

includes the tyrosine phosphatases Ptp2 and Ptp3 in the nucleus and cytoplasm respectively, 

and the Ser/Thr phosphatases Ptc1 and Ptc2/3 (Jacoby et al., 1997; Mapes and Ota, 2004; 

Murakami et al., 2008; Warmka et al., 2001; Wurgler-Murphy et al., 1997; Young et al., 2002). 

The HOG pathway has previously been used to study MAPK cascades as the topology 

and molecular functions of its components have largely been established (Saito and Posas, 

2012). Hog1 activation is traditionally followed by measuring its in vitro kinase activity, or 
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phospho-specific antibodies directed against its activating phosphorylation sites or specific 

Hog1 targets. Moreover, doubly-phosphorylated Hog1 rapidly translocates into the nucleus, 

which provides a convenient readout to study its activation by quantitative single cell 

microscopy (Ferrigno et al., 1998). In combination with microfluidic devices allowing precise 

and rapid control of extracellular osmolarity conditions, such single cell experiments have 

provided important insight into Hog1 activation kinetics, for example in response to 

fluctuating inputs (Zi et al., 2010). Finally, mass spectrometry-based studies not only 

identified numerous downstream Hog1 substrates but also discovered phosphorylation of 

several HOG pathway components that show drastic changes upon osmostimulation (Kanshin 

et al., 2015; Vaga et al., 2014) and may thus constitute yet undefined feedback loops (English 

et al., 2015). Taking advantage of such data sets, previous studies established mechanistic 

models of the whole HOG pathway (Klipp et al., 2005) or the role of different sub-branches in 

homeostasis (Schaber et al., 2012), and analyzed the impact of upstream phosphorylation 

(Hao et al., 2007) or glycerol accumulation (Muzzey et al., 2009) on pathway adaptation. 

However, experimental data and modeling approaches mechanistically describing Hog1 dual 

phosphorylation and the relevance of feedback loops for Hog1 activation are still scarce.  

In this study, we examined the molecular mechanisms responsible for ultrasensitivity 

in the HOG pathway. We used an integrative modeling approach taking advantage of various 

data sources and experimental parameters to compare Hog1 activity and its phosphorylation 

status under multiple environmental conditions such as varying salt concentrations and salt 

pulses, and different genetic mutations that specifically perturb Hog1 activation kinetics. 

Interestingly, our findings support a mixed distributive and processive phosphorylation model 

as the best fit for the observed experimental behavior, with a critical positive feedback loop 

targeting the MAPKK Pbs2.  
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Results 

 

Construction of a HOG pathway ODE model comprising putative negative and positive 

feedback, with different mechanisms of Hog1 activation by double phosphorylation 

 

To understand the molecular mechanism responsible for ultrasensitivity in the HOG 

pathway, we examined whether the MAP kinase Hog1 is activated by a distributive or 

processive phosphorylation mechanism. When a basic, three-tiered MAPK module without 

additional feedback mechanisms is fitted on MAPK activity input-output data ranging from 

graded to ultrasensitive with unconstrained parameter ranges, we found that parameter sets 

could be identified that recapitulate the bi-stable behavior irrespective of the 

phosphorylation mechanism used (Supp Figure S1). We thus constructed an overcomplete 

model for osmostress-induced Hog1 phosphorylation that allowed evaluating various 

submodel topologies differing in Hog1 phosphorylation and feedback mechanisms (Figure 

1C). A deterministic model based on ordinary differential equations (ODEs) was used due to 

the relatively high protein concentrations of at least a few hundred molecules per cell, as well 

as the low variability in the experimental single cell data (Ghaemmaghami et al., 2003; Ho et 

al., 2018). We applied mass action kinetics to approximate the underlying biochemistry. 

Taking advantage of previous studies (Zi et al., 2010), we integrated the cell volume module 

linked to intracellular glycerol concentration, which includes retention and production of 

glycerol and expression of Hog1-dependent genes (Figure 1C, Supp Figure S2). Downstream 

effector mechanisms that lead to increased glycerol production and volume adaptation were 

simplified compared to previous modeling approaches (Klipp et al., 2005) to reduce 

complexity in areas of the model that are not relevant to explain ultrasensitivity. The model 

considers both Sho1 and Sln1 branches of the HOG pathway, and the shuttling of Hog1 

between a cytosolic and a nuclear compartment. Moreover, it takes into account known and 

putative feedback regulation, including Hog1-mediated phosphorylation of the upstream 

components Sln1, Ssk1, Ssk2 and the scaffolding kinase Pbs2 (Sharifian et al., 2015). These 

reactions result in additional phosphorylated species, which are depicted with new kinetic 

parameters reflecting their increased or decreased enzymatic activity and/or association 

rates. Importantly, the model includes both mono- and bi-phosphorylated species of Hog1, 
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and thus allows distinguishing processive and distributive mechanisms for Hog1 activation. In 

the processive model, the second Hog1 phosphorylation step immediately follows the first 

without Hog1 disassociating from its scaffold Pbs2, while in the distributive activation model 

Hog1 disassociates from Pbs2 after the first phosphorylation step and thus needs to rebind 

to allow formation of the doubly phosphorylated, active species. The distributive mechanism 

of Hog1 phosphorylation by Pbs2 was implemented by including Hog1-Pbs2 association and 

dissociation rates. Importantly, the first phosphorylation event always leads to dissociation 

of the mono-phosphorylated Hog1 species, while in the processive model, the rate constant 

for the dissociation of monophosphorylated species are set to zero, thus reflecting a case 

where the Pbs2-Hog1 complex can only dissociate upon double phosphorylation of Hog1. 

Finally, known phosphatases responsible for Hog1 dephosphorylation (Ptp2, Ptp3, Ptc1, and 

Ptc2/3) were implemented taking their respective mechanisms into account (Jacoby et al., 

1997; Mapes and Ota, 2004; Murakami et al., 2008; Warmka et al., 2001; Wurgler-Murphy et 

al., 1997; Young et al., 2002). The resulting model thus not only provides a detailed 

representation of the topology and assembly intermediates upstream of Hog1, but also 

accounts for different Hog1 activation mechanisms and positive and negative feedback 

regulation. 

