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Abstract 21 

Protein complexes, macro-molecular assemblies of two or more proteins, play vital roles in numerous 22 

cellular activities and collectively determine the cellular state. Despite the availability of a range of 23 

methods for analysing protein complexes, systematic analysis of complexes under multiple conditions 24 

has remained challenging. Approaches based on biochemical fractionation of intact, native complexes 25 

and correlation of protein profiles have shown promise, for instance in the combination of size 26 

exclusion chromatography (SEC) with accurate protein quantification by SWATH/DIA-MS. However, 27 

most approaches for interpreting co-fractionation datasets to yield complex composition, abundance 28 

and rearrangements between samples depend heavily on prior evidence. We introduce PCprophet, a 29 

computational framework to identify novel protein complexes from SEC-SWATH-MS data and to 30 

characterize their changes across different experimental conditions. We demonstrate accurate 31 

prediction of protein complexes (AUC >0.99 and accuracy around 97%) via five-fold cross-validation 32 

on SEC-SWATH-MS data, show improved performance over state-of-the-art approaches on multiple 33 

annotated co-fractionation datasets, and describe a Bayesian approach to analyse altered protein-protein 34 

interactions across conditions. PCprophet is a generic computational tool consisting of modules for 35 

data pre-processing, hypothesis generation, machine-learning prediction, post-prediction processing, 36 

and differential analysis. It can be applied to any co-fractionation MS dataset, independent of separation 37 

or quantitative LC-MS workflow employed, and to support the detection and quantitative tracking of 38 

novel protein complexes and their physiological dynamics.39 
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Main 40 

The analysis of proteins has progressed from studying specific proteins to the comparative analysis of 41 

multiple proteomes, allowing for the detection of changes in the proteome landscape as a function of 42 

the cellular state and the identification of connections between proteins based on their behaviours across 43 

multiple samples. However, proteins largely function as complexes which are involved in performing 44 

and regulating a majority of biological functions1-4. Protein complexes are a part of extended functional 45 

groups, such as pathways or protein interaction networks. Despite the availability of a range of methods 46 

for the analysis of specific protein complexes, systematic analysis of the ensemble of protein complexes 47 

in a sample has remained challenging5. While affinity-purification mass spectrometry (AP-MS) 48 

provides valuable biological information on protein complexes, it lacks scalability and requires either 49 

genetic manipulation of cells for introduction of a tag or the use of antibody-based reagents. On the 50 

other hand, biochemical fractionation mass spectrometry allows for simultaneous quantification of 51 

thousands of proteins and is emerging as a powerful technique for system-wide investigation of protein 52 

complexes. Analytical techniques such as size exclusion chromatography (SEC) and ion exchange 53 

chromatography (IEX)  have been successfully applied in a variety of complex biological questions 54 

such as apoptosis-dependent complex rewiring6, characterization of novel complexes in Trypanosoma 55 

Brucei7 and C. Elegans8, identification of isoform-specific complexes9 and differential analysis of cell 56 

cycle states17, i.e. the interphase and mitosis. 57 

A key challenge in fractionation-based approaches is the is the confident assignment of protein 58 

subunits to protein complexes based on their co-fractionation patterns and other relevant biological 59 

information. A number of computational frameworks have been proposed for this purpose8, 10-12. 60 

Among these methods, CCprofiler identifies protein complexes from co-fractionation proteomic data 61 

based on prior information from reference complex/interactome databases such as CORUM13, 62 

STRING14 and BioPlex15, 16. CCprofiler was not designed to predict novel protein complexes but to 63 

determine a confidently detectable set of complexes including statistical estimation and control of the 64 

false discovery rate10. PrInCE and EPIC leverage machine-learning techniques to predict novel protein 65 

complexes but are limited conceptually to the inference of protein-protein interactions (PPI) from co-66 
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fractionation proteomic data. Finally, dendrogram clustering has been described for novel complex 67 

identification11. In this case as well, control of false positives and false negatives is challenging since 68 

an arbitrary threshold must be applied to cut the dendrogram11.  69 

In this study, we describe PCprophet, an open-access software for protein complex prediction 70 

directly from co-fractionation-MS data using machine-learning techniques and differential analysis of 71 

complex abundance and assembly state across conditions. PCprophet combines the benefits from 72 

previous approaches such as error rate control using database-derived complexes present in CCprofiler 73 

with the discovery of novel complexes inherent in other approaches. PCprophet offers the following 74 

features: (i) PCprophet accepts input from a variety of co-fractionation mass-spectrometry (coFrac-MS) 75 

techniques, including but not limited to size-exclusion chromatography (SEC-MS), strong cationic 76 

exchange (SCX), and blue native page (BNP); (ii) PCprophet can be used with inputs derived from 77 

widely employed mass spectrometry acquisition schemes such as data dependent acquisition (DDA), 78 

data independent acquisition (DIA) and different quantitation strategies such isobaric labelling (SILAC, 79 

