1	APPENDIX - SUPPLEMENTARY MATERIAL
2	Females don't always sing in response to male song, but
3	when they do, they sing to males with higher pitched songs
4	
5	Contents
6	Data table S1
7	Statistical tables S2, S3
8	
9	Table S1: Individuals ringed at Estacion Chajul incorporating those included in experiments
10	as playback stimulus singers and/or playback subjects identified by Band (Colour-ring
11	combination), date caught in each field season, sex, mass when caught and mean peak
12	frequency of their songs that year from recordings where they were seen or identified through
13	radio telemetry. The list includes some individuals that were ringed but not included in
14	experiments.
15	

						Singer/
	Date				Peak	subject/
Band	caught	Year	Sex	Mass(g)	frequency	both
BOY	18-May-12	2012	Male	59.20	2035.63	both
BRO	16-May-12	2012	Male	60.70	1982.31	both
BUB	14-May-12	2012	Female	54.30	2065.43	both
BUG	19-May-12	2012	Male	58.00	1996.09	subject
BYK	19-May-12	2012	Male	59.40	1919.68	both
BYR	20-May-09	2009	Female	62.60	2052.11	subject

CPG	09-Dec-08	2008	Female	63.00		
CPG	11-May-09	2009	Female	70.05	1950.65	both
CWC	09-Dec-08	2008	Male	54.50		
CWC	07-May-09	2009	Male	53.30	2101.28	both
GGG	29-May-12	2012	Male	58.00	2048.43	neither
GGR	10-Jun-07	2007	Male	65.00	1985.64	
GGR	14-Dec-08	2008	Male	69.10	1984.49	
GGR	12-May-09	2009	Male	66.00	1985.65	
GGR	11-May-12	2012	Male	64.70	1996.68	both
GOB	12-May-12	2012	Male	54.40	2092.50	both
GRU	11-Dec-08	2008	Male	58.65	2012.68	
GRU	16-May-09	2009	Male	58.65	1993.47	both
GUY	13-May-12	2012	Female	62.10	2047.85	subject
GWW	08-Jun-07	2007	Male	57.50	2035.37	
GWW		2008	Male	57.60	2039.60	
GWW	09-May-09	2009	Male	57.60	2030.52	both
GYR	25-May-12	2012	Female	63.30	1930.96	subject
KOW	12-May-12	2012	Male	63.80	2015.46	subject
KRG	09-Jun-07	2007	Female	61.20	2082.17	singer
KUG	09-May-09	2009	Female	59.30		neither
КҮС	10-Jun-07	2007	Male	61.30	1968.09	
KYC	12-Dec-08	2008	Male	62.30		
KYC	10-May-09	2009	Male	62.50	1996.05	both
ORK	16-May-12	2012	Male	60.00		neither
OUO	11-May-12	2012	Male	60.40	2073.05	both

PUB	20-May-09	2009	Male	59.70	2087.90	both
PUU	07-Dec-08	2008	Male	57.10	2004.79	
PUU	13-May-09	2009	Male	57.60	2021.49	both
PWG	13-Dec-08	2008	Female	60.40		neither
PYC	17-May-09	2009	Male	65.00	1996.97	both
RGR	21-May-09	2009	Male	60.80	2077.78	both
RKW	10-Jun-07	2007	Female	72.40		
RKW	14-Dec-08	2008	Female	62.00	2060.09	both
ROO	13-May-12	2012	Female	61.40	2099.61	subject
ROY	12-May-12	2012	Male	59.20		neither
RPC	10-Dec-08	2008	Female	57.60		
RPC	14-May-09	2009	Female	59.50	2071.90	both
RRP	08-May-09	2009	Female	59.60	2019.69	both
RRR	04-Feb-10	2010		63.30		neither
RRR	24-May-12	2012	Male	56.40	2089.94	both
RWB	21-Jan-10	2010		57.50		neither
RYY	09-Jun-07	2007	Female	67.00		
RYY	26-May-09	2009	Female	62.70	2042.12	both
UCY	08-Dec-08	2008	Female	54.60		
UGW	19-May-09	2009	Male	59.40	1990.03	both
UUW	15-May-09	2009	Female	52.40		
WKW	11-Dec-08	2008	Female	63.40	1919.21	
WKW	17-May-09	2009	Female	63.15	1913.38	both
WKW	19-May-12	2012	Female	62.40		
WOW	15-May-12	2012	Female	61.10	1904.30	both