 

Multimodal data integration and model selection favor distributive over processive 

mechanism of Hog1 phosphorylation modulated by both positive and negative feedback 

loops 

 

To infer topology and parameters of the reaction model, we considered experimental 

data from multiple literature sources, as well as own measurements in wild type and mutant 

strains exposed to stepwise increase of NaCl of varying concentrations (Figure 1C). The data 

include population- and single cell measurements directly or indirectly reporting on Hog1 

activity at different time points after stimulation (see Supp. Table S1 and S2 for a detailed list 

and description of considered datasets. For example, mass spectrometry measurements 

inform about relative changes in single- and double phosphorylated Hog1 within the first 60 

seconds of the signaling response as well as at later time points (Kanshin et al., 2015; Vaga et 

al., 2014). These data were complemented by western blot measurements with antibodies 

recognizing doubly phosphorylated Hog1 with conditions including strains lacking different 
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upstream components or the Ptp2 and Ptp3 phosphatases, as well as inhibition of Hog1 

activity by small molecule inhibitors (English et al., 2015; Jacoby et al., 1997; Macia et al., 

2009). Moreover, Hog1 activity correlates with its nuclear translocation, which can be 

quantified by fluorescence single cell microscopy (Ferrigno et al., 1998). Using a microfluidic 

platform, we performed extensive Hog1 activity measurements in wild type, sln1D  and pbs2D 

cells exposed to various NaCl concentrations and NaCl ramping perturbations. Similar 

measurements were previously used to assess feedback regulation acting on Ssk2 (Sharifian 

et al., 2015). Finally, the volume submodel was parameterized with cell area measurements 

upon various salt treatments of wild type and pbs2D cells. The latter provides information on 

Hog1 independent mechanisms that lead to volume adaptation that are also considered in 

the model (Supp Figure S2). 

We used 533 data points across the different conditions and perturbations to estimate 

the relevant model parameters. We enumerated eight models with distinct topologies varying 

in Hog1 phosphorylation mechanism and absence or presence of positive and negative 

feedback loops (Figure 2A). Between 63 and 86 parameters were undetermined in the 

considered models and thus fitted via likelihood optimization, including the kinetic rate 

constants of the mass action-based ODEs used to model the general topology and 

biochemistry of the signaling pathway (see Method section for details).  

We first aimed at determining the mechanism of Hog1 activation and evaluating the 

importance of positive and negative feedback loops. Thus, we performed parameter 

optimization followed by selection of model variants comprising all combinations of 

distributive or processive mechanism of Hog1 phosphorylation, and the presence or absence 

of positive and negative feedback regulation. The Akaike Information Criterion (AIC) was used 

to compare and rank the results (Figure 2A). Interestingly, comparison of AIC indicated that 

both positive and negative feedback mechanisms are needed to adequately explain the 

measurements. In general, an AIC difference between two competing models of greater than 

ten is considered highly significant (Burnham and Anderson, 2004). Topologies incorporating 

both feedback mechanisms performed significantly better compared to topologies with only 

one or no feedback loop, regardless of the Hog1 phosphorylation mechanism. Interestingly, 

this difference was most pronounced in the case of processive Hog1 activation, where a 

model without any feedback leads to a break down in model fit, performing significantly 

worse than its distributive counterparts. Thus, when comparing the two extreme cases of 
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Hog1 phosphorylation mechanisms, the overall best fit was achieved with distributive Hog1 

phosphorylation and positive and negative feedback mechanisms, and the AIC difference was 

significant compared to a processive mechanism. Accordingly, we defined a refined model 

(Figure 2B). The AIC difference between models utilizing distributive or processive mechanism 

was most readily apparent in cells deleted for Ptp2 and Ptp3 (Figure 2C). In this case the 

processive model was unable to recapitulate the full increase in basal signaling as well as the 

complete activation upon salt stress.  

 On the other hand, certain finer temporal patterns such as the dynamics of double 

phosphorylated Hog1 in wild type cells in the first 60 seconds of salt stress, were slightly 

better approximated by a model employing a processive phosphorylation mechanism (Figure 

2D). We interpreted this as a first hint that properties such as the regulation of basal 

activation levels and maintenance of the full range of activation need a more distributive 

Hog1 phosphorylation mechanism, whereas certain dynamic properties such as the 

aforementioned rapid double phosphorylation of Hog1 could more easily be achieved by a 

processive mechanism. 

In an attempt to find additional species that differ significantly between the two best 

fitting distributive and processive Hog1 activation models and thus might provide some 

insight into the mechanics underlying their different dynamic properties, we evaluated 

models for their ability to explain experimental measurements that were not part of the initial 

simulations. We found some phospho-species that show very distinct behavior. In particular, 

simulations of mono-phosphorylated Hog1 dynamics revealed significant qualitative 

differences upon simulation with different phosphorylation mechanisms (Figure 2E). 

Simulations with a distributive phosphorylation mechanism resulted in a temporal profile 

marked by a double peak, with a first activity peak during the initial minutes and a second, 

lower increase towards the end of the response. In contrast the processive model simulation 

displayed monophosphorylated Hog1 dynamics with a single peak reminiscent of the 

behavior of doubly phosphorylated Hog1. Since the mono-phosphorylation data were not 

used for the parameter fitting process, these Hog1 activation dynamics are likely an inherent 

property of the system and not the result of overfitting. 
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A mixed phosphorylation mechanism best explains Hog1 activation kinetics by integrating 

favorable dynamic properties of both distributive and processive mechanisms 

 

While distributive Hog1 activation leads to a significantly better goodness-of-fit, the 

processive mechanism better recapitulates some data such as speed and degree of double 

phosphorylated Hog1 accumulation. Thus, we next evaluated a mixed phosphorylation 

mechanism that incorporates characteristics from both the processive and distributive 

mechanism.  This mixed mechanism allows for both processive double phosphorylation and 

distributive dissociation of mono-phosphorylated species (Figure 3A). Thus, mono-

phosphorylated Hog1 has a certain propensity, defined by the kinetic rate constant, to remain 

Pbs2 bound and immediately undergo a second phosphorylation step, in which case we 

observe processive characteristics. Alternatively, mono-phosphorylated Hog1 can dissociate 

from Pbs2 resembling a distributive mechanism. To assess whether such a mixed model 

would indeed recapitulate above finer temporal patterns of Hog1 activation, we repeated the 

parameter optimization procedure by including mass spectrometry data sets of 

monophosphorylated Hog1 the results of which we defined as best fitting models (Kanshin et 

al., 2015; Vaga et al., 2014) (Supp Figure S3). Interestingly, AIC measurements revealed that 

the optimized model employing a mixed phosphorylation mechanism showed significantly 

better goodness of fit compared to the either distributive or processive variants, with all 

models incorporating positive and negative feedback (Figure 3B).  