TMT) or label-free; (iii) PCprophet was trained using co-eluting protein complex data, rather than co-80 

eluting PPIs, and can therefore directly predict novel protein complexes (i.e. complex-centric 81 

prediction); (iv) PCprophet performs post-prediction processing via a statistical error model based on 82 

Gene Ontology scores and other criteria to improve the reliability of the predicted protein complexes 83 

and reduce false positives; (v) PCprophet performs differential analysis of predicted protein complexes 84 

across conditions using our newly proposed Bayesian inference-based method. We applied PCprophet 85 

to predict and analyse protein complexes in different cell cycle phases using our recently published 86 

SEC-SWATH-MS dataset in the HeLa cell line17. Our results demonstrate that PCprophet predicts 87 

novel protein complexes and recapitulates known changes in protein complexes across the cell cycle.  88 

 89 

Results 90 

PCprophet accurately identifies novel protein complexes from co-fractionation MS data 91 

PCprophet enables accurate prediction of protein complexes directly from raw input (i.e. protein 92 

matrices consisting of protein intensity vs. fraction number) of SEC-SWATH-MS and other co-93 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.05.06.080465doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.080465
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

fractionation data. The framework of PCprophet (Fig. 1) includes six major modules: data pre-94 

processing, database query and de novo complex (i.e. hypothesis) generation, feature calculation and 95 

prediction, error estimation and post-prediction processing, complex-centric differential analysis, and 96 

report generation and data visualisation. During the data pre-processing step, Gaussian filtering, 97 

missing value imputation, linear interpolation and data resizing are performed to ensure data quality 98 

(See ‘Methods’ for more details). During the hypothesis generation step, a list of candidate protein 99 

complexes for each condition based on the raw input protein matrices is provided separately via peak-100 

picking and distance-based clustering, for the machine-learning model to predict. During feature 101 

calculation and prediction, each protein complex delivered by the hypothesis generation procedure is 102 

represented using a numeric vector, including average intensity difference of proteins within each 103 

fraction, local correlation of proteins at each window, shift of apex fraction of each protein and average 104 

full width of a peak at half maximum. Meanwhile, the provided database (either PPI or complexes) is 105 

mapped in the same feature space for later being used for FDR control. Then the Random Forest models 106 

predict potential protein complexes with detailed predicted probabilities. During error estimation and 107 

post-prediction processing, PCprophet filters the predictions based on Gene Ontology (GO) terms 108 

assigned to components of predicted complexes. By calculating the pairwise GO term semantic 109 

similarities of proteins assigned to a complex and comparing them to similarity scores in reference 110 

databases of known protein complexes, PCprophet filters predicted complexes by a local false 111 

discovery rate (FDR) based on GO term semantic similarity. In addition, PCprophet performs complex 112 

combination and collapsing, since hypothesized complexes might be a subset of a bigger complex or a 113 

mix of multiple complexes. During the complex-centric differential analysis, PCprophet analyses the 114 

differences in prediction results between conditions, from protein level to complex level, using a 115 

Bayesian inference method. As the final output, tabular and visual reports of the predicted protein 116 

complexes and their changes across different conditions are generated by PCprophet. In summary, 117 

PCprophet provides a ‘one-stop’ computational framework for the confident detection of protein 118 

complexes including their dynamic changes across different biological states from a wide range of 119 

coFrac-MS data. 120 
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 121 

Benchmarking PCprophet complex prediction against state-of-the-art methods 122 

Concluding from the five-fold cross-validation (refer to ‘Supplementary Results’ for more details), 123 

Random Forest (RF) has been chosen as the core classification algorithm of PCprophet. We then 124 

assessed the performance of complex predictions using the optimized PCprophet framework against 125 

two different, state-of-the-art computational approaches for the detection of protein complexes from 126 

co-fractionation data, namely CCprofiler10 and EPIC8. Similar to PrInCE12, EPIC supports the 127 

prediction of binary protein-protein interactions and network inference of underlying complexes, 128 

maintaining the potential to discover previously unknown complexes. Out of these two interaction-129 

centric approaches, we selected EPIC for our performance comparison as it has been shown to 130 

outperform previous tools such as PrInCE. We benchmarked these tools based on a recently published 131 

dataset, where HeLa CCL2 cells were synchronized in distinct cell-cycle stages (i.e. interphase and 132 

mitosis) prior to analysis by SEC and DIA/SWATH-MS17.  To avoid biases in assessing performance 133 

due to the different inputs required by these tools (CCprofiler mainly takes the peptide-level 134 

quantitative values as input, whereas PCprophet and EPIC take as input the protein-level quantitative 135 

values), we performed sibling peptide correlation using CCprofiler and exported the resulting protein 136 

matrices, thereby providing the same input for all benchmarked tools (refer to ‘Methods’ for more 137 

details). To minimize comparison bias due to parameter optimization, we ran CCprofiler with the 138 

