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Abstract 1 

Brain-machine interfaces (BMIs) for reaching have enjoyed continued performance 2 
improvements. Yet there remains significant need for BMIs that control other types of 3 
movement, including ego-motion through the world. Based on recent scientific findings, the 4 
class of decode algorithms employed by reach-based BMIs seems unlikely to generalize well. To 5 
examine this, we developed an ego-motion BMI based on cortical activity as monkeys cycled a 6 
hand-held pedal to progress along a virtual track. Unlike reaching, strong correlations between 7 
neural activity and kinematics were not present during cycling. We thus employed an 8 
opportunistic decode strategy that abandoned any notion of inverting encoding, and instead 9 
identified and leveraged dominant features of the population response. Online BMI-control 10 
success rates approached those during manual control. We argue that, in retrospect, reach-11 
based BMIs succeeded by implicitly using opportunistic strategies, and that explicitly 12 
embracing that approach will be essential for expanding the range of BMI-controllable 13 
movements.  14 
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 2 

Introduction 15 

Brain-machine interfaces (BMIs) interpret neural activity and provide control signals to external 16 
devices such as computers and prosthetic limbs. Intracortical BMIs for reach-like tasks have 17 
proved successful in primates and human clinical trials1–8, and more widespread use appears 18 
imminent. Yet at the same time, there exist non-reach-like movements whose restoration is 19 
valuable to patients. As one example, many patients could benefit from a BMI that controls ego-20 
motion: movement of the self through one’s environment. While ego-motion BMIs could be 21 
guided by traditional decoding approaches, other viable strategies exist and remain unexplored. 22 
This highlights a broader issue: a focus on reaching and grasping has produced state-of-the-art 23 
decode algorithms that may not generalize well to non-reaching applications. 24 

The early success of reach-based BMIs9–14 employed the ‘biomimetic’ strategy of inverting 25 
neural encoding of kinematic variables such as hand velocity / direction. Multiple lines of 26 
evidence now argue against the hypothesis that motor cortex activity literally encodes 27 
kinematic variables15–20. Nevertheless, robust correlations between neural activity and direction 28 
allow excellent BMI performance within the confines of a reaching task9–14. This core strategy 29 
has thus endured even as decoder sophistication has increased; improvements have derived 30 
largely from better estimating the neural state, thus improving the reach-velocity decode21–23. 31 
Decode algorithms for other movement types, including ego motion, have received less 32 
attention. Furthermore, they have typically borrowed the strategies employed by reach-based 33 
BMIs: e.g., decoding a whole-body directional vector24 or classifying the direction of a joystick 34 
intermediary25. Traditional kinematic decoding strategies have also been used for decoding 35 
during treadmill-walking26,27 and for a brain-spine interface that alleviates gait deficits28.  36 

Yet there is emerging evidence that BMI decoding may not be best achieved by attempting to 37 
invert encoding. We recently argued that the dominant signals in motor cortex – i.e., those with 38 
the greatest influence on firing rates – exist to ensure noise-robust dynamics and do not encode 39 
any external quantity16. In contrast, neural signals that relate directly to outgoing commands 40 
(e.g., downstream muscle activity) are small. In many BMI applications, including controlling 41 
ego-motion, reconstructing the full set of output commands is not necessary to accomplish the 42 
user’s goals. This opens the door to strategies that abandon any notion of decoding encoded 43 
variables. 44 

We introduce a new approach – opportunistic feature decoding – that seeks to leverage robust 45 
relationships between neural activity and variables that matter to the user, regardless of 46 
whether those relationships are fundamental. Opportunistic decode strategies do not require 47 
knowledge of the true relationship between neural activity and motor output, only an accurate 48 
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description for the behaviors one wishes to decode. Opportunistic strategies are potentially 49 
more noise robust, as they can leverage the dominant signals in the population activity. In 50 
contrast, a true biomimetic strategy is limited to the smaller output signals. 51 

We explore the potential of opportunistic decoding for ego motion using a task in which 52 
monkeys cycle a hand-held pedal to move along a virtual track. Neural population activity 53 
during cycling differed from that during reaching in fundamental ways. ‘Directional’ signals 54 
that correlated with kinematics were only weakly reflected in neural firing rates. Signals related 55 
to muscle activity were of similarly small magnitude. Still, there were three dominant features 56 
of the neural response that possessed robust relationships with desired self-motion. The first 57 
was a translation of the neural population state that indicated whether the monkey was 58 
moving. The second was an elliptical neural trajectory that repeated while cycling. This 59 
trajectory did not reverse with cycling direction (as would a representation of hand velocity), 60 
but instead occupied direction-dependent dimensions. As a result, the direction and magnitude 61 
of self-motion could be estimated by comparing the angular momentum of the neural state 62 
between pairs of dimensions. This feature was robust during ongoing cycling but not at 63 
movement initiation. We thus identified a third feature: at movement initiation, neural activity 64 
corresponding to forward and backward cycling was briefly linearly separable. 65 

A decoder leveraging these features provided excellent online control of virtual ego-motion. 66 
Success rates and acquisition times were close to those achieved under manual control. Almost 67 
no training or adaptation time was needed; the low-latency and accuracy of the decoder were 68 
such that monkeys appeared to barely notice transitions from manual control to BMI control. 69 
Although quantitative comparison with previous ego-motion BMIs is challenging due to very 70 
different task designs and very different patterns of underlying activity, our strategy provides 71 
obvious improvements in some domains. For example, BMIs have historically had difficulty 72 
decoding lack of motion, and the tasks used to evaluate previous ego-motion BMIs required 73 
traveling to the target but not stopping. The decode provided by the opportunistic strategy 74 
exhibited virtually no false starts (order of one per day), and allowed subjects to transition from 75 
rapid motion to stopping within ~100 ms of intending to do so.  76 

Our results establish that BMIs can be accurately guided by decode strategies that eschew 77 
attempts to invert encoding, and instead leverage the dominant structure of population activity. 78 
Because that dominant structure likely reflects internal dynamics rather than outgoing signals, 79 
it can be very different across different behaviors. Our results argue that focusing on robust 80 
population-level features, rather than correlations with kinematics, will be necessary to expand 81 
BMI control to a broader range of behaviors.  82 
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Results 83 

Behavior 84 

We trained two monkeys (G and E) to rotate a hand-held pedal to move through a virtual 85 
environment (Fig. 1). All motion was along a linear track – no steering was necessary. 86 
Consistent with this, a single pedal was cycled with the right arm only. Our goal when 87 
decoding was to reconstruct the virtual motion produced by that single pedal. On each trial, a 88 
target appeared in the distance. To acquire that target, monkeys produced virtual velocity in 89 
proportion to the rotational velocity of the pedal. The color of the environment (lush and green 90 
versus desert-like and tan) instructed cycling direction. When the environment was green (Fig. 91 
1a, left) forward virtual motion was produced by cycling ‘forward’ (i.e., with the hand moving 92 
away from the body at the top of the cycle). When the environment was tan (Fig. 1a, right) 93 
forward virtual motion was produced by cycling ‘backward’ (the hand moving toward the 94 
body at the top of the cycle). Cycling in the wrong direction produced motion away from the 95 
target. Trials were presented in blocks of forward or backward trials. Within each block, targets 96 
were separated by a randomized distance of 2, 4 or 7 cycles. Acquisition of a target was 97 
achieved by stopping and remaining stationary ‘on top’ of the virtual target for a specified time. 98 
Reward was then given and the next target appeared.  99 

Monkeys performed the task well, moving swiftly between targets, stopping accurately on each 100 
target, and remaining stationary until the next target was shown. Monkeys cycled at a pace that 101 
yielded nearly linear progress through the virtual environment (Fig. 1b). Although not 102 
instructed to cycle at any particular angular velocity, monkeys adopted a brisk ~2 Hz rhythm 103 
(Fig. 1c). Small ripples in angular velocity were present during steady-state cycling; when 104 
cycling with one hand it is natural for velocity to increase on the downstroke and decrease on 105 
the upstroke. Success rates were high, exceeding 95% in every session (failures typically 106 
involved over- or under-shooting the target location). This excellent performance under manual 107 
control provides a stringent bar by which to judge performance under BMI control. 108 

BMI control was introduced after monkeys were adept at performing the task under manual 109 
control. Task structure and the parameters for success were unchanged under BMI control, and 110 
no cue was given regarding the change from manual to BMI control. The switch to BMI control 111 
was made at the beginning of the session, after completion of a block of manual-control trials 112 
(25 forward and 25 backward 7-cycle trials). These manual-control trials were used to train the 113 
decoder. The switch was then made to BMI control for the remainder of the session. For monkey 114 
G, we occasionally included blocks of manual-control trials later in the session to allow 115 
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Figure 1. A cycling task that elicits rhythmic movements. (a) Monkeys rotated a hand-held 
pedal forward (left, cued by a green background) or backward (right, cued by a tan background) 
to progress through a virtual environment. Traces at bottom plot pedal kinematics (vertical 
position) and the resulting virtual world position for two example manual-control trials. On 
both of these trials (one forward and one backward) the monkey progressed from one target to 
another by cycling seven cycles. (b) Trial-averaged virtual position from a typical manual-
control session. Each trace plots the change in virtual position (from a starting position of zero) 
for one of six conditions: forward or backward for 2, 4, or 7 cycles. Black circle indicates the time 
of movement onset. Trials were averaged after being aligned to movement onset, and then 
scaled such that the duration of each trial matched the average duration for that condition. (c) 
Trial-averaged pedal rotational velocity from the same session, for the same six conditions. (d) 
Firing rates of two example units. Trial-averaged firing rates (computed after temporally 
aligning trials) are shown for two conditions: forward (green) and backward (red) for seven 
cycles. Black circles indicate the timing of movement onset and offset. 
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comparison between BMI and manual performance. For Monkey E we used separate 116 
(interleaved) sessions to assess manual-control performance. 117 