We used the best fitting distributive, processive or mixed models with unconstrained 

parameters to predict Hog1 activation upon a linear ramping increase of NaCl concentration 

over a prolonged period of time, comparing simulation output to an independent data set not 

used for parameter optimization (Figure 3C). Monitoring Hog1 nuclear translocation 

dynamics to approximate Hog1 activation, the processive mechanism leads to premature 

Hog1 translocation and displays an inappropriate oscillating behavior, while the distributive 

mechanism results in a delay of Hog1 translocation. Only the mixed model was able to fine-

tune the Hog1 nuclear translocation kinetics with an appropriately rapid yet stable response. 

Indeed, the processive mechanism produces premature accumulation of activated 

Hog1 manifested by the appearance of doubly phosphorylated Hog1 in the first 60 seconds 

after salt addition (Figure 3D). We assume that this behavior addresses the need to 

compensate direct mono-phosphorylation by employing faster accumulation of double 
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phosphorylated Hog1 that can then undergo dephosphorylation to generate the pool of 

mono-phosphorylated species. Case in point, the simulated accumulation of mono-

phosphorylated Hog1 by the processive model was slower and not as high as expected from 

experimental data (Figure 3E). On the other hand, the distributive model resulted in faster 

accumulation of mono-phosphorylated species than measured experimentally and its decay 

set in earlier than expected (Figure 3E). However, the mixed phosphorylation mechanism 

shows a better fit and is situated between the two extreme cases, and thus as predicted 

compensates for both premature accumulation and decay observed with distributive Hog1 

activation and the delay of the processive mechanism (Figure 3D, E). Upon fitting Hill 

functions to our simulated input-output curves, we observed that increase in processivity led 

to lower EC50 values, with the mixed mechanism achieving a lower value than a distributive 

and a processive mechanism. We also quantified ultrasensitivity using the Hill coefficient 

(Figure 3F). Interestingly, the processive mechanism resulted in the highest Hill coefficient, 

while as expected, the mixed mechanism showed lower ultrasensitivity than the distributive 

mechanism.  

We further considered physiological parameter boundaries more closely reflecting 

known parameter values of general yeast kinases and phosphatases. Within these boundaries 

the mixed phosphorylation mechanism resulted in an even more significant difference in AIC 

compared with the extreme mechanisms (Figure 3B). For example, with physiological 

parameter boundaries the processive mechanism was unable to recapitulate the double peak 

behavior of mono-phosphorylated Hog1 and experimental data specific to the Sho1 sub-

branch of the pathway (Supp Figure S4). 

 

Hog1-dependent positive feedback increases processivity of the Hog1 phosphorylation 

reaction  

 

Next, we investigated why the mixed Hog1 activation model best fits the observed 

measurements. Our model simulations confirmed that positive feedback is necessary to 

achieve the best goodness of fit (Figure 2A). This becomes most readily apparent with data 

quantifying Hog1 double phosphorylation when its kinase activity is inhibited by small 

molecules (Supp Figure S3, Cond 16) (English et al., 2015; Macia et al., 2009). Positive 
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feedback is necessary to recapitulate both the slow Hog1 phosphorylation upon kinase 

inhibition as well as the rapid and full activation of Hog1 in wild type cells.  

To explore targets and mechanisms underlying this positive feedback, we analyzed 

mass spectrometry measurements. Indeed, these measurements revealed that eight out of 

eleven components involved in the Hog1 pathway undergo phosphorylation upon salt 

exposure (Vaga et al., 2014). We focused on putative feedback loops that phosphorylate 

targets upstream of Hog1. In the Sln1 sub-branch, the data suggests that Ssk1 and Ssk2 are 

potential Hog1 substrates, while in the Sho1 sub-branch Hog1 phosphorylates Ste50 and 

Ste20. However, phosphorylation of Ssk2 (Sharifian et al., 2015) and Ste50 (Yamamoto et al., 

2010) interfere with Hog1 activation, making them unlikely physiological candidates. 

Moreover, positive feedback must target both sub-branches simultaneously to explain the 

experimental data. Therefore, Hog1-dependent phosphorylation of Pbs2 would fulfill this 

requirement, as Pbs2 integrates the information of both sub-branches (Figure 4A). 

Alternatively, we considered Ste20 and either Sln1 or Ssk1 as potential targets of positive 

feedback. Interestingly, a mixed model that incorporates positive feedback of Hog1 on Pbs2 

showed significantly better results than topologies in which Hog1 targets Sln1 and Ste20 or 

Ssk1 and Ste20 (Figure 4B). The changes introduced by the positive feedback mainly lead to 

increased processivity, meaning enhanced speed of the second Hog1 phosphorylation 

reaction with only minor effects on the first phosphorylation reaction. Processivity in the 

mixed Hog1 activation model is formally defined by the ratio between the rate of the second 

phosphorylation step and the rate of dissociation of mono-phosphorylated Hog1 bound to 

activated Pbs2 (Figure 4C). To assess processivity over the course of the response we 

introduced a processivity score (see Method section), which quantifies the rate of an 

immediate second phosphorylation step compared to dissociation of the Hog1-Pbs2 complex. 

Interestingly, the simulations showed that in the best fitting model with positive feedback on 

Pbs2, this score is low before and after the response to salt stimulation and the Hog1 

phosphorylation mechanism displays a behavior mimicking a distributive mechanism (Figure 

4D). The onset of positive feedback activity during the response leads to a significant increase 

in the score, meaning the reaction becomes highly processive. In comparison, the best fitting 

result of the model targeting Sln1 does not result in significant changes of processivity. The 

Ssk1 model displayed increased processivity along the course of the reaction but the basal 

level of processivity was orders of magnitude higher than the better fitting model targeting 
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Pbs2. Taken together, these results indicate that mixed Hog1 phosphorylation enables a 

switch between a distributive and processive activation mechanism. This switch is initiated 

by positive feedback, most likely regulating Pbs2.  