parameters used in its original publication10. EPIC, on the other hand, offers the possibility of choosing 139 

between an SVM classifier or an RF classifier for PPI prediction. We used default parameters with both 140 

classifiers, generating two sets of predictions (EPIC_SVM and EPIC_RF). We generated protein 141 

complex hypotheses for CCprofiler using the CORUM core complexes dataset, and also trained EPIC 142 

using CORUM. PCprophet requires a protein complex or PPI database as input to perform FDR control 143 

and CORUM was used for this purpose as well. 144 

We initially evaluated the performance of each method using the numbers of known CORUM 145 

complexes recovered across all replicates and conditions. Both the absolute number of identified 146 

complexes as well as the overall recall are vastly different for each tool. The complex-centric tools (i.e. 147 
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PCprophet and CCprofiler) identified 900 and 798 known complexes respectively; while EPIC_RF 148 

recovered only 71 known complexes and EPIC_SVM recovered none (Fig. 2a).  The overlap in known 149 

complexes between PCprophet and CCprofiler was 69.7% (i.e. 556 out of 798), while 49.2% (i.e. 35 150 

out of 71) overlap was achieved between PCprophet and EPIC_RF (Fig. 2b). The identified complexes 151 

correspond to a recall rate of 37% for PCprophet, 33% for CCprofiler and 3% for EPIC_RF. PCprophet 152 

recalls a much higher fraction of CORUM complexes compared to those recalled by EPIC analysis also 153 

in a DDA-based dataset with a isotope dilution strategy for quantification18 (DDA-SILAC, 154 

Supplementary Fig. S1). We then compared the average number of subunits per complex to evaluate 155 

the similarity of known complexes from CORUM to the predicted ones from EPIC and PCprophet (Fig. 156 

2c). The distribution of subunits per complex predicted by PCprophet and CCprofiler is closer to that 157 

of CORUM complexes (average 4.1 subunits), with an average subunit size of 3.5 for PCprophet and 158 

6.9 for CCprofiler. The average subunit size per complex predicted by EPIC, however, was 19.9 159 

(p<10E-14) for the RF classifier and 71.7 (p<10E-14) for the SVM classifier, respectively. The results 160 

from EPIC thus suggest a larger size of cellular assemblies compared to the sizes of manually curated 161 

complexes in the CORUM database, with more similar sizes reported by both CCprofiler and 162 

PCprophet. 163 

We then evaluated the performance of PCprophet and EPIC in recalling protein-protein 164 

interactions (PPIs). In this comparison, we did not consider CCprofiler as it cannot derive novel 165 

complexes without prior information, which limits its applicability for discovery of novel protein-166 

protein interactions. We generated a PPI network from complexes predicted by PCprophet, EPIC_RF, 167 

and EPIC_SVM, and compared them to ground truth networks from CORUM complexes and from PPI 168 

databases such as STRING and BioPlex. This comparison allows to calculate the percentage of reported 169 

PPIs for each tool, in the form of PPI precision. PCprophet achieved a PPI precision of 0.65 when 170 

compared with STRING and 0.095 in comparison to BioPlex database (Fig. 2d). The precision of 171 

EPIC_RF was 0.12 with STRING and 0.004 when compared with PPIs in BioPlex. EPIC_SVM 172 

prediction corresponded to a precision of 0.11 and 0.002 with STRING and BioPlex respectively. We 173 

calculated for each network the degree distribution and the frequency of nodes with a particular degree 174 
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(Fig. 2e).  To evaluate the similarity between ground-truth networks and prediction, the Area Under 175 

the Curve (AUC) values were calculated for all the tools (Supplementary Table S1) and databases. 176 

Regardless of the classifier used, EPIC-derived PPI networks tend to have higher degree (Fig. 2e) 177 

compared to those from complexes in CORUM. This resulted in an AUC of 0.18 for EPIC_RF, 0.39 178 

for EPIC_SVM, 0.13 for PCprophet and 0.11 for CORUM, respectively. In this context, an AUC value 179 

closer to the one of reported complexes (CORUM) means a closer resemblance in network topology to 180 

a ground truth network. Finally, we merged all PPI databases (STRING, BioPlex and BioGrid) to 181 

generate a combined network including all deposited interactions and assessed the average distance 182 

between every pair of proteins within a predicted or known complex. The average shortest path for 183 

EPIC_RF was 2.3 and >3 for EPIC_SVM while PCprophet-predicted complexes had an average path 184 

of 1.1 edges as shown in Fig. 2f, suggesting a greater recovery of closely connected proteins by 185 

PCprophet when compared to the average shortest path in CORUM (1 edge). We also observed a 186 

similar trend on an independent dataset from PrInCE12 (Supplementary Fig. S1). To summarize, 187 