During both BMI control and manual control, the monkey’s ipsilateral (non-cycling) arm was 118 
restrained. The contralateral (cycling) arm was never restrained. We intentionally did not 119 
dissuade the monkey from continuing to physically cycle during BMI control. Indeed, our goal 120 
was that the transition to BMI control would be sufficiently seamless to be unnoticed by the 121 
monkey, such that he would still believe that he was in manual control. An advantage of this 122 
strategy is that we are decoding neural activity when the subject attempts to actually move, as a 123 
patient presumably would. Had we insisted the arm remain stationary, monkeys would have 124 
needed to actively avoid patterns of neural activity that drive movement – something a patient 125 
would not have to do. Allowing the monkey to continue to move normally allowed us to 126 
extensively quantify the performance of our decoder by comparing decoded with intended (i.e., 127 
actual) movement. This is often not possible when using other designs. For example, in 128 
Rajangam et. al.24, performance could only be assessed via indirect measures (such as time to 129 
target) because what the monkey was actually intending to do at each moment was unclear. We 130 
considered these advantages to outweigh a potential concern: a decoder could potentially 131 
‘cheat’ by primarily leveraging activity driven by proprioceptive feedback (which would not be 132 
present in a paralyzed patient). This is unlikely to be a large concern. Recordings were made 133 
from motor cortex, where robust neural responses precede movement onset. Furthermore, we 134 
have documented that motor cortex population activity during cycling is quite different from 135 
that within the proprioceptive region of primary somatosensory cortex16. Thus, while 136 
proprioceptive activity is certainly present in motor cortex29–32 (especially during 137 
perturbations33) the dominant features of M1 activity, described below, are unlikely to be 138 
primarily proprioceptive.  139 

Given our use of healthy animals, we stress that the goal of the present study is to determine 140 
how the dominant structure of neural activity can be leveraged for accurate prosthetic decode. 141 
This follows the successful strategy of BMI studies that leveraged the known structure of 142 
activity during reaching9,21. Of course, the nature of the training data used to specify decode 143 
parameters (e.g., the neural dimensions to be used) will necessarily be different for a healthy 144 
animal that cannot understand verbal instructions and an impaired human that can. We thus 145 
stress that our goal is to determine a robust and successful decode strategy that works in real 146 
time during closed-loop performance. We do not attempt to determine the best approach to 147 
parameter specification, which in a patient would necessarily involve intended or imagined 148 
movement. 149 
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Neural activity and decoding strategy 150 

We recorded motor cortical activity using 96-channel Utah arrays. For monkey G, one array was 151 
implanted in primary motor cortex (M1) and a second in dorsal premotor cortex (PMd). For 152 
monkey E, a single array was implanted in M1. For each channel we recorded times when the 153 
voltage crossed a threshold. Threshold crossings typically reflected individual spikes from a 154 
small handful of neurons (a neural ‘unit’). Spikes from individual neurons could be clearly seen 155 
on many channels, but no attempt was made to spike-sort, as the benefit of doing so is typically 156 
modest when controlling a prosthetic device34. Unit activity was strongly modulated during 157 
cycling (Fig. 1d). The phase, magnitude, and temporal pattern of activity depended on whether 158 
cycling was forward (green traces) or backward (red traces). A key question is how these unit-159 
level features translate into population-level features that might be leveraged to estimate 160 
intended motion through the virtual environment. 161 

In traditional decoding approaches (Fig. 2a, top) neural activity is hypothesized (usefully if not 162 
literally) to encode kinematic signals, which can be decoded by inverting the encoding scheme. 163 
Although nonlinear methods (including variations of Kalman filtering) are often used to 164 
estimate the neural state, the final conversion to a kinematic command is typically linear or 165 
roughly so. To explore kinematic encoding in the present task, we used linear regression to 166 
identify neural dimensions where activity correlated well with kinematics (including hand 167 
velocity and position). Regression was performed using single trials. Use of single trials 168 
provides a large quantity of training data and is implicitly regularizing: regression must find 169 
signals that are robust in the face of single-trial spiking variability. The regression weights for a 170 
given kinematic parameter define a neural dimension where activity correlates strongly with 171 
that parameter. We computed the neural variance captured by each such dimension. Variance 172 
captured was computed using trial-averaged data, to ensure that values were not diluted by 173 
noise. Despite this, the neural dimensions that best captured kinematic signals captured little 174 
population response variance (Fig. 2b, green bars). This was also true of neural dimensions that 175 
captured muscle activity (Fig. 2b, yellow bar). This was initially surprising: single-neuron 176 
responses were robustly sinusoidally modulated, as were many kinematic variables. Yet 177 
sinusoidal response features were often superimposed upon other response features (e.g., 178 
overall shifts in rate when moving versus not moving). Sinusoidal features also did not display 179 
phase relationships, across forward and backward cycling, that were consistent with kinematic 180 
encoding16. As a result, the dimensions where activity correlated strongly with kinematics 181 
captured relatively little response variance. 182 
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Figure 2. Different decode strategies leverage neural signals with different magnitudes. (a) 
Two possible decoding strategies. In the first (top) neural firing rates are assumed to 
predominantly encode the key variables. The encoding model is usually assumed to be roughly 
linear when variables are expressed appropriately. For example, cosine tuning for reach velocity 
is equivalent to a linear dependence on horizontal and vertical velocity. The goal of decoding is 
to invert encoding. Thus, decoding dimensions should capture the dominant signals in the 
neural data (because those are what is encoded). The second strategy (bottom) can be applied 
even if the dominant signals do not have the goal of encoding. This strategy seeks to find neural 
response features that have a robust relationship with the variable one wishes to decode. That 
relationship may be complex or even incidental, but is useful if it involves high-variance 
response features. (b) Variance of the neural population response captured by dimensions used 
to decode kinematic parameters (green bars) and muscle activity (yellow bar). Data are from three 
manual-control sessions where units (192 channels per day) and muscles (5-7 channels per day) 
were recorded simultaneously. Each bar plots the average and standard error across sessions 
(unless otherwise specified). Left subpanel: variance captured for kinematic variables (individual 
variables shown separately) and muscles (average across 19 recordings, standard error 
computed across recordings). Right subpanel: total variance captured by subspaces spanned by 
kinematic-decoding dimensions, muscle-decoding dimensions, or both. (These are not the sum 
of the individual variances as dimensions were not always orthogonal). We had different 
numbers of EMG recordings per day and thus always selected a subset of five. Variance 
captured by the top five principal components is shown for comparison. (c) Similar plot but for 
the dimensions upon which our decoder was built. Left subpanel: variance captured for each of 
these eight dimensions. Right subpanel: variance captured by the eight-dimensional subspace 
spanned by those dimensions. Variance captured by the top eight principal components is 
shown for comparison. 
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Low-variance signals are a poor candidate for decoding intended action; they are likely to be 183 
non-robust with respect to multiple challenges. Some of these challenges (e.g., spiking noise) 184 
can be anticipated and estimated in advance, but others cannot. They include recording 185 
instabilities, changes in strategy or behavior with time, and (outside the laboratory setting) 186 
external sources of noise or variability. Given these challenges, it is worth stressing that there 187 
were two practical reasons why reach-focused BMIs leveraged signals that correlate with hand 188 
velocity. First, such signals are high-variance during reaching – so much so that M1 responses 189 
have often been summarized in terms of a preferred direction35,36. Second, movement direction / 190 
velocity are the variables one wishes to decode during reaching. In the present case neither 191 
motivation holds. Signals related to hand kinematics are low-variance, and we most wish to 192 
decode self-motion through the virtual environment. This suggests an alternative strategy (Fig. 193 
2a, bottom): identifying neural response features that are both robust (high-variance) and relate 194 
reliably to the presence and direction of self-motion. 195 

To pursue this strategy, we considered three sets of high-variance dimensions. The first set 196 
included four ‘rotational dimensions’ (two each for forward and backward cycling) which 197 
captured elliptical trajectories present during steady-state cycling16. The second set included a 198 
single ‘moving-sensitive’ dimension, in which the neural state distinguished whether the 199 
monkey was stopped or moving regardless of movement direction37. The third set was a triplet 200 
of ‘initial-direction’ dimensions. In these dimensions, cycling direction could be transiently but 201 
readily distinguished in the moments after cycling began.  202 

In subsequent sections we document the specific features present in these high-variance 203 
dimensions. Here we concentrate on the finding that the space spanned by these eight 204 
dimensions captured 70.9% ± 2.3% of the firing-rate variance (Fig. 2c). This was only modestly 205 
less than that captured by the top eight PCs (which capture the most variance possible), and 206 
much more than that captured by spaces spanned by dimensions where activity correlated with 207 
kinematics and/or muscle activity (Fig. 2b). We thus based our BMI decode entirely on activity 208 
in these eight high-variance dimensions. Before describing how this was accomplished, we 209 
document the resulting performance. 210 

Performance 211 

Monkeys performed the task very well under closed-loop BMI control (Fig. 3 and Supp. Movie 212 
1). Monkeys continued to cycle as normal, presumably not realizing that the pedal had been 213 
disconnected from the control system. The illusion that the pedal still controlled the task was 214 
supported by a high similarity between decoded virtual velocity and intended virtual velocity 215 
(i.e., what would have been produced by the pedal were it still controlling the task). The cross-216 
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Figure 3. Decoder performance. (a) Summary of the cross-correlation between decoded virtual 
velocity under BMI control, and the virtual velocity that would have been produced by the 
pedal (which monkeys continued to manipulate normally). Each symbol corresponds to one 
BMI-control session, and plots the peak of the cross-correlation versus the lag where that peak 
occurred. Colors indicate success rate during that session. (b) Example manual-control 
performance for six consecutive trials, 3 forward and 3 backward. World position is expressed 
in terms of the number of cycles of the pedal needed to move that distance. For plotting 
purposes, the position at the beginning of this stretch of behavior was set to zero. Bars indicate 
the time that targets turned on and off (horizontal span) and the size of the acceptance window 
(vertical span). (c) Similar plot during BMI control. For ease of comparison, world position is 
still expressed in terms of the number of physical cycles that would be needed to travel that far, 
although physical cycling no longer had any impact on virtual velocity. (d) Success rate for both 
monkeys. Each symbol plots, for one session, the proportion of trials where the monkey 
successfully moved from the initial target to the final target, stopped within it, and remained 
stationary until reward delivery. Dashed line at 1 for reference. (e) Target acquisition times for 
successful trials. Center lines indicate median, the box edges indicate the first and third 
quartiles, and the whiskers include all non-outlier points (points less than 1.5 times the 
interquartile range from the box edges). Data are shown separately for the three target 
distances. (f) Histograms of stopping location from both monkeys. Analysis considers both 
successful and failed trials. The bar at far right indicates the proportion of trials where the 
monkey failed for reasons other than stopping accuracy per se. This included trials where 
monkeys disrespected the reaction time limits, abandoned the trial before approaching the 
target, or passed through the target without stopping.
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 8 

correlation between these peaked at 0.93 ± .02 and 0.81 ± .03 (monkey G and E, mean ± SD) at a 217 
short lag: 76 ± 4 ms and 102 ± 7 ms (Fig. 3a). That illusion was also aided by a low rate of false 218 
starts; it was exceedingly rare for decoded motion to be non-zero when the monkey was 219 
attempting to remain stationary on top of a target. False starts occurred on 0.29% and 0.09% of 220 
trials (monkeys G and E), yielding an average of 1.9 and 0.12 occurrences per day. This is 221 
notable because combatting unintended movement is a key challenge for BMI 222 

decoding2,38,392,38,39. The above features – high correlation with intended movement, low latency, 223 
and few false starts – led to near-normal performance under BMI control (Fig. 3b,c). Success 224 
rates under BMI control (Fig. 3d, magenta symbols) were almost as high as under manual control 225 
(open symbols), and the time to move from target to target was only slightly longer under BMI 226 
control (Fig. 3e). 227 