 

Mixed mechanism conveys robustness to protein level fluctuations 

 

We next evaluated robustness for the mixed Hog1 activation mechanism, specifically 

determining to what degree a similar output can be generated across a spectrum of external 

or internal perturbations. Robustness is of particular importance in the case of Hog1 

phosphorylation since its hyperactivation leads to severe growth defects, observed for 

example upon overexpression of Pbs2 (Krantz et al., 2009). Indeed, in silico overexpression of 

Pbs2 revealed that Hog1 was almost fully doubly phosphorylated and thus hyperactivated in 

the best fitting distributive and mixed models (Supp Figure S5A). In contrast, overexpression 

of Pbs2 in the processive model actually prevented double phosphorylation of Hog1 (Supp 

Figure S5B). To corroborate these findings, we randomly varied the concentration of Hog1 

and protein species upstream of Hog1, as well as varying the Hog1 phosphatases in a more 

narrow range of half to twice their original concentration (Figure 5A). We repeated these 

simulations over 500 times and examined the maximal activation in response to various 

concentrations of salt stimulation of the best fitting distributive, processive and mixed models 

(Figure 5B-D). With no perturbation or low NaCl concentrations (0 M, 0.1 M), the processive 

mechanism resulted in slightly bimodal distributions with 2.4 times the number of 

perturbations resulting in complete activation (> 70% Hog1 double phosphorylation) than the 

mixed mechanism and the majority showing no activation. The distributive mechanism led to 

an accumulation of activation at an intermediate level (20%), while the mixed model 

distributed more around the unperturbed activation level (Figure 5B, C). At higher levels of 

NaCl input (0.3M), the processive mechanism failed to reach the maximal level of activation 

and displayed a disproportionate amount of simulations that led to only very minimal 

activation. The distributive mechanism on the other hand, shows a more uniform distribution 

between 30 and 90 % Hog1 activation. Strikingly however, only the mixed mechanism 

predicted low basal levels of Hog1 activity, with reliable rapid and high activation upon 

exposure to the different NaCl conditions (Figure 5D). Moreover, multiple linear regression 

suggests that increasing Ssk1 and to a lesser degree Ssk2 concentration most significantly 
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contributed to erroneous Hog1 activation at lower (0, 0.1M) salt concentrations. With higher 

salt input (0.3M) changes in Pbs2 concentration become more important to explain the 

changes in output (Figure 5E). We thus conclude that a mixed Hog1 activation model 

regulated by a positive feedback loop fits the complete, consolidated data significantly better 

than either purely distributive or processive mechanisms. Moreover, the mixed Hog1 

activation displays favorable systems behavior and leads to increased robustness in the input-

output relations.   

 

Discussion 

 

Effective processing of external information via subsequent intracellular response is 

of vital importance for every cell. From a systems-engineering perspective it is desirable for 

this process to be robust towards external and internal state fluctuations. Similarly, the actual 

input threshold to induce a cellular response should be carefully chosen to avoid unnecessary 

energy expenditure. It can be argued that this is specifically true for stress response pathways 

that need to react rapidly and often have dramatic effects on the cellular state. In the S. 

cerevisiae HOG pathway, Hog1 activity not only triggers rapid accumulation of intracellular 

glycerol but also inhibits other signaling responses such as cell cycle progression and mating 

(Escote et al., 2004; O'Rourke and Herskowitz, 1998). Thus, while Hog1 activity must be kept 

low in the absence of osmolarity stress, fast Hog1 activation is required to prevent cell lysis. 

However, Hog1 activity also needs to remain readily reversible to ensure that cell growth can 

resume after the pressure difference is balanced. Control over the system can be exerted by 

feedback loops that are able to tune the signaling response. Moreover, like other MAP 

kinases, Hog1 is activated by dual phosphorylation and thus the choice and kinetics of this 

phosphorylation mechanism can greatly affect signaling dynamics. A multitude of previous, 

mostly theoretical, work has focused on the extreme cases of distributive or processive 

mechanisms. Interestingly however, our combined experimental and modeling analysis 

revealed that a mixed control mechanism regulated by a positive feedback loop best explains 

the observed phosphorylation and signaling dynamics. Available data, however, cannot 

exclude that lower diffusion rates caused by cell shrinkage may contribute to increased 

processivity (Babazadeh et al., 2013; Miermont et al., 2013). Indeed, it has been argued that 
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molecular crowding might affect processivity in HeLa cells (Aoki et al., 2011). However, since 

the possibility of tuning MAPK activation results in specific and emergent systems output, 

regulated switching between a distributive and processive phosphorylation mechanism is 

best explained by positive feedback.  

 

Positive feedback may be needed to buffer noise and crosstalk to allow high basal signaling 

 

In mammalian cells positive feedback loops have been recognized and described in 

multiple pathways. In the ERK pathway for example, positive feedback loops have been 

identified that trigger an oscillatory behavior in combination with negative feedback 

(Kochanczyk et al., 2017). The distinction between prolonged or oscillatory response and its 

exact frequency is crucially important to determine the cellular output (Ryu et al., 2016). In 

contrast, in the yeast S. cerevisiae stress response pathways, no such oscillating signaling 

dynamics are known. The ability to buffer noise while retaining the sensitivity of the reaction 

could provide an evolutionary benefit (Hornung and Barkai, 2008). Indeed, there is 

considerable basal signaling from the Sln1 sub-branch of the HOG pathway (Macia et al., 

2009). A positive feedback loop might thus be needed to set a threshold of Hog1 

phosphorylation that is not crossed without increased activation of the pathway by exposure 

to hyperosmolarity. Similarly, positive feedback could play an important role to prevent 

erroneous activation of Hog1 by crosstalk from other pathways such as the pheromone 

response pathway (O'Rourke and Herskowitz, 1998).  

However, no positive feedback mechanisms regulating the HOG pathway have been 

described at present. According to our models the most likely target for such a positive 

feedback regulation is Pbs2. Indeed, Pbs2 is phosphorylated on S248 in response to high 

osmolarity (Kanshin et al., 2015; Vaga et al., 2014)  and this serine is followed by a proline 

residue and thus  conforms to the minimal MAPK consensus motif (S/TP). However, inhibition 

of Hog1 kinase activity does not seem to attenuate S248 phosphorylation (Romanov et al., 

2017). Interestingly, recent experiments confirm osmostress-mediated enhancement of the 

reaction between Pbs2 and Hog1 (Tatebayashi et al., 2020), and suggest that a new 

downstream osmosensor could fulfill the role of positive feedback. Thus, further work will be 

required to pinpoint positive feedback mechanisms regulating HOG signaling.  
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Mixed mechanism may finetune sensitivity and work in tandem with positive feedback to 

guarantee a well-defined threshold and robustness 

 

In addition to positive feedback, our best fitting model also displays both distributive 

and processive qualities. Previous theoretical analyses of a simple three-tiered MAPK cascade 

predicted that such a mixed mechanism may enhance the tunability of the response (Sun et 

al., 2014). In particular, increased processivity can enhance the sensitivity to the external 

signal and lower ultrasensitivity. Indeed, increasing processivity diminished EC50 values, with 

the mixed mechanism achieving a lower value than distributive and processive mechanisms 

(Figure 3F). Moreover, measurements of the Hill coefficient confirmed that the mixed 

mechanism showed lower ultrasensitivity than distributive Hog1 activation. This is probably 

due to the processive mechanism plateauing earlier with a lower maximal activation than the 

two other mechanisms. This would indicate that while a processive mechanism can guarantee 

ultrasensitivity, the range of dynamics is lower than what a distributive mechanism can 

achieve. Despite this effect being significant, its physiological relevance under normal 

conditions appears small. However, under conditions where the difference in the input-

output curves becomes more pronounced, this mechanism may become important to ensure 

cell survival.  