PCprophet allows for robust identification of complexes, as shown based on high recall of known 188 

complexes and high quality of newly predicted complexes, demonstrated based on the high validation 189 

rates of the underlying PPIs by large-scale databases. PCprophet outperforms available tools in the 190 

recovery of known protein complexes and PPIs while additionally providing the opportunity to detect, 191 

investigate and track assemblies that remained inaccessible to computational approaches limited by 192 

their dependence on prior knowledge10 or the sensitivity of interaction-centric scoring8, 12, 19. In order 193 

to control spurious co-elution and false positive assignments, we integrated an error model based on 194 

interactor gene ontology similarity which effectively ensures highest quality of the reported results 195 

(Supplementary Fig. S2). 196 

 197 

Predicting PPIs and protein complexes across the mammalian cell cycle via PCprophet  198 

We applied PCprophet to a second, newly published dataset17 in which HeLa cells were blocked at 199 

mitosis and interphase stages of the cell cycle. Proteins were then extracted under native conditions, 200 
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SEC separated into 65 fractions and analysed using SWATH-MS. Based on these data, we generated a 201 

large PPI map based on all PCprophet predictions (Fig. 3a). 202 

PCprophet predicted 858 protein complexes not recorded in the CORUM derived network, 203 

which contain 11527 unique PPIs consistently present across all biological replicates for one condition 204 

(Fig. 3b), suggesting good reproducibility across different fractionation experiments. Of these 205 

predicted PPIs, 54.16% are consistently supported by evidence across several PPI databases (STRING, 206 

BioPlex and BioGrid20), 14.67% have PPI evidence from a single database while 31.14 % of the PPIs 207 

are completely novel (Fig. 3c), consistent with the 30% FDR cut-off used for the search (refer to 208 

‘Methods’ section for more details). FDR in PCprophet is calculated by comparing hits from the 209 

provided database, in this instance CORUM, against positively predicted complexes, thereby 30% of 210 

the PPIs detected cannot be derived from CORUM.  We speculated that this set of PPIs without 211 

database evidence would be localized in cellular niches with poorly characterized complexes, such as 212 

membrane bounded organelles8. Consistent with this hypothesis, among the top 10 most enriched GO 213 

Cellular Compartments (CC) terms for the novel PPIs, we observed localization enrichment in 214 

mitochondrion, ficolin, cytoskeleton and cytoplasmic-associated lumen (Fig. 3d) all with an adjusted 215 

p-value of less than 1%.  216 

We identified several cases where a novel subunit is assigned to a known complex by PCprophet. 217 

For instance, PCprophet identified a novel protein complex containing the ubiquitin receptor ADRM1 218 

and 26S proteasome (Fig. 3e). This association has not been reported in the CORUM database for homo 219 

sapiens but it has been identified in mammalian cells21 and is consistent with the crystal structure of S. 220 

cerevisiae (PDB ID: 6J2C and 6J2Q)22. ADRM1 is reported to be a component of the 19S proteasomal 221 

subunit in yeast22; accordingly we observed about 15% of the ADRM1 signal to be associated with 19S 222 

(Fig. 3e) while the majority was associated with the 26S proteasome, suggesting that ADRM1 is 223 

preassembled in the 19S rather than being later recruited to a fully assembled 26S. We further identified 224 

an interaction between the NEDD8 activating complex NAE1-UBA3 and ASB6 (Fig. 3f). The NAE1-225 

UBA3 complex is required for cell cycle progression by transferring activated NEDD8 to UBE2M and 226 

subsequent proteasomal degradation23. ASB6, which belongs to the Ankyrin repeat and SOCS box 227 
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(ASB) protein family, has been shown to interact with CUL5 and RBX2 to form a non-canonical E3 228 

ubiquitin ligase complex24. We observed almost perfect co-elution between the NAE1-UBA3 complex 229 

and ASB6, consistent with reports of ASB6 and UBA3 co-purification in other species25, 26, but not 230 

with reported ASB6 binders such as CUL524 (Supplementary Fig. S3) or reported NAE1-UBA3 231 

binders like UBE2M16 or TP53BP216. Taken together, the recall of protein-protein interactions absent 232 

from the training set as well as reported complexes, suggests that PCprophet can predict protein 233 

complexes in cellular models that are poorly characterized with respect to protein complexes and PPIs. 234 

 235 

Differential analysis of mitosis-associated protein complexes   236 

We have identified 900 previously reported and 532 novel complexes in HeLa cell lysates derived from 237 

interphase and mitotic cells, with a similar number of complexes in each cellular state (Fig. 4a). Due 238 

to the continuous nature of coFrac-MS data it is possible to identify several types of profile differences 239 

at both protein and complex level. First, difference in assembly state causes a shift on the molecular 240 

mass scale, while changes at the abundance level results in an increase peak area for a particular protein. 241 