The only respect in which BMI control suffered noticeably was accuracy in stopping on the 228 
middle of the target. Under manual control, monkeys stopped very close to the target center 229 
(Fig. 3f, gray histogram), which always corresponded to the ‘pedal-straight-down’ position. 230 
Stopping was less accurate under BMI control (magenta histogram). This was partly due to the 231 
fact that because virtual motion was swift, even small errors in decoded stopping time become 232 
relevant: e.g., a 100 ms error corresponds to ~0.2 cycles of physical motion. The average 233 
standard deviation of decoded stopping time (relative to actual stopping time) was 133 234 
(monkey G) and 99 ms (monkey E). Increased stopping error in BMI-control trials was also due 235 
to an incidental advantage of manual control: the target center was aligned with the pedal-236 
straight-down position, a fact which monkeys leveraged to stop very accurately in that position. 237 
This strategy was not available during BMI control because the correct time to stop rarely 238 
aligned perfectly with the pedal-straight-down position (this occurred only if decoded and 239 
intended virtual velocity matched perfectly when averaged across the cycling bout). 240 

Performance was overall modestly better for monkey G versus E. This was likely due to the 241 
implantation of two arrays rather than one. Work ethic may also have been a factor; monkey E 242 
performed fewer trials under both BMI and manual control. Still, both monkeys could use the 243 
BMI successfully starting on the first day, with success rates of 0.87 and 0.74 (monkey G and E). 244 
Monkey G’s performance rapidly approached his manual-control success rate within a few 245 
sessions. Monkey E’s performance also improved quickly, although his manual-control and 246 
BMI-control success rates were mostly lower than Monkey G’s. The last five sessions involved 247 
BMI success rates of 0.97 and 0.96 for the two monkeys. This compares favorably with the 248 
overall averages of 0.98 and 0.95 under manual control. Although this performance 249 
improvement with time may relate to adaptation, the more likely explanation is simply that 250 
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 9 

monkeys learned to not be annoyed or discouraged by the small differences in decoded and 251 
intended velocity.  252 

State machine 253 

The performance documented above was achieved using a state-dependent decode (Fig. 4). 254 
Features of the neural activity (described more fully in subsequent sections) determined state 255 
transitions and what was decoded in each state. Briefly, state transitions were governed by 256 
activity in the moving-sensitive dimension, which was translated into a probability of moving, 257 

!"#$%. If !"#$%	was low, the STOP state was active and decoded virtual velocity was zero. When 258 

!"#$%	became high, the INIT state was entered but decoded velocity remained zero. After 175 259 
ms, the EARLY state was entered and velocity was decoded using the initial-direction 260 
dimensions. After an additional 200 ms, the STEADY state was entered and virtual velocity 261 
depended only on the neural state in the rotational dimensions. Decoded velocity was filtered 262 
to smooth fluctuations during STEADY. 263 

Values of !"#$% < 0.1 always produced a transition back to STOP. This typically occurred from 264 
STEADY to STOP, as the movement was successfully ending. However, it could also occur from 265 

the other two states. This was especially helpful if !"#$% became high very briefly (and 266 
presumably erroneously). In such cases the state could transition from INIT back to STOP with 267 
the decoded velocity never departing from zero. Below we describe how virtual velocity was 268 

estimated while in STEADY, how !"#$% was derived, and how we decoded the early direction 269 
of movement during EARLY. 270 

Direction of steady-state movement inferred from rotational structure 271 

The dominant feature of the neural response during steady-state cycling was a repeating 272 
elliptical trajectory16. Our decoder leveraged the fact that forward-cycling and backward-cycling 273 
trajectories occurred in non-identical dimensions. We employed an optimization procedure to 274 
find a two-dimensional ‘forward plane’ that maximized the size of the forward trajectory 275 
relative to the backward trajectory. We similarly found an analogous ‘backward plane’. These 276 
planes were identified based on trial-averaged responses from the 50 trials of training data 277 
collected under manual control (Fig. 5a). With the aid of filtering (Methods), these planes 278 
continued to capture rotational features on individual trials (Fig. 5b). Although forward and 279 
backward trajectories were not orthogonal to one another, the above procedure was still able to 280 
find planes where strongly elliptical trajectories were present for only one cycling direction. 281 
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STOP INIT EARLY STEADY

Figure 4. State machine diagram. BMI motion was determined by a state machine with four 
states: STOP, INIT, EARLY, and STEADY, corresponding to the different stages of a typical 
trial. The output of the state machine at every millisecond was an estimate of decoded 
velocity through the virtual environment, vdec, which was then smoothed and integrated to 
compute virtual position. Black arrows indicate the typical path of a successful BMI trial and 
gray arrows indicate all other possible transitions. State transitions were governed by activity 
in the moving-sensitive dimension, which was translated into a probability of moving, pmove. 
While pmove was low, the STOP state was active and decoded velocity was set to zero. When 
pmove became high, the INIT state was entered but decoded velocity remained zero. If pmove 
remained high for 175 ms, the EARLY state was entered and velocity was decoded using the 
initial-direction dimensions. After another 200 ms, the STEADY state was entered and 
decoded velocity depended on the neural state in the rotational dimensions. If pmove dropped 
below 0.1 at any point, STOP was reentered. States in which progress is made through the 
virtual environment are highlighted in blue and states in which BMI motion is held at zero 
are highlighted in orange.
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A common strategy for reaching prostheses is to linearly transform the neural state into a hand-282 
velocity command; e.g. a state consistently to the right of zero would result in a consistently 283 
high rightwards velocity. In a given plane (e.g., backwards) the neural state traces a circle, and a 284 
plot of horizontal versus vertical hand velocity would also trace a circle. However, it would not 285 
be desirable to attempt to directly decode velocity. Not only would this require somehow 286 
choosing between planes, but a neural state consistently to the right of zero should not result in 287 
a consistent decode of rightwards hand velocity. A decode of hand position would be 288 
somewhat more natural but still awkward (there are four dimensions rather than two, and 289 
positions near zero are difficult to interpret). We thus chose the strategy of comparing angular 290 
momentum (the cross product of the state vector with its derivative) between the two planes. 291 
When moving backward (first three cycling bouts in Fig. 5c) angular momentum was sizeable in 292 
the backward plane (dark blue) but not the forward plane (bright blue). The opposite was true 293 
when moving forward (subsequent three bouts). 294 

Based on training data, we considered the joint distribution of forward-plane and backward-295 
plane angular momentum. We computed distributions when stopped (Fig. 5d, orange), when 296 
cycling forward (green) and when cycling backward (red). These distributions overlapped little, 297 
and we fit a Gaussian to each. During BMI control, we computed the likelihood of the observed 298 
angular momentums under each of the three distributions. If likelihood under the stopped 299 
distribution was high, decoded velocity was zero. Otherwise, decoded velocity was determined 300 
by the relative likelihoods under the forward and backward distributions. These likelihoods 301 
were converted into a virtual velocity that was maximal when one likelihood was much higher 302 
(which was typically the case) and slower when likelihoods were more similar. The maximum 303 
decoded virtual velocity was set to approximate the typical virtual velocity under manual 304 
control, when cycling at ~2 Hz. 305 

The above steps were performed when in the STEADY state. Distributions of decoded velocity 306 
under BMI control (Fig. 5e, bottom) were similar to the distributions of velocity that would have 307 
resulted were the pedal still operative (Fig. 5e, top). Importantly, distributions overlapped very 308 
little; the direction of decoded motion was almost always correct. Decoded velocity was near 309 
maximal at most times, especially for monkey G. High accuracy and brisk velocities were 310 
responsible for the ability to move between targets almost as rapidly under BMI control as 311 
under manual control. 312 

Inferring the probability of moving 313 

Decoders that directly translate neural state to cursor velocity have historically had difficulty 314 
remaining stationary when there is no intended movement. The ability to do so is of even 315 
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Figure 5. Leveraging rotational trajectories to decode velocity. (a) Trial-averaged population 
activity, during a manual-control block, projected onto the forward (top) and backward (bottom) 
rotational planes. Data are from seven-cycle forward (green) and backward (red) conditions. By 
design, the forward plane primarily captures rotational trajectories during forward cycling, and 
vice versa. Boldly colored portions of each trace highlight rotations during the middle cycles (a 
period that excludes the first and last half cycle of each movement). Colored arrows indicate 
rotation direction. Light portion of each trace corresponds to the rest of the trial. In addition to 
smoothing with a causal filter, neural data have been high-pass filtered to match what was used 
during BMI control. Data are from monkey G. (b) As in panel (a), but for three example single 
trials, one for each of the three distances. (c) Example angular momentum (L) in the backward 
plane (dark blue) and forward plane (bright blue) during six trials of BMI control. Velocity of the 
pedal is shown in black. Although the pedal was disconnected, this provides a useful indication 
of how the monkey was intending to move. Data are from the same day shown in panels a and 
b. (d) Probability densities of angular momentums found from the training dataset collected on 
the same day. (e) Histograms of BMI-control velocity (bottom) and (disconnected) pedal velocity 
(top) for all times the decoder was in the STEADY state, across all BMI-control sessions.
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greater importance for an ego-motion prosthetic. To meet this challenge, we adopted the 316 
strategy of a state machine with distinct stopped and moving states38–40. Transitions between 317 

these states were governed by a probability of moving, !"#$%, derived from the neural state in 318 
the moving-sensitive dimension.  319 