A bigger impact of the different phosphorylation mechanism was observed when 

evaluating robustness of the pathway output. The mixed mechanism was more robust 

towards perturbation of protein concentrations, and also less prone to exaggerated activation 

at lower salt concentrations. Multiple linear regression suggests that in particular increasing 

Ssk1 or Ssk2 levels contribute to maximal Hog1 activation at basal input levels (Figure 5E). 

Available experimental data confirms that the Sln1 sub-branch displays high basal signaling 

(Macia et al., 2009). We propose that the distributive nature of Hog1 phosphorylation with 

or without low salt stress serves as an additional checkpoint, where mono-phosphorylated 

Hog1 species are dephosphorylated faster than the second phosphorylation step and thus full 

Hog1 activation can occur. However, after a certain input threshold has been crossed at 

higher salt concentrations, the positive feedback increases the processivity of the reaction, 

reliably promoting maximal Hog1 activation. In comparison, the purely distributive 

mechanism resulted in 5.5% lower activation on average at the highest salt concentration.  
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Our findings on the processivity of Hog1 phosphorylation may have important 

implications to explain dynamic properties of MAPK pathways in mammalian systems. For 

example, the mammalian Hog1 homolog p38 was recently shown to be phosphorylated in a 

semi-processive manner (Wang et al., 2019), which may be best explained by a mixed 

activation model. Likewise, mammalian ERK shows context-specific differences in its ratio of 

single and double phosphorylated species (Iwamoto et al., 2016). 

 

The tunable phosphorylation mechanism with positive feedback: a general mechanism for 

multisite phosphorylation? 

 

Our results imply that the switch like behavior and ultrasensitive response of MAPK 

modules is a function of the whole cascade. Interestingly, other switch-like transitions such 

as cell cycle progression or cell differentiation use an increasing number of phospho-sites of 

effector proteins as a strategy to alleviate the need for a cascade. For example, degradation 

of the S. cerevisiae cyclin-dependent kinase inhibitor Sic1 requires phosphorylation of at least 

six residues to allow S phase entry (Nash et al., 2001). It has been argued that a distributive 

mechanism to phosphorylate these sites results in a highly ultrasensitive, switch-like 

response. Sic1 is phosphorylated by two distinct kinase complexes, Cln2-Cdk1 and Clb5-Cdk1, 

which bind and first phosphorylate priming phospho-sites on Sic1, which in turn triggers 

processive phosphorylation of the entire phospho-degron (Koivomagi et al., 2011). This 

systems behavior could thus be viewed as an extreme case of a mixed phosphorylation 

mechanism, switching from a distributive to a processive mode of activation. Theoretical 

analyses predicted that increasing the number of phosphorylation sites sharpens the 

threshold, but might only allow for a graded increase beyond the threshold (Gunawardena, 

2005). However, a theoretical framework with a mixed mechanisms confirms its potential for 

additional behavior already in a system with three phosphorylation sites (Suwanmajo and 

Krishnan, 2015). Indeed, experimental evidence for a mixed mechanism termed semi-

processive phosphorylation was described for the multisite phosphorylation of Pho4 (Jeffery 

et al., 2001). It is thus tempting to speculate that the here described tunable phosphorylation 

mechanism in combination with regulatory feedback could be utilized not only to activate 

MAPK’s but may more generally apply to many multisite phosphorylation systems, as the 
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resulting properties are robust and able to generate ultrasensitive signaling dynamics such as 

efficient switching and threshold adaption. 
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Methods 

 

Yeast strains, microscopy and microfluidics: 

Yeast strains and plasmids are listed in Supplementary Tables S1 and S2. yMU49, 

which provides the nuclear marker HTA2-CFP, was used as a starting strain. HOG1-YFP was 

amplified by PCR from yMU19, and a simple transformation protocol using lithium acetate, 

polyethylene glycol (PEG) and heat shock induced transformation was utilized to create 

yMM001. The SKARS sensor (Durandau et al., 2015) or dPSTR (Aymoz et al., 2016) were 

transformed into yMM001 after cutting of plasmids pED45 or pDA183 with corresponding 

restriction enzymes to create yMM003 or yMM004 respectively. The Pbs2 deleted strain was 

created by transformation of the PCR amplification product of the NAT cassette from pSP135 

with primers containing sequences 1000 bp up- or downstream of the gene of interest. 

Successful plasmid cut and PCR product length was confirmed by gel electrophoresis. 

For live cell imaging experiments, yeast cells were grown in Synthetic Defined (SD) 

media with 2% glucose. Exponentially-growing cells were transferred to a microfluidic device 

(Y04C, Merck Millipore) and live cell imaging carried out at 30°C using a fully-automated 

inverted epi-fluorescence microscope (Ti-Eclipse, Nikon) in an incubation chamber. Osmotic 

stress was induced with the pressure controller (ONIX, Merck Millipore) by exchanging the 

medium with media containing NaCl at the specified concentrations. The images were taken 

with a high numerical aperture oil immersion objective lens (CFI Plan Apo 60X, Nikon; N.A. 

=1.4).  Image acquisition was controlled using micro-manager. Each frame was imaged with 

relevant fluorescent set-up (CFP, YFP, mCherry and Cy5 fluorescent filters with LED 

illumination). Cell segmentation, tracking and feature extraction was done using the 

MATLAB®-based YeastQuant software (Pelet et al., 2012), using Alexa 680 fluorescent dye for 

cell segmentation (Pelet et al., 2012). The CFP channel was used to define cytosolic and 

nuclear regions based on HTA2-CFP images, by defining a certain intensity threshold. 