By similarity, complex compositional changes can be inferred by the difference in peak position of the 242 

subunits or addition of novel proteins, while stoichiometric changes are dependent on ratios between 243 

different proteins. This is a non-trivial issue as metrics based on profile correlation will fail in capturing 244 

abundance difference, while methods based on peak position will not detect variation in peak area. To 245 

overcome this issue, we developed a Bayesian approach to identify altered protein profiles in the 246 

different conditions tested and defined a likelihood for each interaction, which we then combine into a 247 

complex-specific likelihood (see ‘Methods’ for more details). This approach has several advantages 248 

over previous methods such as fold change17 as it does not require a pre-selected threshold and 249 

penalizes proteins with high variability. Overall, we detected 1518 proteins (238 complexes) with a 250 

probability greater than 0.5 of being differentially regulated across the cell cycle (Fig. 4b). On this set 251 

of proteins, we performed an enrichment analysis using GO ontology to evaluate if terms associated 252 

with cell cycle and mitosis (Fig. 4c) were enriched. Indeed, terms such as M phase, mitosis and nuclear 253 

division are enriched with p<0.001%. Surprisingly, we identified the Prmt5-Wdr77 complex as altered 254 
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between interphase and mitosis (Fig 4d). This complex is composed by a hetero tetramer formed by 255 

Prmt5-Wdr77 dimers in a 1:1 ratio27 (PDB ID: 4GQB). While this putative 1:1 stoichiometric ratio is 256 

reflected in the protein MS intensities during interphase, upon mitosis it is significantly shifted towards 257 

a 1.75:1 ratio, indicating a gain of Prmt5 copies in the assembly relative to the composition in interphase 258 

(Fig 4e). Interestingly, Prtm528 and Wdr7729 have been independently linked to cell cycle regulation 259 

and complex stoichiometry is necessary for correct target methylation by Prmt527. Thus, our data 260 

suggests a potential role for the Prmt5-Wdr77 complex in cell cycle regulation. Furthermore, key events 261 

such as activation of the master mitotic kinase complex CDK1/CCNB1 (Fig. 4f), increase in cohesin 262 

complex (Fig. 4g) and rewiring of the anaphase promoting complex/cyclosome (Fig. 4h) were 263 

successfully captured by our analysis strategy. 264 

To conclude, our analysis demonstrates that (i) its ability to recall known complex remodelling 265 

events in cell cycle progression, and (ii) its sensitivity to discriminate between different scenarios such 266 

as increase in abundance (Fig. 4fg) and difference in peak shapes (Fig. 4h). Altogether, our analysis 267 

recapitulates previous knowledge about cell cycle and cell cycle-related events, selectively recalling 268 

complexes involved in cell cycle progression and mitosis. 269 

 270 

Discussion 271 

Protein complexes play fundamentally important roles in mediating and regulating biological functions. 272 

Recent advances in proteomic technologies based on co-fractionation and mass spectrometric 273 

correlation profiling of protein elution patterns have opened up a promising avenue to characterize 274 

protein complexes at breadth and temporal resolution. State-of-the-art workflows such as SEC-275 

SWATH-MS techniques and complex-centric data analysis have advanced the selectivity and 276 

throughput of chromatographic protein complex detection but remain limited to the detection of 277 

previously observed protein complexes. Methods to predict novel protein complexes from co-278 

fractionation data are based on identification of PPIs and inference of complexes from the resulting 279 

weighted network. Such probabilistic methods for network partitioning rely heavily on network 280 

topology, which makes it challenging to partition detected PPIs into complexes, due to the high 281 
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dimensionality of the data. In light of this, we introduced the PCprophet framework which combines 282 

complex-level scoring with powerful machine learning technology to classify and confidently predict 283 

novel protein complexes from protein coFrac-MS data. In addition, PCprophet facilitates the 284 

differential tracking and comparison of these complexes across two or more experimental conditions 285 

that become increasingly accessible via high throughput implementations of coFrac-MS. We have 286 

demonstrated outstanding prediction performance of PCprophet on manually annotated datasets and 287 

have shown that the method significantly outperforms state-of-the-art complex prediction and 288 

identification tools. We have developed a Bayesian inference-based method to analyse differences in 289 

protein complex abundance and composition across conditions. Our analysis on proteomic profiles 290 

across the cell cycle of HeLa cells demonstrated that PCprophet can capture expected changes in 291 

protein complexes between interphase and mitotic cells. 292 

 PCprophet is available in command-line version under MIT licence 293 

(https://github.com/fossatiA/PCprophet) and is easily applied to any coFrac-MS dataset. The data pre-294 

processing module readily accepts different types of quantitative protein level tables. PCprophet could 295 

also be applied in clinical proteomics and personalized medicine areas, to assist the discovery and 296 

analysis of novel protein complexes and to identify complexes that are altered across groups of samples. 297 