We identified the moving-sensitive dimension by applying linear discriminant analysis to the 50 320 
training-data trials, and finding the direction that best discriminated whether the monkey was 321 
moving versus stopped. Projecting trial-averaged data onto that dimension (Fig. 6a) revealed 322 
that activity transitioned suddenly from low to high just before movement onset, and back to 323 
low around the time movement ended. This pattern was remarkably similar regardless of 324 
cycling direction (red and green traces largely overlap). Activity in this dimension behaved 325 
similarly for single trials (Fig. 6b). 326 

We used a Hidden Markov Model (HMM)38,39 to estimate !"#$%, which allows the current 327 
estimate to depend on all prior observations. Because those observations must be independent, 328 
we did not use filtered rates (which were used for all other aspects of the decode) but instead 329 
considered spike counts in non-overlapping bins, projected onto the moving-sensitive 330 
dimension. Figure 6c plots the resulting distributions when stopped (orange) and moving (blue). 331 

These overlapped modestly, a result of the narrow (10 ms) bin. The estimate of !"#$% is robust 332 
to this overlap because the HMM leverages the full history of spike counts; it can ignore brief 333 
weak evidence for moving while still transitioning swiftly given strong evidence. During BMI 334 

control, !"#$% (Fig. 6d, blue) was near typically unity during intended movement (i.e., when the 335 
monkey was actually cycling, black) and near zero otherwise. 336 

State transitions were determined by !"#$% (Fig. 3). Entering a state that produced virtual 337 

movement (EARLY or STEADY) required that !"#$% exceed 0.9 and remain consistently above 338 
0.1 for 175 ms. This conservative strategy led to a very low rate of false starts (~2 per day for 339 
monkey G and ~1 every ten days for monkey E). The transition to EARLY (Fig. 6d, left edge of 340 
gray regions) occurred on average 117 and 194 ms after physical movement onset (monkeys G 341 
and E). Trial-to-trial variability around these mean values was modest: standard deviations 342 
were 93 and 138 ms (computed within session and averaged across sessions). As discussed 343 

above, estimated stopping time (when !"#$% dropped below 0.1) was also decoded with only 344 
modest trial-to-trial variability. 345 
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Figure 6. Leveraging the moving-sensitive dimension to infer probability of moving. (a) 
Trial-averaged population activity, during a manual-control block, projected onto the 
moving-sensitive dimension (same session and trials as Figure 5a). (b) As in panel (a), but for 
three example single trials (same trials as in Figure 5b). (c) Histogram of the neural state 
projected onto the moving-sensitive dimension for training data. The neural state was measured 
every ten milliseconds, at times when the monkey was stopped within a target (orange) or 
actively cycling (blue). Traces show Gaussian fits used to compute pmove. (d) Example 
time-course, during BMI control, of pmove (blue) and the active state (magenta). Gray regions show 
times when the decoder produced virtual movement (i.e., when in EARLY or STEADY). These 
times corresponded well to times when the monkey was intending to move, as indicated by the 
angular velocity of the disconnected pedal (black). Note also that transient inappropriate spikes 
in pmove (as seen here around 18 s) do not lead to false starts because either they don’t exceed 0.9, 
as was the case here, or they are too brief and the EARLY state is never reached. Same example 
data as in Figure 5c.
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Inferring initial movement direction 346 

Angular momentum of the neural state in the forward and backward planes became substantial 347 

a few hundred milliseconds after !"#$% became high. Thus, the EARLY state became active 348 
before the direction of movement could be inferred from the elliptical trajectories. To overcome 349 
this problem, we identified three dimensions in which the neural state, around the time of 350 
movement onset, distinguished between forward and backward movement. The neural state in 351 
these dimensions (two of which are shown) differed between forward and backward 352 
movements (green and red traces) both in the average response (Fig. 7a) and on individual trials 353 
(Fig. 7b). This difference began to grow just prior to physical movement onset (dark portion of 354 
trajectory shows -200 to +175 ms relative to detected movement onset) and became less 355 
prominent later in the movement (light portion of trajectory). We found these dimensions by 356 
performing PCA on training data (Methods). For each of the 50 training trials, we considered the 357 
neural state in these dimensions, measured 175 ms after decoded movement onset. We fit 358 
Gaussian distributions separately for forward (Fig. 7c, green) and backward (red) trials. These 359 
had largely non-overlapping distributions. 360 

During BMI control, upon transition from INIT to EARLY, we computed the likelihood of the 361 
neural state under each distribution. A simple winner-take-all computation determined the 362 
direction of virtual velocity during the EARLY state. The inference of movement direction 363 
during EARLY was correct on 94% and 82% of trials (monkeys G and E). After 200 ms, the 364 
STEADY state was entered and virtual velocity was controlled thereafter by activity in the 365 
rotational dimensions. Figure 7d illustrates moments (colored regions) where the EARLY state 366 
was active and the above strategy was used to decode virtual motion (physical pedal velocity is 367 
shown for reference). These moments were brief, and had a very modest effect on the overall 368 
time to reach the target. However, we still employed this strategy because our goal was to build 369 
a BMI decode that closely tracked intended movement and felt responsive to the subject. 370 

Speed control 371 

The excellent performance of the decoder was aided by the relative simplicity of behavior: when 372 
monkeys moved, they did so at a stereotyped speed. This allowed us to concentrate on building 373 
a decode algorithm that decoded intended direction with accurate timing, and remained 374 
stationary if movement was not intended. However, that decode provided only limited control 375 
of movement speed. An obvious extension is to allow finer-grained speed control. This would 376 
presumably be desired by users of an ego-motion prosthetic. Furthermore, speed control 377 
provides one possible way of steering: e.g., by decoding the relative intensity of intended 378 
movement on the two sides of the body. While we do not attempt that here, we still considered 379 
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Figure 7. Leveraging initial-direction dimensions to allow low-latency decoding. (a) Trial-
averaged population activity, during a manual-control block, projected onto two (of three) 
initial-direction dimensions (same session and trials as Figure 5a and 6a). Boldly colored 
portions of traces highlight -200 ms to +175 ms relative to physical move onset. Arrows indicate 
direction of trajectories. (b) As in panel (a), but for three example single trials (same trials as in 
Figure 5b and 6b). (c) The location of the neural state, for training data, at the time the state-
machine (applied post-hoc to that training data) entered the EARLY state. This data (50 total 
trials) was used to fit two Gaussian distributions. During BMI control, when the EARLY state 
was entered, virtual direction was determined by which distribution maximized the data 
likelihood. (d) Example of initial-direction decoding during BMI control. Colored windows 
show the times in the EARLY state, with red and green indicating decoded direction. Same 
example data as in Figure 5c and 6d.
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it important to determine whether the neural features we identified could support speed 380 
control. 381 

That assessment required a task where speed control is necessary for success. We thus trained 382 
one monkey to track various speed profiles as he progressed through the virtual environment. 383 
Two floating targets were rendered in the foreground as the monkey cycled. The distance 384 
between them reflected the difference between actual and instructed speed. Obtaining juice 385 
required aligning the two floating targets while progressing towards a final target, on which he 386 
stopped to obtain additional reward. The task was divided into trials, each of which required 387 
moving a distance equivalent to twenty cycles under manual control. We used eight trial-types, 388 
four each for forward and backward cycling. Two of these employed a constant target speed 389 
(equivalent to 1 or 2 Hz cycling) and two involved a ramping speed (from 1 Hz to 2 Hz or vice 390 
versa). As above, the decoder was trained based on a small number of manual-control trials 391 
performed at the beginning of each session. Blocks of manual-control trials were also included 392 
for comparisons between manual and BMI-based performance. 393 

Our decode strategy was largely preserved from that described above. However, we used a 394 
modified state machine (Supp. Fig. 1 ) and a slightly different algorithm for transforming 395 
rotations of the neural state into decoded virtual velocity. Direction was determined based on 396 
which distribution (forward or backward) produced the higher likelihood of observing the 397 
measured angular momentums (as in Fig. 5d). Once that choice was made, speed was 398 
determined by the angular velocity of the neural state in that plane. Thus, faster rotational 399 
trajectories led to faster decoded virtual velocity. We chose a scaling factor so that a given 400 
neural angular velocity produced the speed that would have been produced by physical cycling 401 
at that angular velocity. Neural angular velocity was exponentially filtered with a time constant 402 
of 500 ms. The filter memory was erased on entry into a movement state (EARLY or STEADY) 403 
from a stopped state (INIT or EXIT) to allow brisk movement onset (see Methods). 404 

The above strategy allowed smooth BMI control of movement speed. In fact, it tended to give 405 
BMI control an intrinsic advantage over manual control. In manual control, the angular velocity 406 
of the pedal was naturally modulated within each cycle (being higher on the downstroke), 407 
resulting in a fluctuating virtual velocity. Such fluctuations mildly impaired the ability to match 408 
target speed under manual control. To allow a fair comparison, we thus also applied an 409 
exponential filter to virtual velocity under manual control. Filters were chosen separately for 410 