Individual cells during time-lapse imaging were followed by tracking the nucleus. The cytosol 

and nucleus of individual cells was segmented and various properties including cell area and 

average intensity of fluorescent signals in the segmented objects were quantified.  
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Data sources and incorporation into model definition: 

 

The experimental data was collected from multiple sources. When not otherwise 

noted the BY4741 yeast strain exposed to 0.4 M NaCl stress was used. Importantly mass 

spectrometry measurements analyzing long term (Vaga et al., 2014) and very short term 

(Kanshin et al., 2015) changes in phospho-site abundance were included. Since the relative 

phospho-site change at the timepoint 60 seconds after NaCl addition varies slightly between 

these two studies, the mean of both values was taken for this time point.  

To determine the degree of Hog1 phosphorylation, the maximal values determined by 

western blot measurements were used (English et al., 2015). Data for Hog1 phosphorylation 

upon inhibition of Hog1 with or without addition of salt was taken from the same 

experimental set. Even though the authors used a different strain with a different 

perturbation agent (KCl instead of NaCl) the qualitative dynamics of the Hog1 response were 

essentially identical (Muzzey et al., 2009). Moreover, the switch-like response resulting in full 

Hog1 phosphorylation for all salt concentrations above a certain, low threshold justified 

inclusion of these data.  

Additional western blot measurements were utilized for different phosphatase 

mutants. Compared to mass spectrometry measurements, quantification of western blots is 

complex and these results often reveal more qualitative than quantitative results (Taylor et 

al., 2013). For example, different antibodies are known to have different binding properties 

(Tinti et al., 2012). As a consequence, measurements of Hog1 phosphorylation in Ptp2/Ptp3 

mutants in the literature revealed quite varying results (English et al., 2015; Jacoby et al., 

1997; Mattison and Ota, 2000; Murakami et al., 2008; Wurgler-Murphy et al., 1997). 

However, despite these differences, the data largely agree that deletion of Ptp2 results in 

increased basal levels and prolonged Hog1 phosphorylation, while deletion of Ptp3 shows 

only minute differences compared to wild type controls. To account for this variability, we 

utilized the data of Jacoby et al. (1997), but allowed the parameters for the error model of 

these measurements to be sufficiently big and independent from other western blot data 

sets. Furthermore, as the used antibody used detects phosphorylated tyrosine, the 
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corresponding output species of the model was set to be Hog1 doubly phosphorylated or 

mono-phosphorylated at tyrosine 176. 

Microscopy measurements of Hog1 relocation to the nucleus report on Hog1 activity, 

and such data was used to quantify the response of single branch and phospho-site mutants. 

Similarly, microscopy-based measurements of cell size were used to fit the volume module. 

Information on Hog1 activation at 0.2 M NaCl stimulation with varying frequency (2, 4, 8, 16 

min) were extracted from (Mettetal et al., 2008). Volume and Hog1 relocation measurements 

in cells deleted for SLN1 or SHO1 were taken from (Granados et al., 2017). Although the 

authors used sorbitol instead of NaCl for their experiments, own measurements confirmed 

that the response of cells to 0.6 M sorbitol is quantitatively and qualitatively nearly identical 

to perturbations with 0.4 M NaCl. To assess negative feedback of Hog1 on Ssk2, we used 

published Hog1 relocation measurements (Sharifian et al., 2015). Due to the fact that non-

phosphorylatable Ssk2 mutant exhibit reduced cell shrinkage and thus a lower maximal Hog1 

nuclear to cytosolic ratio, only data from later time points were included, which correct for 

the increased time it takes for the Hog1 ratio to reach basal levels. Data for Gpd1 expression 

changes were selected from (Rep et al., 1999), and information about Ptp2 and Ptp3 mRNA 

levels were extracted from (Wurgler-Murphy et al., 1997). Western blot measurements of 

total Hog1 phosphorylation upon inhibition with small-molecule inhibitors in wild type and 

ssk2D strains were taken from (Macia et al., 2009) for basal activity and (English et al., 2015) 

for activity upon increase of osmolarity. As most antibodies used to measure Hog1 

phosphorylation bind to both the doubly and mono-phosphorylated species (English et al., 

2015), these western blot measurements were considered as total amount of phosphorylated 

Hog1 irrespective of phosphorylation grade. 

The observables in these data were incorporated as model variables by defining 

observables that correspond to the experimentally measured quantity. We defined the 

relative ratio between the current absolute number of a protein species and its absolute 

number at the very start, the phosphorylated percentage as the absolute number of 

phosphorylated protein divided by the total number of the protein, and the concentration 

ratio of Hog1 in the nucleus compared to the cytosol, for the mass spectrometry, western 

blot, and fluorescence ratio data sets respectively. Further details on how the observables 

and their corresponding data set were encoded in the model can be gathered from Supp Table 

S5:Observables. 
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Modeling 

 

All modeling was performed using the Data2Dynamics modeling environment  (Raue 

et al., 2015) and computation was carried out on the Euler cluster provided by ETH Zurich. 

Parameter optimization was carried out by multistart followed by a deterministic trust region 

algorithm. The goodness of fit was evaluated by   Goodness-of-fit = −2 ∗ 𝑙𝑜𝑔(Likelihood). 

For parameter optimization, parameters were considered on a log-scale. In a first step, 10000 

starting parameter vectors were created. Sampling was done uniformly between the lower 

and upper boundaries of each parameter. Lower and upper boundaries were first set to be 

minus three to three, respectively, spanning six orders of magnitude. After successful 

parameter estimation (after either 400 iterations or if the value of the objective function 

changes by less than 1e-6) the 100 best fitting parameter vectors were taken and their 

correlation coefficient determined. 10000 starting vectors for the next optimization run were 

generated by sampling from a multivariate normal distribution whose parameters were 

determined by the 100 best fitting parameter vectors of the previous run. This procedure was 

repeated until the best goodness of fit of the latest run turned out as good or worse than the 

run before.  