We anticipate that the PCprophet package will serve as a reliable and accurate tool for novel protein 298 

complex prediction and analysis from co-fractionation MS data because it extends the scope of 299 

comparative proteomics from the level of differentially abundant proteins to the level of differentially 300 

abundant and perturbed complexes between samples, thus bringing proteomic analysis closer to 301 

biological function. 302 

 303 

Methods 304 

Methods, including statements of data availability and any source code and references, are available in 305 

the online version of the paper. 306 

 307 

 308 
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Methods 333 

Training dataset curation and annotation   334 

In total, three co-fractionation replicates using SWATH and DDA-SILAC based datasets were used to 335 

train and evaluate PCprophet, including the SEC-SWATH-MS dataset from HEK293 cell line10 for 336 

training PCprophet, the mitotic proteomic data from HeLa CCL2 cells17 and the DDA-SILAC dataset 337 

extracted from the study by Kristensen and used as testing dataset for PrInCE12, for independently 338 

testing PCprophet. Note that we did not use the C. elegans protein complex dataset from the EPIC8 339 

package to test PCprophet for the following reasons: (i) their datasets used spectral count; however our 340 

previous study showed lower performance of spectral counts compared to XIC based quantitation (MS1 341 

or MS2) for complex analysis10; (ii) the features and pre-processing employed in PCprophet are 342 

inherently continuous in nature such as correlation and FWHM; and (iii) EPIC was developed and 343 

evaluated using the same dataset. It is therefore challenging to conduct an unbiased and fair estimation 344 

and comparison of the performance for all the other approaches. A structuralized description of these 345 

datasets is available in Supplementary Table S2.  346 

To train accurate machine-learning models, we manually annotated the protein complexes from 347 

the SEC-SWATH-MS dataset from HEK293 cells10. Briefly, samples were acquired in SWATH mode 348 

using a sample-specific library generated from high-pH fractionated samples. Following conversion to 349 

mzXML via msConvert, OpenSWATH search was performed with the parameter previously 350 

described10. As a result, the final feature alignment outputs from TRIC30 (using top2 protein 351 

quantification) was used for the training PCprophet. The reference core (non-redundant) complexes 352 

were downloaded from CORUM v3.013. Protein accession numbers were converted into gene names 353 

and sequentially mapped to CORUM. We removed complexes from our dataset where the number of 354 

subunits present in the dataset was less than 50% of known components to retain only complexes with 355 

high coverage, consistent with the annotation strategy for the complex analysis software CCprofiler10. 356 

To train a supervised classification model, it is crucial to reliably annotate the samples of positive (i.e. 357 

complexes with good co-elution profiles) and negative (i.e. complexes with poor co-elution profiles) 358 

classes. For the training dataset (i.e. HEK293), a protein complex was annotated positive if it satisfied 359 
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the following criteria. First, more than 75% of the known subunits coeluted in the same fraction with 360 

baseline resolution;  second, the main peak was required to have a minimal FWHM (full width at half 361 

maximum) of 4 fraction; third, minimal normalized height of 20% to the maximum signal for every 362 

protein and needs to be at least 10% above background,  and the complex has been annotated in the 363 

CORUM database. On the other hand, if the complex was annotated in CORUM but did not pass all 364 

the other criteria it was annotated as negative. To objectively annotate the protein complexes in the 365 

training dataset, three annotators were involved in this procedure and only positive and negative protein 366 

complexes nominated and agreed by all the annotators were used. Notice that we did not randomly 367 

select proteins to form negative but ‘fake’ protein complexes, as there would be a huge number of 368 

different combinations and possibilities and might result in random selection of undiscovered protein-369 

protein interaction. In addition, we changed the original number of fractions of the training dataset from 370 

81 to 72, to standardize number of fractions across different experiments. The final resulting training 371 

dataset contained 242 positive protein complexes and 738 negative complexes.  372 

 373 

Dataset pre-processing 374 

Prior to the generation of potential protein complexes based on the protein raw matrices across various 375 

conditions, four data pre-processing steps are performed, including Gaussian filtering, missing value 376 

imputation, linear interpolation, and data rescaling. One-dimension Gaussian filtering, 377 

 𝐺(𝑥) =
1

√2𝜋𝜎
𝑒!

"!
#$!  (1) 

 378 

was employed to smooth the data by removing noise and approximating peaks as Gaussian curves, 379 

where x denotes the intensity of the current fraction and 𝜎 was set to 1. To remove the missing values 380 

in the raw data, an imputation strategy by calculating the average of the two neighbours of missing 381 

value, was implemented. The number of fractions N in the co-fractionation experiments always varies 382 

due to various experimental setups and inherent variability. When constructing the machine-learning 383 

models, the number of features is dependent on the number of fractions (see ‘Feature engineering and 384 

construction of machine-learning models’ for feature generation). Based on the number of fractions 385 
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(i.e. 72) in our training dataset (see ‘Data curation and annotation’ for details), it was therefore 386 

necessary to rescale the number of fractions of user-provided datasets to 72. In PCprophet, resampling 387 

and one-dimensional linear interpolation were applied for this purpose, thereby rescaling the number 388 

of fractions to 72, consistent with the training dataset. Lastly, we added an additional step to standardize 389 

every protein profile from their original intensity in the range [0, 1] to make it independent from the 390 

quantitation strategy used. 391 

 392 

Hypothesis generation 393 

In this study, hypothesis generation refers to the construction of putative protein complexes. 394 