BMI (' = 500 ms) and manual control (' = 1000 ms) to maximize performance. This was done 411 
informally, in the earliest session, by lengthening the filter until success rate roughly plateaued. 412 
The filter then remained fixed for all further sessions. 413 
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Figure 8. Performance in the modified task requiring speed tracking. (a) Instructed velocity 
and BMI-decoded virtual velocity during 12 contiguous trials of BMI control. (b) Expanded 
view of one example trial (the last trial from panel a). The virtual velocity that would have been 
produced by the pedal is shown in gray for comparison. (c) Percentage of time spent in 
rewarded velocity window for trials in manual-control (2 sessions, 333 trials) and BMI-control 
(3 sessions, 349 trials). Center lines indicate median, the box edges indicate the first and third 
quartiles, and the whiskers include all non-outlier points (points less than 1.5 times the 
interquartile range from the box edges). (d) Mean absolute error (MAE) between instructed 
velocity and virtual velocity for both manual control and BMI control sessions. One mean error 
was computed per trial. Same format as (c). 
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Under BMI control, decoded virtual speed closely tracked instructed speed. This was true 414 
across trials with different constant speeds, and within trials where speed modulated with time 415 
(Fig. 8a,b). To compare BMI with manual control (which were performed on separate days) we 416 
considered all trials where the monkey completed the portion of the trial that required matching 417 
speed (87% of trials in arm control, and 79% in BMI control). The monkey was able to match 418 
instructed speed nearly as accurately under BMI control as under manual control. This was true 419 
judged both by time within the rewarded speed window (Fig. 8c) and by the error between 420 
virtual and instructed velocity (Fig. 8d).  421 
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Discussion 422 

We have argued that the largest signals in motor cortex are not ‘representational’ – they do not 423 
encode variables but are instead essential for noise-robust dynamics. Those dynamics produce 424 
outgoing commands that are representational (they covary with the variables they control) but 425 
are low-variance. This perspective argues that decoders should not attempt to invert encoding 426 
unless a great many neurons can be recorded. Instead, decoders should opportunistically 427 
leverage whichever high-variance response features have a robust relationship with the 428 
variables one wishes to decode. In retrospect, traditional reach-based prosthetics can be seen as 429 
implicitly taking this approach; during reaching there exist high-variance neural signals that 430 
correlate (linearly) with a projection of two-dimensional reach velocity onto a ‘preferred 431 
direction’. Similarly, decoding of muscle activity for prosthetic control6 likely leverages signals 432 
that coincidentally but usefully correlate with muscle force during the task of interest. 433 

The need for an opportunistic strategy becomes explicit during cycling, because the neural 434 
signals that linearly correlate with hand kinematics and muscle activity are low variance. 435 
Conversely, there exist high-variance signals with robust (but not linear) relationships with 436 
intended movement. Leveraging those features yielded BMI control that was sufficiently 437 
natural that monkeys appeared not to notice that the task was no longer under manual control.  438 

Our approach relates to recent studies that modeled neural dynamics to improve online21 or 439 
offline22,41,42 decodes of movement kinematics. A key insight of those studies is that signals that 440 
do not correlate directly with kinematics can be used to infer those that do. For linear decoding, 441 
the value of given variable depends upon the neural state in one dimension: the dimension 442 
defined by the regression weights. Nevertheless, inferring the neural state in that dimension 443 
may benefit from a dynamical model that spans multiple dimensions. Much like the present 444 
approach, this allows the decode to leverage features that are robust, even if they do not directly 445 
correlate with the kinematic parameters of interest. The present approach extends this idea to 446 
situations where there may be no high-variance dimensions that can be linearly decoded, 447 
and/or where the most prominent features are not well-described by linear dynamics. 448 

By most measures (success rate, time to target) performance under BMI control was remarkably 449 
close to that under manual control. The only measure by which BMI control was meaningfully 450 
inferior to manual control was detection of movement offset. Yet while not as accurate as under 451 
manual control, stopping accuracy under BMI control was still good: stopping was detected 452 
with ~100 ms precision. Furthermore, BMI control almost never produced movement when it 453 
was not intended. False starts occurred at the rate of ~2 per day for monkey G and ~1 every ten 454 
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days for monkey E. We consider this a particularly important attribute of any ego-motion 455 
decoding algorithm, due to the potentially large consequences of unintended movement of the 456 
whole body. The first demonstrations of BMI control of ego-motion24,25, which leveraged 457 
strategies originally developed for reaching, did not demonstrate accurate stopping; stopping 458 
occurred automatically based on target proximity. The classifier used by Libedinsky et al.25 459 
successfully decoded one-of-four commands (turn-left, turn-right, stop, forward) on ~80% of 460 
times. Rajangam et al.24 employed a whole-body direction decode, which allowed monkeys to 461 
navigate ~2 meters to a target in two-dimensional space (which had to be approached with an 462 
accuracy of +/- ~0.2 meters, or 10% of the distance traveled) in an average of 27-49 seconds 463 
(depending on the monkey and degree of practice). Direct quantitative comparison of 464 
performance of our decode with prior work is essentially impossible as the tasks are so 465 
different. Our task is more challenging in some ways (it is much faster paced and requires 466 
accurate stopping) but less so in others (it did not require turning). The nature of the underlying 467 
neural activity (rhythmic versus not) is also very different. Furthermore, there are no clear 468 
benchmarks for comparison. The major advance of Rajangam et al.24 is the demonstration of 469 
wheelchair-like control using a physical device, but the unconstrained paths do not afford the 470 
opportunity to ascertain how well decoding tracked intent. What can be said with certainty is 471 
that, for the task we used, the opportunistic approach was both successful (leading to near-472 
native performance) and necessary (signals that correlate linearly with kinematics were very 473 
weak). Opportunistic decode strategies should thus be considered as BMI control applications 474 
expand beyond reach-like tasks. 475 

 476 

An obvious limitation of the current experiments is that we did not explore strategies for 477 
steering, which would be essential to a real-world ego-motion prosthetic. There exist multiple 478 
candidate strategies for enabling steering. Rajangam et al. used a Wiener filter to decode 479 
angular velocity of the body. While straightforward, this strategy appears to have had limited 480 
success: even during training, the R2 of their angular velocity decode was 0.16 and 0.12 for the 481 
two monkeys. During online performance, the considerable time to reach the target argues that 482 
steering was not accurate. One alternative strategy would be to apply our decode strategy 483 
bilaterally, and employ a comparison (e.g., between left and right cycling speed) to control 484 
angular velocity. Another strategy would be to control translational velocity using the strategies 485 
developed here, but use a reach-like decode for steering (rather like pedaling a bicycle while 486 
also steering). Which (if any) of these three strategies is preferable remains a question for future 487 
experiments. 488 
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For convenience, monkeys were trained to control the pedal with their forelimb (allowing them 489 
to be seated in a traditional primate chair) and we thus recorded from the forelimb region of 490 
motor cortex. Recordings during natural locomotion in monkeys reveal broadly similar signals 491 
in both the forelimb43 and hindlimb27 regions of motor cortex. These signals are dominated, as in 492 
our task, by elliptical neural trajectories during ongoing locomotion. It is thus likely that 493 
prosthetic ego-motion could be driven by signals derived from either region.  494 

Like many proof-of-concept prosthetic systems developed in primates1,14,44–46, decoder training 495 
depended on observations of neural activity under manual control. Whether this approach 496 
translates depends upon the assumption that useful patterns of neural activity will emerge 497 
when a paralyzed patient tries to move but can’t. A number of existing studies indicate that 498 
motor cortex is active, in reasonably normal ways, when paralyzed patients attempt to move. 499 
Importantly, decode strategies based on a characterization of population activity during normal 500 
reaching in primates have provided successful directional control of a cursor in human patients. 501 
The approach to specifying parameters was of course tailored to the needs of the patients, but 502 
the class of decoder did not need to be altered. It seems likely that the same will be true of 503 
rhythmic neural activity and decoding of intended movement. More broadly, a key point of the 504 
present study is that a fixed decode strategy is unlikely to work well across the different classes 505 
of movement that patients are likely to desire. Instead, decode strategies should leverage 506 
population-level response features that relate robustly to the variables one wishes to control. 507 
Such features are presumably present in paralyzed patients, and will almost certainly be task 508 
dependent. 509 

Our results indicate that a nonlinear, yet relatively simple, decode strategy can afford excellent 510 
one-dimensional control of ego-motion. Although other approaches remain possible47, our 511 
findings support the idea that cortical control of prosthetic ego-motion is viable and should be 512 
explored further. More broadly, the present results argue that many of the decode strategies 513 
that proved effective for reach-based prostheses are unlikely to generalize across tasks. An 514 
alternative approach is to identify, for each task, the dominant features and determine how they 515 
might be usefully translated into decoded movement. While this approach abandons the elegant 516 
idea of inverting a literal encoding of kinematics, it opens up possibilities for improved 517 
prosthetic control across a variety of contexts.  518 
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Methods 519 

Subjects and primary task 520 

All procedures were approved by the Columbia University Institutional Animal Care and Use 521 
Committee. Subjects G and E were two adult male macaque monkeys (Macaca mulatta). 522 
Monkeys sat in a primate chair facing an LCD monitor (144 Hz refresh rate) that displayed a 523 
virtual environment generated by the Unity engine (Unity Technologies, San Francisco, CA). 524 
The head was restrained via a titanium surgical implant. While the monkey’s left arm was 525 
comfortably restrained, the right arm grasped a hand pedal. Cloth tape was used to ensure 526 
consistent placement of the hand on the pedal. The pedal connected via a shaft to a motor 527 
(Applied Motion Products, Watsonville, CA), which contained a rotary encoder that measured 528 
the position of the pedal with a precision of 1/10,000 of the cycle. The motor was also used to 529 
apply forces to the pedal, endowing it with virtual mass and viscosity. 530 

Manual-control sessions for the primary cycling task required that the monkey cycle the pedal 531 
in the instructed direction to move through the virtual environment, and stop on top of a 532 
lighted target to collect juice reward. The color of the landscape indicated whether cycling must 533 
be ‘forward’ (green landscape, the hand moved away from the body at the top of the cycle) or 534 
‘backward’ (tan landscape, the hand moved toward the body at the top of the cycle). There were 535 
6 total conditions, defined by cycling direction (forward or backward) and target distance (2, 4, 536 
or 7 cycles). Distance conditions were randomized within same-direction blocks (3 trials of each 537 
distance per block), and directional blocks were randomized over the course of each 538 
experiment. Trials began with the monkey stationary on a target. A second target appeared in 539 
the future. To obtain reward, the monkey had to cycle to that target, come to a halt ‘on top’ of it 540 
(in the first-person perspective of the task) and remain stationary for a hold period of 1000-1500 541 
ms (randomized). A trial was aborted without reward if the monkey began moving before 542 
target onset (or in the 170 ms after, which would indicate attempted anticipation), if the monkey 543 
moved past the target without stopping, or if the monkey moved while awaiting reward. The 544 
next trial began 100 ms after the variable hold period. Monkeys performed until they received 545 
enough liquid reward that they chose to desist. As their motivation waned, they would at times 546 
take short breaks. For both manual-control and BMI-control sessions, we discarded any trials in 547 
which monkeys made no attempt to initiate the trial, and did not count them as ‘failed’. These 548 
trials occurred 2 ± 2 times per session (mean and standard deviation, Monkey G, maximum 10) 549 
and 3 ± 3 times per session (Monkey E, maximum 11). 550 