To minimize the risk of the optimization procedure redundantly reproducing solution 

clusters with very similar values, we included additional steps, such as optimization of crucial 

model topologies being redone up to eight times with different starting parameters, and 

ensuring that the relative ordering of the fits was consistent over various conditions, such as 

leaving out of data points, or changing of parameter boundaries. In general, parameter 

identifiability was not a major concern, as some model topologies were not able to 

recapitulate the data and we were primarily interested in the relative quality difference of 

each topology prediction. The size of the model and its complicated nature also impeded 

identifiability analysis by profile likelihoods. Instead we simulated species concentration from 

a model with known parameters. From these simulations we sampled data points equivalent 

in number and time points to the experimental data set, and performed the parameter 

optimization procedure described above. All but twelve of the 82 newly fitted parameters 

were within one order of magnitude from the parameters used to generate the data, with a 

median of 0.11.  
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In all our models, certain parameters of the Sho1 sub-branch (Sho1 binding to Ste11, 

phosphorylation of Pbs2 by Sho1 and dissociation of activated Pbs2 from Sho1) assumed 

values much higher than expected (up to 10^6) after parameter optimization. We speculate 

that this reflects a stable complex that forms at the cell membrane which incorporates all 

involved species (Sho1, Ste11, Ste50, Ste20, the scaffolding protein Ahk1, and more) and 

brings them into close proximity so that reactions occur faster than expected by simple 

diffusion (Nishimura et al., 2016; Takayama et al., 2019; Truckses et al., 2006). As this was 

observed with all model topologies, we feel confident to compare the different topologies 

relative to one another even if the models do no fully capture the Sho1 sub-branch. Similarly, 

we did not incorporate the latest information that describes how Ste11 only phosphorylates 

one phospho site on Pbs2 (Tatebayashi et al., 2020). 

 

Comparison of different models was done using the Akaike Information Criterion. 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(𝐿!"#) 

With “k” being the number of fitted parameters and 𝐿!"#the maximal likelihood.  

Detailed information on the best fitting mixed model can be found in Supp table S6-S9.  

 

Processivity score: 

 

We introduced a score (1) to quantify the change in processivity of the Hog1-Pbs2 

reaction over the course of the response. 
[%&'(%%)*+,%]∗/!"#$!"#0[%&'(%%)*+,%%&&'()*+]∗/!"#$!"#%&&'

[%&'(%%)*+,%]∗/#%%0[%&'(%%)*+,%%&&'()*+]∗/#%%
                        

(1) 

It is defined as the probability of a monophosphorylated Hog1 bound to activated Pbs2 

undergoing a second phosphorylation step against the probability of the proteins dissociating. 

Feedback on Pbs2 is reflected in a higher rate of phosphorylation of Hog1 while the 

dissociation constant is kept constant. 
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Modelling distributive or processive MAPK phosphorylation mechanisms in a basic three-

tiered MAPK cascade 

 

We utilized the paradigm of Huang and Ferrell, which models the basic three-tiered 

MAPK cascade. We collected or generated data measuring activation of MAP kinases from 

both yeast and mammalian cells that display different degrees of ultrasensitivity quantified 

by their Hill-coefficient. We found that Hog1 activation in S. cerevisiae by NaCl stimulation 

occurs with a hill-coefficient of 2.7, while its mammalian counterpart p38 in HeLa cells is 

stimulated by anisomycin with a hill-coefficient of 3 (Aoki et al., 2011). In comparison, the 

highly ultrasensitive activation of p38 via sorbitol in Xenopus oocytes occurs with a hill-

coefficient of 14.4 (Ben Messaoud et al., 2015), and the graded response of Erk2 in HeLa cells 

stimulated by EGF with a hill-coefficient of 1.2 (Aoki et al., 2011).  

The parameters of the basic model were optimized according to our described 

protocol and the best overall fit determined according to log-likelihood criteria. This was done 

for a distributive and a processive topology of MAPK activation. For Hog1 and both p38 data 

sets it was not possible to distinguish between a purely distributive or purely processive 

mechanism. Both models were able to fit the data equally well (difference in AIC was smaller 

than ten) and the utilized parameters still range within biologically feasible boundaries (Supp 

Figure S1C) (Bar-Even et al., 2011; Ben Messaoud et al., 2015). In contrast, the graded 

activation of Erk2 showed a clear preference for processive phosphorylation with significantly 

better fitting results, consistent with experimental evidence (Aoki et al., 2011). Experimental 

measurements also corroborate the possibility that mild ultrasensitive behavior can be 

achieved in nature using purely processive mechanisms. Thus, a processive mechanism with 

the correct parameters is also able to recapitulate even highly ultrasensitive behavior and 

thus cannot be readily discarded. 
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Figures: 

 
Figure 1: Generation of an overcomplete model of the Hog1 pathway and parameter 

optimization.  

(A) A Hill function quantifies highly ultrasensitive (black line, Hill coefficient = 10), mildly 

ultrasensitive (green line, Hill coefficient = 3), or strictly Michaelian (red line, Hill coefficient = 

1) input-output behavior. EC50 value (dashed line) indicates the input strength at which 50% 

of the maximal output is reached. (B) The choice of Hog1 phosphorylation mechanism has a 

significant impact on the resulting input-output behavior and can be mainly processive or 

distributive. For the processive mechanism, the second phosphorylation step immediately 

follows the first without Hog1 disassociating from Pbs2. For the distributive mechanism Hog1 

disassociates from Pbs2 after every phosphorylation step and needs to re-bind for further 

phosphorylation to take place. (C) Simplified scheme of the workflow to distinguish between 

different Hog1 phosphorylation mechanisms. The overcomplete ODE model allows 

enumeration of varying model topologies that differ in negative and positive feedback 

mechanisms, and Hog1 phosphorylation mechanism. Multimodal data was collected from 

literature or was newly self-generated, including fluorescence microscopy, mass 

spectrometry and western blot experiments. The data reflects various experimental 

conditions such as different salt concentrations and pulse frequencies, deletion mutants and 

kinase inhibition. Data sets were used to optimize the parameter values of the different 

submodels of the overcomplete model thus giving rise to refined models from which the best 

fitting was selected 
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Figure 2: Refined model employs negative and positive feedback and favors a distributive 

over a processive phosphorylation mechanism.  

(A) Eight different topologies were enumerated with different combinations of negative 

feedback (red), positive feedback (green) and distributive (yellow) or processive (blue) Hog1 

phosphorylation mechanism. Akaike information Criterion (AIC) of the best model fits are 

displayed. (B) Abstraction of the model with topology one defined as refined model. Negative 

feedback on Ssk2 and positive feedback on Pbs2 are indicated in red and green respectively. 