Theoretically, there could be a huge number of possible combinations of proteins to form different 395 

protein complexes. Rather, we proposed a hypothesis generation module to construct potential protein 396 

complexes by aligning peaks of different proteins and cutting the dendrogram-like tree structure, 397 

similar to the procedure discussed in a previous study11. To do so, hypothesis generation firstly 398 

performs peak-picking to identify all the apexes of intensity and their associated fractions of all proteins 399 

in the input data, with the help of the Python package ‘SciPy’ (https://www.scipy.org/). Then linkage 400 

hierarchical clustering using the ‘Ward’ distance measure was performed based on the apexes collected 401 

during the peak-picking stage. A dendrogram-like tree structure was then generated based on the results 402 

of the linkage hierarchical clustering. The hypotheses (i.e. putative protein complexes) were then 403 

generated by cutting the dendrogram from bottom to top at each level. A conceptual illustration of the 404 

hypothesis generation is presented in Supplementary Fig. S4. In practice, these steps are performed 405 

on a linkage matrix instead of a dendrogram structure to further reduce the computational burden. 406 

 407 

Feature engineering and construction of machine-learning models.  408 

To represent a protein complex, we designed a variety of features based on the protein co-elution profile 409 

and the number of fractions N. These features are mainly categorised in four groups: (1) average 410 

intensity difference of proteins within each fraction (Supplementary Fig. S5a), (2) local correlation 411 
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of proteins at each window (Supplementary Fig. S5b), (3) shift of apex fraction of each protein 412 

(Supplementary Fig. S5c), and (4) average full width half maximum (Supplementary Fig. S5d). 413 

For the intensity difference of proteins and the correlation of proteins at each fraction, we set a 414 

sliding window (6 fractions wide) with 1 fraction step wise increase. The intensity difference of proteins, 415 

𝐷%&'(&)%'*_% reflects the average difference of intensity values of protein a, b, and c, at each fraction, 416 

calculated by: 417 

 𝐷%&'(&)%'*_% = 𝜇(|𝑎% − 𝑏%|, |𝑎% − 𝑐%|, |𝑏% − 𝑐%|), 𝑖 = (1,2, … , 𝑁) (2) 
 418 

where i denotes the number of fractions. As a result, the dimension of this feature type is N. Similarly, 419 

at each window, pairwise correlation of intensity was also calculated, using: 420 

 𝐶𝑜𝑟𝑟% = 𝜇(𝐶𝑜𝑟𝑟(𝑎,% , 𝑏,%), 𝐶𝑜𝑟𝑟(𝑎,% , 𝑐,%), 𝐶𝑜𝑟𝑟(𝑏,% , 𝑐,%)), 𝑖 = (1,2, … , 𝑁) (3) 
 421 

Where awi denotes the local value of a in a window w centred at fraction i. For the other two types of 422 

features, including fraction difference of apex peaks and full width half maximum a two step-procedure 423 

is employed. First, all peaks for a protein complex hypothesis are selected, and then a modified version 424 

of the Dijkstra’s algorithm is applied to select the peaks for every protein with the minimum distance.   425 

By selecting the closer peaks, we are able to positively predict proteins with multiple peaks in separate 426 

assemblies, as we avoid the use of heuristic to select the complex-specific peak. While the apex 427 

difference is a feature used also in the PrInCE software12, substantial differences are present as in this 428 

tool, the fraction with the maximum value for every protein is counted as apex, thereby using always 429 

the same peak for a protein in multiple assemblies. 430 

For the average apex difference, we used following formula for the calculation, respectively: 431 

 𝐹-,/,0 = 𝜇;|𝑋1- − 𝑋1/|, |𝑋1- − 𝑋10|, |𝑋1/ − 𝑋10|=, (4) 
 432 

where 𝑋1-, 𝑋1/, 𝑋10 represent the apex fraction of protein a, b and c, respectively. The average full 433 

width half maximum is calculated using: 434 

 𝐹𝑊𝐻𝑀-,/,0 = 𝜇;|𝑋-_2%34' − 𝑋-_5(6'|, |𝑋/_2%34' − 𝑋/_5(6'|, |𝑋0_2%34' − 𝑋0_5(6'|=, (5) 
 435 
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while 𝑋-_2%34'- 𝑋-_5(6', 𝑋/_2%34', 𝑋/_5(6', 𝑋0_2%34', 𝑋0_5(6' demonstrate the width when achieving half 436 

intensity area of the co-elution curve of protein a, b and c, respectively. In total, we generated 2𝑁 + 2 437 

features (i.e., 146 when N=72). 438 

Five well-established machine-learning models were selected to test the prediction performance, 439 

including Decision Tree (J48)31, Random Forest32 (RF), Naïve Bayes33 (NB), Support Vector 440 