In BMI control, trial parameters and failure conditions were the same as in manual control, for 551 
purposes of comparison. The only difference between manual and BMI control was that, in the 552 
latter, position in the virtual environment was controlled by the output of a decoder rather than 553 
the pedal. We did not prevent or discourage the monkey from cycling during BMI-control 554 
blocks, and he continued to do so as normal. In BMI control, monkey G performed an average 555 
of 654 trials/session over 20 sessions and monkey E performed an average of 137 trials/session 556 
over 17 sessions. Manual-control data for monkey G (average of 229 trials/session over 8 557 
sessions) were collected during sessions in which BMI-control data sets were also collected. 558 
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Manual-control sessions for monkey E (average of 231 trials/session over 5 sessions) were 559 
interleaved with BMI-control sessions on different days. For monkey G, an additional three 560 
manual-control sessions (189, 407, and 394 trials) were employed to record EMG, which was 561 
used for the variance captured analysis (Fig. 2b,c). We recorded from 5-7 muscles per session, 562 
yielding a total of 19 recordings. We made one or more recordings from the three heads of the 563 
deltoid, the lateral and long heads of triceps brachii, the biceps brachii, trapezius, and latissimus 564 
dorsi. These muscles were selected due to their clear activations during the cycling task. 565 

Surgery and neural/muscle recordings 566 

Neural activity was recorded using chronic 96-channel Utah arrays (Blackrock Microsystems, 567 
Salt Lake City, UT), implanted in the left hemisphere using standard surgical techniques. In 568 
each monkey, an array was placed in the region of primary motor cortex (M1) corresponding to 569 
the upper arm. In monkey G, a second array was placed in dorsal premotor cortex (PMd), just 570 
anterior to the first array. Array locations were selected based on MRI scans and anatomical 571 
landmarks observed during surgery. Experiments were performed 1-8 months (monkey G) and 572 
3-4 months (monkey E) after surgical implantation. Neural responses both during the task and 573 
during palpation confirmed that arrays were in the proximal-arm region of cortex. 574 

Electrode voltages were filtered (band-pass 0.3 Hz – 7.5 kHz) and digitized at 30 kHz using 575 
Digital Headstages, Digital Hubs, and Cerebus Neural Signal Processors from Blackrock 576 
Microsystems. Digitized voltages were high-pass filtered (250 Hz) and spike events were 577 
detected based on threshold crossings. Thresholds were set to between -4.5 and -3 times the 578 
RMS voltage on each channel, depending on the array quality on a given day. On most 579 
channels, threshold crossings included clear action-potential waveforms from one or more 580 
neurons, but no attempt was made to sort action potentials.  581 

Intra-muscular EMG recordings were made using pairs of hook-wire electrodes inserted with 30 582 
mm x 27 gauge needles (Natus Neurology, Middleton, WI). Raw voltages were amplified and 583 
filtered (band-pass 10 Hz – 10 kHz) with ISO-DAM 8A modules (World Precision Instruments, 584 
Sarasota, FL), and digitized at 30 kHz with the Cerebus Neural Signal Processors. EMG was 585 
then digitally band-pass filtered (50 Hz – 5 kHz) prior to saving for offline analysis. Offline, 586 
EMG recordings were rectified, low-pass filtered by convolving with a Gaussian (standard 587 
deviation: 25 ms), downsampled to 1 kHz, and then fully normalized such that the maximum 588 
value achieved on each EMG channel was 1. 589 

A real-time target computer (Speedgoat, Bern, CH) running Simulink Real-Time environment 590 
(MathWorks, Natick, MA) processed behavioral and neural data and controlled the decoder 591 
output in online experiments. It also streamed variables of interest to another computer that 592 
saved these variables for offline analysis. Stateflow charts were implemented in the Simulink 593 
model to control task state flow as well as the decoder state machine. Real-time control had 594 
millisecond precision. 595 

Spike trains were causally converted to firing rates by convolving each spike with a beta kernel. 596 
The beta kernel was defined by temporally scaling a beta distribution (shape parameters: , = 3 597 
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and . = 5) to be defined over the interval [0, 275] ms and normalizing the kernel such that the 598 
firing rates would be in units of spikes/second. The same filtering was applied for online 599 
decoding and offline analyses. Firing rates were also mean centered (subtracting the mean rate 600 
across all times and conditions) and normalized. During online decoding, the mean and 601 
normalization factor were values that had been computed from the training data. We used soft 602 
normalization16: the normalization factor was the firing rate range plus a constant (5 spikes/s). 603 

Computing trial-averaged firing rates 604 

Analyses of BMI performance are based on real-time decoding during online performance, with 605 
no need to consider trial-averaged firing rates. However, we still wished to compute trial-606 
averaged traces of neural activity and kinematics for two purposes. First, some aspects of 607 
decoder training benefited from analyzing trial-averaged firing rates. Second, we employ 608 
analyses that document basic features of single-neuron responses and of the population 609 
response (e.g., Fig. 1d, Fig. 2, Fig. 5a, Fig. 6a). These analyses benefit from the denoising that 610 
comes from computing a time-varying firing rate across many trials. Due to the nature of the 611 
task, trials could be quite long (up to 20 cycles in the speed-tracking task), rendering the 612 
traditional approach of aligning all trials to movement onset insufficient for preserving 613 
alignment across all subsequent cycles. It was thus necessary to modestly adjust the time-base 614 
of each individual trial (e.g., stretching time slightly for a trial where cycling was faster than 615 
typical). We employed two alignment methods. Method A is a simplified procedure that was 616 
used prior to parameter fitting when training the decoder before online BMI control. This 617 
method aligns only times during the movement. Method B is a more sophisticated alignment 618 
procedure that was utilized for all offline analyses. This method aligns the entire trial, including 619 
pre- and post-movement data. For visualization, conditions with the same target distance (e.g., 620 
7 cycles), but different directions, were also aligned to the same time base. Critically, any data 621 
processing that relied on temporal structure was completed in the original, unstretched time 622 
base prior to alignment. 623 

Method A: The world position for each trial resembles a ramp between movement onset and 624 
offset (Fig. 1a). First, we identify the portion of each trial starting ¼ cycle into the movement 625 
and ending ¼ cycle before the end of the movement. We fit a line to the world position in this 626 
period and then extend that line until it intercepts the starting and ending positions. The data 627 
between these two intercepts is considered the movement data for each trial and is extracted. 628 
This movement data is then uniformly stretched in time to match the average trial length for 629 
each trial’s associated condition. This approach compresses slower than average movements 630 
and stretches faster than average movements within a condition, such that they can be averaged 631 
while still preserving many of the cycle-specific features of the data. 632 

Method B: This method consists of a mild, non-uniform stretching of time in order to match 633 
each trial to a condition-specific template. For complete details, see Russo et al. 2018.16 634 

Variance captured analysis 635 
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Analysis of neural variance captured (Fig. 2) was based on successful manual-control trials from 636 
the three sessions with simultaneous neural and muscle recordings. We considered data from 637 
the full duration of each trial, including times before movement onset and after movement 638 
offset. We analyzed the variance captured by neural dimensions of three types. First, neural 639 
dimensions where activity correlated strongly with kinematic features. Second, neural 640 
dimensions where activity correlated strongly with muscle activity. Third, neural dimensions 641 
that captured robust ‘features’ leveraged by our decoder.  642 

Dimensions of the third type (were found as detailed below in a dedicated section below. 643 
Dimensions of the first two types were found using the model /(1, 3) 	= 	5	 +		789(1, 3), where 644 
/(1, 3) is the kinematic or muscle variable at time 3 during trial 1, and 9(1, 3) is the 645 
corresponding N-dimensional vector of neural firing rates. The constant 5 and the column 646 
vector 7 were found via regression. The vector 7 defines a direction in neural space where 647 
activity correlates strongly with the variable /. We found multiple such vectors; e.g. 7:;$%< is a 648 
dimension where neural activity correlates with horizontal velocity and 7=>?%@A is a dimension 649 
where neural activity correlates with biceps activity. All such vectors were scaled to have unity 650 
norm before computing the neural variance captured by that dimension. Regression was based 651 
on single-trial responses because this was intrinsically regularizing. We wished to encourage 652 
regression to find high-variance dimensions if possible, and the use of single-trial data 653 
encouraged it to do so. Because filtering of neural activity introduces a net lag, this analysis 654 
naturally assumes a ~100 ms lag between neural activity and the variables of interest. Results 655 
were extremely similar if we considered longer or shorter lags. 656 

We wished to compute, for each dimension, the percentage of neural variance explained – i.e., 657 
whether that dimension captured large or small signals. We were not interested in whether 658 
dimensions captured stochastic spiking variability, but in whether they captured large features 659 
that were reliable across trials. Thus, variance captured was always computed based on trial-660 
averaged neural responses. We considered the matrix B ∈ ℝE×G where H is the total number of 661 
time points across all conditions. Each row of B contains the trial-averaged firing rate of one 662 
neuron. We computed an I ×I covariance matrix Σ = cov(B) by treating rows of B as random 663 
variables and columns as observations. The proportion of total neural variance captured by a 664 
given dimension, 7, is therefore: 665 

78Σ7

tr(Σ)
	 666 

Some analyses considered the variance captured by a subspace spanned by a set of dimensions. 667 
To do so we took the sum of the variance captured by orthonormal dimensions spanning that 668 
space. 669 