The distributive phosphorylation mechanism of Hog1 by Pbs2 is visualized in yellow. (C-E) 

Simulations of selected species of the two best fitting models employing distributive or 

processive Hog1 phosphorylation (Nr 1 and 2) are shown in response to salt stimulation (0.4M 

NaCl). Graphs show experimental data points used for parameter optimization (red square), 

experimental data points used for testing (blue square), simulation results from the best 
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fitting distributive mechanism (light grey) and simulation data from the best fitting processive 

mechanisms (dark grey).  (C) Time course of the total phosphorylation of Hog1 in percent (%) 

in a Ptp2/3 deleted condition showing simulation and experimental data. (D) Time course of 

the relative ratio between stimulated and basal levels of dual phosphorylated Hog1 in wild 

type (WT) cells exposed to 0.4 M NaCl showing simulation and experimental data. (E) Time 

course of relative ratio between stimulated and basal levels of mono-phosphorylated Hog1-

P176 in a WT cells exposed to 0.4 M NaCl showing simulation data and experimental mass 

spectrometry data that was not used for fitting (Kanshin et al., 2015; Vaga et al., 2014). Note 

that the processive mechanism does not show the double peak in the data, characteristic of 

the distributive mechanism. 
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Figure 3: Temporal dynamics of monophosphorylated Hog1 supports models with partially 

distributive phosphorylation  

(A) A mixed phosphorylation mechanism generates a phosphorylation reaction with both 

distributive and processive character. (B) Akaike information criterion (AIC) of the best fits 

after the optimization and fitting with unconstrained parameter values or stricter boundaries 

that approximate physiological conditions (see Supp Fig S4). Note, that in contrast to the 

refined model of Figure 2B, data from mono-phosphorylated Hog1 species was used in the 

fitting and the resulting fit thus the best fitting model on all data. (C-E) Simulations are shown 

of selected Hog1 species from the three best fitting models in which all models incorporate 

positive and negative feedback in wild type cells (WT). Graphs show experimental data points 

used for parameter optimization (red square) and testing (blue square), as well as simulation 

results from the best fitting mixed (black line), processive (dark grey line) or distributive (light 

grey line) Hog1 phosphorylation mechanism in response to salt stimulation. (C) Time course 

of Hog1 nuclear to cytosolic ratio in cells exposed to linear ramping up to 0.2M NaCl showing 

simulation and experimental data. Note that the experimental data (blue squares) was not 

used in the fitting procedure. (D - E) Time course following salt stimulation (0.4M NaCl) of 

mono-phosphorylated Hog1-P176 (D) and dual phosphorylated Hog1-PP (E) expressed as a 
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relative ratio between stimulated and basal levels showing simulation and experimental data. 

(F) Fit of a Hill function to the simulated input-output curves of the best fitting mixed (black 

line), processive (dark grey line) or distributive (light grey line) Hog1 phosphorylation 

mechanism with a Hill coefficient of 2.39, 3.03 and 2.77, respectively. EC50 values are 

indicated by a dashed line of respective colors.  
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Figure 4: Positive feedback to Pbs2 gives best goodness of fit and results in increase of 

processivity.  

(A) Schematic of three models with potential targets for positive feedback upstream of Hog1, 

showing the positive feedback highlighted in red for models where activated Hog1 

phosphorylates either Pbs2 (left), Sln1 and Sho1 (middle), or Ssk1 or Sho1 (right). (B) Akaike 

information criterion (AIC) was used to order optimized models with the indicated positive 

feedback targets, in which all models include negative feedback and a mixed Hog1 

phosphorylation mechanism. Positive feedback targeting Pbs2 achieves best AIC among other 

putative targets. (C)  The phosphorylation of Pbs2 by activated Hog1 introduces a second, 

faster rate constant kphospho_feed for the activation of Hog1. The rate constant of Hog1-Pbs2 

dissociation remains unaffected. (D) Time course upon salt stimulation showing a processivity 

score that quantifies the ratio between the rate of the second Hog1 phosphorylation step and 

its dissociation from Pbs2 (see Methods). A low processivity score indicates distributive-like 

phosphorylation, while a high processivity score indicates a processive-like mechanism. Note 

that before starting the reaction the processivity score is low, but the onset of Hog1 signaling 

introduces positive feedback (t=0), which increases the score until the reaction behaves like 

a processive mechanism. 

 

-400 -350 -300 -250 -200 -150 -100 -50-50 0
AIC

target Pbs2

target Sln1/Sho1

target Ssk1/Sho1

-385.05

-335.43

-312.61

A B

Sln1

Ssk1

Ssk2
Sho1

Pbs2

Hog1

Sln1

Ssk1

Ssk2

Sho1

Pbs2

Hog1

Positive feedback targeting

target Pbs2 Sln1/Sho1

Sln1

Ssk1

Ssk2

Sho1

Pbs2

Hog1

Ssk1/Sho1

0 500 1000 1500 2000
time (s)

0

1

2

3

4

5

6

7

8

9

10

Pr
oc

es
siv

ity
 sc

or
e

P
P

P

P

P
P

P
P

P
P

P
P

Pbs2

Hog1

koff
kphospho

kphospho_feed 

C D

0.4M NaCl
0.2M NaCl
0.1M NaCl

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 5, 2020. ; https://doi.org/10.1101/2020.05.05.078352doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.05.078352
http://creativecommons.org/licenses/by-nd/4.0/


 39 

 

Figure 5: Mixed mechanism with positive feedback is more robust to protein concentration 

perturbations.  

(A) Schematic of the Hog1 pathway indicating selected species (red box) randomly varied in 

concentration by 0.5 to two times their physiological concentration, generating 500 new 

concentration vectors. (B - D) The best fitting models of mixed (red), distributive (green) or 

processive (blue) phosphorylation mechanism incorporating the concentration vectors 

generated as in (A) were used to simulate the maximal activation of Hog1 under different salt 

concentrations. The red line indicates the maximal activation of the best fitting unperturbed 

model. (B) With no salt perturbation, all models show a majority of runs with no Hog1 

activation as expected. The processive model shows a portion of runs that result in full 

activation. The distributive model accumulates activation of around 20 percent, while the 

mixed model shows less accumulation of fully or partially activated Hog1. (C) At low salt 

stimulation (0.1M NaCl) all models show a majority of simulations that tend to non-activation. 

The processive mechanism shows a sizeable portion of erroneously fully activated runs, while 

runs of the distributive mechanism tend to accumulate at 20 percent. The mixed model 

clusters better around the correct percentage of activated Hog1. (D) At higher salt stimulation 

(0.3M NaCl), all models show a majority of runs with full activation. The processive 

mechanism displays a bimodal distribution with a sizeable number of runs that are not 

activated. The distributive mechanism results in a broader, nearly uniform distribution 
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between 30 and 90 percent. The mixed mechanism results in runs distributed around the 

correct full activation with fewer runs showing non-activation. (E) Normalized regression 

coefficients for each of the changed species as a result of multiple linear regression. Higher 

values indicate higher contribution to explaining the variance of the data. Non-significant 

coefficients (p-value < 0.05) are highlighted in red.           
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