WPB	12-May-09	2009	Female	59.40		
WPB	12-May-12	2012	Female	61.80		subject
WRR	15-Jun-07	2007	Female	55.50		neither
WRY	15-May-12	2012	Male	64.00	1974.89	both
WYG	19-May-12	2012	Female	58.00	2022.04	both
YBY	12-May-09	2009	Female	62.60		neither
YKK	23-May-09	2009	Male	54.90	2046.85	subject
YOU	29-May-12	2012	Male	60.00		
YRU	21-Jan-10	2010	Female	56.00		
YRU	13-May-12	2012	Female	58.10	2085.94	both
YUK	16-May-12	2012	Male	58.20	2008.74	
YUW	09-Dec-08	2008	Female	64.00		
YUW	09-May-09	2009	Female	65.20	1986.05	subject
YWR	10-Jun-07	2007	Female	58.70		
YWR	16-May-09	2009	Female	59.00	2066.34	subject
YYG	16-Jun-07	2007	Male	59.70	2037.43	
YYG	10-Dec-08	2008	Male	68.00		
YYG	14-May-09	2009	Male	63.55	1951.62	both

23 Table S2: Standardised canonical discriminant function coefficients and canonical structure

of function 1.

Song Feature	coefficients	structure
trill rate	-1.72	-0.16
rate first half	-0.79	-0.17
rate second half	-0.25	-0.13
No. of notes	5.3	-0.03
IOI note 1 to note 2	0.33	0.35
Trill duration	-4.21	0.03
Peak frequency middle note	0.16	0.4
Peak frequency whole trill	1.07	0.5
Peak frequency lowest note	0.77	0.49
Peak frequency highest note	-1.37	0.49
Peak frequency note 1	0.53	0.48
Peak frequency note 2	1.35	0.49
Peak frequency note 3	1.28	0.49
Peak frequency note 4	-1.32	0.39
Peak frequency note 5	-1.01	0.34
Peak frequency 4th last note	-0.24	0.5
Peak frequency 3rd last note	0.67	0.5
Peak frequency 2nd last note	-0.16	0.48
Peak frequency last note	-0.93	0.43

26

Table S3: GLMMs with Gaussian distribution run in lme4 in R on experiment subset from
May 2012, testing for differences between subject and playback stimulus singer in a) peak
frequency (frequency differential) and b) body mass (body mass differential) that males and
females do and do not respond to. Territory identity was a random factor in the models.
(Please note the discrepancy between the samples sizes of female responses in the frequency
and body mass tests is because one female was never recorded singing, so we had no value
for her frequency to calculate differences with).

34

a) frequency differentials between

experiments with and without a response	Estimate	SE	Z	Р
1) Male songs females do and do not				
sing in response to $(n = 16, territories)$				
= 8)				
Intercept	-0.0001	0.007	-0.02	0.99
Female response	-0.03	0.01	-3.02	0.01
2) Female songs females do and do not				
sing in response to $(n = 16, territories)$				
= 8)				
Intercept	-0.01	0.007	-1.54	0.16
Female response	0.01	0.009	1.58	0.14
3) Male songs males do and do not sing				
in response to $(n = 18, territories = 9)$				
Intercept	-0.01	0.006	1.89	0.08
Male response	-0.01	0.007	-1.98	0.06

4) Females songs males do and do not

sing in response to (n = 18, territories)

= 9)

Intercept	-0.003	0.01	-0.32	0.75
Male response	0.006	0.01	0.51	0.62
b) body mass differentials between				
experiments with and without a response				
(all tests: n = 18, territories = 9)	Estimate	SE	Z	Р
5) Males that females do and do not				
sing in response to				
Intercept	0.001	0.01	0.14	0.89
Female response	0.04	0.02	2.65	0.02
6) Females that females do and do not				
sing in response to				
Intercept	-0.001	0.01	-0.12	0.91
Female response	-0.02	0.02	-0.80	0.44
7) Males that males do and do not sing				
in response to				
Intercept	-0.01	0.01	-0.39	0.70
Male response	0.02	0.01	1.19	0.26
8) Females that males do and do not				
sing in response to				
Intercept	0.02	0.02	0.72	0.48
Male response	-0.03	0.02	-1.28	0.23