Identifying neural dimensions 670 

Although the response features leveraged by the decode algorithm are clearly visible in the top 671 
principal components of the data (when PCA is performed on the full trial-averaged time-series 672 
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of firing rates across conditions), we sought to choose neural dimensions that would cleanly 673 
isolate particular features. To this end, each feature was isolated using dedicated preprocessing 674 
and dimensionality reduction approaches. 675 

We sought a moving-sensitive dimension, the projection onto which would allow an HMM to 676 
estimate the probability of moving, !"#$%, at each moment. To do so, we first computed binned 677 
spike-counts (10 ms for monkey G, 20 ms for monkey E) and applied a square-root transform to 678 
these counts as this has been shown to improve the Gaussian fit for Poisson data with small 679 
counts48. We then aggregated all of these square-rooted binned counts from the training set (25 680 
forward trials, 25 backward trials) and separated them into two classes based on pedaling 681 
speed: ‘moving’ (speed > 1 Hz) and ‘stopped’ (speed < .05 Hz). Samples that didn’t fall into 682 
either of these two classes were discarded. We applied linear discriminant analysis to these two 683 
labeled sets, which yielded a discriminating hyperplane that best separated the two classes. We 684 
defined the moving-sensitive dimension, 7"#$% , as the vector normal to this hyperplane. 685 

In order to decode direction, we sought to isolate four neural dimensions that captured 686 
rotational trajectories during steady-state cycling. Spike time-series were filtered to yield firing 687 
rates (as described above), and then futher high-pass filtered (2nd order Butterworth, cutoff 688 
frequency: 1 Hz). This removed drift or other low-frequency signals. Single-trial movement-689 
period responses were then aligned (Method A) and averaged within conditions to generate 690 
I	 × H?	matrices BP and B=. We sought a 4-dimensional projection of these trial-averaged 691 
responses that would maximally capture rotational trajectories while segregating forward and 692 
backward data into different planes. Whereas the standard PCA cost function finds dimensions 693 
that maximize variance captured, we opted instead for a cost function that would maximize the 694 
difference in variance captured between the two conditions: 695 

Q(R) = tr(R8ΣPR) − tr(R8Σ=R)  696 

where ΣP = cov(BP), Σ= = cov(B=), R is constrained to be orthonormal. Note that this cost 697 
function will be maximized when the projection of the data captures a great deal of variance for 698 
forward trials and very little variance for backward trials. Conversely, this cost function will be 699 
minimized when the projection favors large variances for backward trials and small variances 700 
for forward trials. We thus chose to define our forward rotational plane by the 2D matrix RP =701 

T	7P
(U) 7P

(V)W	 that maximizes Q(R) and our backward rotational plane by the 2D matrix R= =702 

X	7=
(U) 7=

(V)Y that minimizes Q(R). An iterative optimization procedure was used to find RP and 703 
R=; full details of this in49.  704 

To decode direction during the EARLY state, we found a set of initial-direction dimensions. We 705 
used activity in the moving-sensitive dimension to determine the time, 3>Z>[ , at which the state 706 
machine would have entered the INIT state during online control. We then considered trial-707 
averaged neural activity, for each condition. from 3>Z>[  through 3>Z>[ + 200 ms. We applied PCA 708 

and retained the top three dimensions: 7]>^
(U) , 7]>^

(V) , and 7]>^
(_) . Such dimensions capture how 709 
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activity evolves both across that timespan, and how it differs across forwards and backwards 710 
cycling conditions.  711 

Computing probability of moving (!"#$%) 712 

To compute !"#$% based on neural activity in the moving-sensitive dimension, an HMM was 713 
used to track two states: ‘moving’ or ‘stopped’39. Square-rooted spike counts in the training data 714 
were already separated into ‘moving’ and ‘stopped’ sets for the purposes of identifying 7"#$% . 715 
We projected those counts onto 7"#$%  and a fit Gaussian distribution for each state. The 716 
probability, !"#$%, of being in the ‘moving’ state, given the entire sequence of current and 717 
previously observed square-rooted spike counts, was computed efficiently with a recursive 718 
algorithm that uses the state transition matrix 719 

Φ = a
!"#$%|"#$% !"#$%|A[#@
!A[#@|"#$% !A[#@|A[#@ c 720 

and knowledge of the Gaussian distributions. Φ encodes prior assumptions about the 721 
probability of transitioning from one state to the next at any given bin. We used a benchmark 722 
set of manual-control training data from each monkey to determine reasonable values for Φ, 723 
which were then used in all experiments. For monkey G, we set !"#$%|A[#@ = .0001 and 724 
!A[#@|"#$% = .002; for monkey E, we set !"#$%|A[#@ = .0002 and !A[#@|"#$% = .004.	The value 725 
!"#$% was used throughout the decoder state machine to control transitions between various 726 
states, effectively dictating the movement onset and offset behavior of the decoder (Fig. 6d). 727 

Computing steady-state direction and speed 728 

Projecting single-trial, high-pass filtered firing rates onto the rotational planes spanned by RP 729 
and R= yielded trajectories that differed considerably between forward and backward 730 
conditions. To further denoise these state trajectories we applied a Kalman filter of the form 731 

f[ = gf[;U + h[	732 
i[ = jf[ + 1[ 733 

where h[ ∈ k(0, l), and 1[ ∈ k(0, m). In these equations, f[ represents the true underlying 734 
neural state in the rotational dimensions and i[ are the high-pass filtered firing rates, which we 735 
treat as noisy measurements of that underlying state. We chose to let our measurements be 736 
smooth firing rates, rather than use non-overlapping bins of spikes, for purely opportunistic 737 
reasons: it consistently yielded better performance by our decoder. The parameters of the 738 
Kalman filter were fit to the training data as follows: 739 

g = nVnU
8
onUnU

8p
;U

 740 

j = 	 q
RP

8

R=
8
r
s

 741 
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l = cov(nV − gnU) 742 

m = cov(B − jn) 743 

where 744 

nU = q
RP

8

R=
8
r [BPo: ,1: HP − 1p, B=(: ,1: H= − 1)] 745 

nV = q
RP

8

R=
8
r [BPo: ,2: HPp, B=(: ,2: H=)] 746 

n = q
RP

8

R=
8
r [BU, BV, … , Bxy] 747 

B = [BU, BV, … , Bxy] 748 

with B> denoting the neural activity (high-pass filtered firing rates) for the z-th trial in the 749 
training set, B> denoting the trial-averaged activity for the condition that the z-th trial is an 750 
instantiation of, † denoting the Moore-Penrose pseudoinverse, and the colon symbol 751 
designating how to index matrices (e.g., |(: , }: ~) refers to the submatrix of | including all 752 
rows of |, but only the columns } through ~). Lastly, the initial state parameter fy was 753 
computed by taking the average value of the trial-averaged projections over all times and 754 
conditions. Online inference of the underlying neural state, which yields an estimate f�[ at each 755 
millisecond 3, was computed recursively using the steady-state form of the Kalman filter50.  756 

After denoising the neural state in the rotational dimensions via the Kalman filter, angular 757 
momentum was computed in each plane as the cross product between the estimated neural 758 
state and its derivative, which (up to a constant scaling) can be written 759 

Ä(3) = a
ÄP(3)
Ä=(3)

c = Å
f�[;U
(U) f�[

(V) − f�[
(U)f�[;U

(V)

f�[;U
(_) f�[

(Ç) − f�[
(_)f�[;U

(Ç)
É 760 

where the superscript indexes the elements of f�[. We fit 2D Gaussian distributions to these 761 
angular momentums for each of three behaviors in the training data: ‘stopped’ (speed < .05 Hz), 762 
‘pedaling forward’ (velocity > 1 Hz), and ‘pedaling backward’ (velocity < -1 Hz) (Fig. 5d). 763 
Online, the likelihood of the observed angular momentums with respect to each of these three 764 
distributions dictated the steady-state estimates of direction and speed. We’ll denote these three 765 
likelihoods ÑA[#@, ÑP#^ÖÜ^] , and Ñ=Ü?áÖÜ^] . 766 

In general, one can compute which of these three distributions is most likely by choosing the 767 
maximizing likelihood and assess confidence in that choice by comparing the relative values of 768 
the three likelihoods. However, we wanted the decoder to err on the side of withholding 769 
movement. We therefore set a conservative threshold on ÑA[#@ corresponding to the point at 770 
which Ä would have a Mahalanobis distance of 3 to the stopped distribution of angular 771 
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momentums. If ÑA[#@ ever exceeded this threshold, we set à!ââäA[%Ü]ã to zero. If this condition 772 
was not met, we decoded direction and speed as follows: 773 

äz1â53zåçA[%Ü]ã(3) = sgn ëÑP#^ÖÜ^](3) − Ñ=Ü?áÖÜ^](3)í 774 

à!ââäA[%Ü]ã(3) = ì2 ⋅
ÑP#^ÖÜ^](3)

ÑP#^ÖÜ^](3) + Ñ=Ü?áÖÜ^](3)
− 1ì . 775 

where ï2 ⋅ Pñóòôöòõ([)

Pñóòôöòõ([)úPùöûüôöòõ([)
− 1ï varies between 0 and 1 depending on the relative sizes of 776 

the likelihoods (yielding a slower velocity if the direction decode is uncertain) and . is a 777 
direction-specific constant learned from the training data whose purpose is simply to scale up 778 
the result to match steady-state cycling speed. In practice, à!ââäA[%Ü]ã was frequently very close 779 
to the monkeys’ steady-state cycling speeds (Fig. 5e). 780 

Computing initial direction and speed 781 

Initial direction and speed were always computed at the moment the EARLY state was entered, 782 
3%Ü^<ã . These values then persisted throughout the remainder of the EARLY state. Given that the 783 
decoder state machine doesn’t make use of the initial-direction dimensions prior to entering the 784 
EARLY state, 3%Ü^<ã  can be computed for the training trials. Single-trial firing rates from the 785 
training set were then projected onto the initial-direction dimensions at 3%Ü^<ã  and 3D Gaussian 786 
distributions were fit to the resulting sets of forward and backward neural states. Online, firing 787 
rates were projected onto the initial-direction dimensions at 3%Ü^<ã  and likelihoods †P#^ÖÜ^]  and 788 
†=Ü?áÖÜ^]  were computed with respect to each the learned distributions. If the observed neural 789 
state in the initial-direction subspace was not an outlier (>10 Mahalanobis distance units) with 790 
respect to both distributions, then the initial direction and speed were computed as follows: 791 

äz1â53zåç>Z>[>Ü<(3%Ü^<ã) = sgn ë†P#^ÖÜ^]o3%Ü^<ãp − †=Ü?áÖÜ^]o3%Ü^<ãpí 792 

à!ââä>Z>[>Ü<o3%Ü^<ãp = ì2 ⋅
†P#^ÖÜ^]o3%Ü^<ãp

†P#^ÖÜ^]o3%Ü^<ãp + †=Ü?áÖÜ^]o3%Ü^<ãp
− 1ì . 793 

If the observed neural state was an outlier, initial direction and speed were computed in the 794 
same manner as is done in the STEADY state. 795 

Smoothing of decoded velocity 796 

In the primary experiment, the decoder state machine produced an estimate of velocity, °]%?, at 797 
every millisecond. During the STOP and INIT states, this estimate was zero and the monkey’s 798 
position in the virtual environment was held constant. During the EARLY and STEADY states, 799 
this estimate was smoothed with a trailing average: 800 
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°]%?
¢ (3) =

1

HA"##[£ + 1
§ °]%?(3 − z)

G•¶óóß®

>©y

 801 

where HA"##[£ = min(500, 3 − 3%Ü^<ã), i.e., the trailing average extended in history up to 500 ms 802 
or to the moment the EARLY state was entered, whichever was shorter. °]%?¢  was integrated 803 
every millisecond to yield decoded position in the virtual environment. In the speed-tracking 804 
experiment (described below) there was no need to smooth of °]%? prior to integration because 805 
the speed estimate had already been smoothed. 806 

Speed-tracking task 807 

In addition to the primary task (where the monkey traveled 2-7 cycles between stationary 808 
targets) we employed a speed-tracking task, in which the monkey was required to match his 809 
virtual speed to an instructed speed. Speed was instructed implicitly, via the relative position of 810 
two moving targets. The primary target was located a fixed distance in front of the monkey’s 811 
location in virtual space: the secondary target fell ‘behind’ the first target when cycling was too 812 
slow, and pulled ‘ahead’ if cycling was too fast. This separation saturated for large errors, but 813 
for small errors was proportional to the difference between the actual and instructed speed. 814 
This provided sufficient feedback to allow the monkey to track the instructed speed even when 815 
it was changing. Because there was no explicit cue regarding the absolute instructed speed, 816 
monkeys began cycling on each trial unaware of the true instructed speed profile and ‘honed in’ 817 
on that speed over the first ~2 cycles. 818 

We quantify instructed speed not in terms of the speed of translation through the virtual 819 
environment (which has arbitrary units) but in terms of the physical cycling velocity necessary 820 
to achieve the desired virtual speed. E.g., an instructed speed of 2 Hz necessitated cycling at an 821 
angular velocity of 2 Hz to ensure maximal reward. Under BMI control, the output of the 822 
decoder had corresponding units. For example, a 2 Hz angular velocity of the neural trajectory 823 
produced movement at the same speed as 2 Hz physical cycling (see ‘Neural features for speed-824 
tracking’ for details of decoder). Reward was given throughout the trial so long as the monkey’s 825 
speed was within 0.2 Hz of the instructed speed. We employed both constant and ramping 826 
instructed-speed profiles.  827 

Constant profiles were at either 1 Hz or 2 Hz. Trials lasted 20 cycles. After 18 cycles, the primary 828 
and secondary targets (described above) disappeared and were replaced by a final stationary 829 
target two cycles in front of the current position. Speed was not instructed during these last two 830 
cycles; the monkey simply had to continue cycling and stop on the final target to receive a large 831 
reward. Analyses of performance (e.g., Fig. 8c,d) were based on the ~16 cycle period starting 832 
when the monkey first honed in on the correct speed (within 0.2 Hz of the instructed speed) and 833 
ending when the speed-instructing cues disappeared 2 cycles before the trial’s end. 834 

Ramping profiles began with three seconds of constant instructed speed to allow the monkey to 835 
hone in on the correct initial speed. Instructed speed then ramped, over 8 seconds, to a new 836 
value, and remained constant thereafter. As for constant profiles, speed-instructing cues 837 
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disappeared after 18 cycles and the monkey cycled two further cycles before stopping on a final 838 
target. Again, analyses of performance were based on the period from when the monkey first 839 
honed in on the correct speed, to when the speed-instructing cues disappeared. There were two 840 
ramping profiles: one ramping up from 1 to 2 Hz, and one ramping down from 2 to 1 Hz. There 841 
were thus four total speed profiles (two constant and two ramping). These were performed for 842 
both cycling directions (presented in blocks and instructed by color as in the primary task) 843 
yielding eight total conditions. This task was only performed by monkey G, who completed an 844 
average of 166 trials/session over 2 sessions in manual control and an average of 116 845 
trials/session over 3 sessions in BMI control. 846 

As will be described below, the speed decoded during BMI control was low-pass filtered to 847 
remove fluctuations due to noise. This had the potential to actually make the task easier under 848 
BMI control, given that changes in instructed speed were slow within a trial (excepting the 849 
onset and offset of movement). We did not wish to provide BMI control with an ‘unfair’ 850 
advantage in comparisons with manual control. We therefore also low-pass filtered virtual 851 
speed while under manual control. Filtering (exponential, ' = 1 second) was applied only when 852 
speed was above 0.2 Hz, so that movement onset and offset could remain brisk. This aided the 853 
monkey’s efforts to track slowly changing speeds under manual control. 854 

During training and while under manual control, trials were failed if there was ever a large 855 
discrepancy between actual and instructed speed. This ensured that monkeys tried their best to 856 
consistently match speed at all times. We relaxed this failure mode under BMI control because 857 
we did not wish to mask large failures in decoded speed. Over the course of single sessions, this 858 
did not discourage monkeys from trying their best, but simply allowed us to observe and 859 
quantify decode failures that would otherwise have resulted in aborted trials. This potentially 860 
puts BMI performance – quantified as in Figure 8c,d – at a disadvantage relative to manual 861 
control, where large errors could not persist. In practice this was not an issue as large errors 862 
were rare. 863 

Neural features for speed-tracking 864 

Although the speed-tracking experiment leveraged the same dominant neural responses that 865 
were used in the primary experiment, the specific features calculated for the decoder state 866 
machines differed. Details on how the relevant features were calculated in the speed-tracking 867 
experiment are presented in this section. 868 

The probability of moving, !"#$%, was calculated using a different set of parameters for speed-869 
tracking, largely due to changes in recording quality in the intervening time between data 870 
collection from the primary experiment and data collection for the speed-tracking experiment. 871 
The bin size was increased to 100 ms and the following state transition values were used: 872 
!"#$%|A[#@ = .0005 and !A[#@|"#$% = .0005. In addition, we observed that the square-root 873 
transform seemed to be having a negligible impact on the quality of the decoder at this bin size, 874 
so we removed it for this task. 875 
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Several features used in the speed-tracking state machine rely on neural activity in the 876 
rotational dimensions. In the primary experiment, this activity was high-pass filtered (cutoff 877 
frequency: 1 Hz) prior to projection into these dimensions, which helped isolate the rotational 878 
neural trajectories during ~2 Hz cycling. For speed-tracking, we wanted to accommodate a 879 
broader range of cycling speeds (which corresponded to a broader range of periodicities in the 880 
rotational neural trajectories). Thus, we dropped the cutoff frequency from 1 Hz to 0.75 Hz for 881 
this experiment. 882 

In computing äz1â53zåçA[%Ü]ã , the same computations were performed as for the primary-883 
experiment, with one exception: a new direction was not necessarily decoded every millisecond. 884 
In order to decode a new direction, the follow conditions needed to be met: 1) the observed 885 
angular momentums had a Mahalanobis distance of less than 4 to the distribution 886 
corresponding to the decoded direction, 2) the observed angular momentums had a 887 
Mahalanobis distance of greater than 6 to the distribution corresponding to the opposite 888 
direction. These criteria ensured that a new steady-state direction was only decoded when the 889 
angular momentums were highly consistent with a particular direction. When these criteria 890 
were not met, the decoder continued to decode the same direction from the previous time step. 891 

Speed was computed identically in the EARLY and STEADY states by decoding directly from 892 
the rotational plane corresponding to the decoded direction. A coarse estimate of speed was 893 
calculated as the derivative of the phase of rotation follows: 894 

¨′(3) = Æ

ä P̈

ä3
, äz1â53zåç(3) = +1

ä¨=
ä3

, äz1â53zåç(3) = −1
 895 

where P̈(3) and ¨=(3) are the phases of the two planes in the neural state estimate f�[, äz1â53zåç 896 
corresponds to äz1â53zåç%Ü^<ã  while in the EARLY state and äz1â53zåçA[%Ü]ã  while in the 897 
STEADY state, and the derivative ¨′ is computed in units of Hz. The coarse speed estimate, ¨’, 898 
was then smoothed with an exponential moving average ('	= 500 ms) to generate à!ââä, the 899 
variable that gets used in the decoder state machine. Additional saturation limits were set such 900 
that à!ââä never dropped below 0.5 Hz or exceeded 3.5 Hz, so as to remain in the range 901 
typically seen during pedaling. On entry into EARLY or STEADY from either INIT or EXIT, 902 
when à!ââä gets initialized, the output of this exponential moving average was reset to an 903 
initial value of 1.5 Hz, which was the average starting speed across conditions. 904 

Lastly, there were two new conditions for decoder state transitions in the speed-tracking 905 
experiment (Supp. Fig. 1). First, transitions from INIT to EARLY required that a condition 906 
termed “confident initial direction decode” was obtained. This condition was met when the 907 
Mahalanobis distance from the neural state in the initial-direction subspace to either the 908 
forward or backward distributions dropped below 4. Second, transitions into the EXIT state 909 
required (in addition to a drop in !"#$%) that the observed angular momentums, Ä, belong to a 910 
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set termed ‘Stationary’. This set was defined as all Ä with a Mahalanobis distance of less than 4 911 
to the ‘stopped’ distribution of angular momentums, which was learned from the training set. 912 
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