Machines34 (SVM) and Logistic Regression35 (LR). For SVM, we selected two major kernels, including 441 

polynomial and RBF36 (Radial Basis Function) kernels, due to the consideration of the balance of 442 

computational complexity and running time. These two models were then termed as SVM_POLY and 443 

SVM_RBF, respectively. Note that the above machine-learning algorithms were implemented using 444 

the scikit-learn package37 and cross-tested in the WEKA38 platform. Different implementations of such 445 

algorithms in other platforms may cause difference in term of prediction performance. To objectively 446 

portrait the prediction performance and avoid overfitting, five-fold cross-validation strategy using the 447 

training dataset was performed, together with five widely acknowledged performance measures, 448 

including accuracy (ACC), area under the curve (AUC), Matthew’s correlation coefficient (MCC), 449 

sensitivity and specificity: 450 

 𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (6) 

 451 

 𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

-(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (7) 

 452 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 (8) 

 453 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦/𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (9) 

 454 

where TP, TN, FP, FN are true positives, true negatives, false positives and false negatives, respectively. 455 

 456 

 457 

 458 
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Benchmarking with state-of-the-art approaches for co-fractionation MS based protein complex 459 

prediction 460 

We compared the prediction performance of PCprophet with currently existing computational 461 

approaches for protein complex characterization based on co-fractionation MS data, including 462 

CCprofiler10, EPIC8, and PrInCE12. CCprofiler is a statistical approach for the identification of protein 463 

complexes by referencing databases as prior information. In contrast, EPIC and PrInCE were designed 464 

to infer protein complexes based on PPI prediction from co-elution profiles. When running EPIC, two 465 

provided models, including SVM and RF (i.e. -M RF and -M SVM) were both tested with other 466 

parameters by default (i.e. -t 9606 for H. sapiens; -s 11101001; -f STRING). Two datasets, as shown 467 

in Supplementary Table S2 were used to benchmark with CCprofiler and EPIC, including the mitotic 468 

proteomic data from HeLa cells17, and the soluble protein complex dataset from the study of Stacey et 469 

al.12 470 

Benchmarking using HeLa mitotic proteomic data. The TRIC feature aligned file of the dataset 471 

was imported into CCprofiler and following sibling peptide correlation (the ‘filterBySibPepCorr’ 472 

function). Protein quantification was done using the top 2 proteotypic peptides per protein. The 473 

resulting protein tables were exported and used as input for EPIC and PCprophet. PCprophet was run 474 

with default parameters, with the FDR fixed at 30% and controlled using the CORUM database. 475 

CCprofiler complex-centric analysis was done as previously described1, using  smoothing_length = 9, 476 

corr_cutoff = 0.95, window_size = 8, rt_height = 3 and a 2x molecular weight cutoff1. For the 477 

calculation of recall against CORUM, PCprophet output (i.e. the ‘ComplexReport.txt’ file) was filtered 478 

to only ‘Reported’ complexes which were predicted as ‘Positive’; while EPIC derived complexes were 479 

matched to CORUM by defining a positive predicted complex in which 50% or more subunits are 480 

reported in a single CORUM core complex. For CCprofiler, the positive complexes were defined when 481 

the q-value is smaller than 5%, as previously described1. The number of complexes was considered 482 

across replicates as the number of unique positive CORUM Complex ID. Two measures were applied 483 

when assessing the prediction performance, including True Positive Rate (TPR; specificity) and 484 

Positive Predicted Value (PPV), which is defined as follows: 485 
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 𝑃𝑃𝑉 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃). (10) 

 486 

For evaluation of average network degree, protein complexes from the prediction outputs of EPIC and 487 

PCprophet, and CORUM (Human only) were collapsed to a PPI network. The reference networks from 488 

STRING (Human) and BioPlex were downloaded and used directly. Degree calculation for every 489 

protein in the networks was done using the NetworkX package v2.1 (https://networkx.github.io) and 490 

ranked. A log-log plot was generated and the AUC for the resulting curve was calculated using the 491 

integrate module from SciPy (https://www.scipy.org). For evaluation of node centrality, the resulting 492 

complexes from PCprophet, EPIC_RF and EPIC_SVM were projected into a subgraph generated by 493 

filtering STRING to only nodes present in the original protein matrixes thereby representing all the 494 

reported protein-protein interaction available in our data. For every complex in the three tools 495 

(PCprophet, EPIC_RF and EPIC_SVM) the average complex closeness (ACC) was defined as the 496 

mean shortest path between all members. The resulting vector represents the tendency of the different 497 

algorithms to recapitulate first, second or outer shells level of interactors. The same was done also for 498 

CORUM complexes within the same subgraph. Average complex size was defined as the mean number 499 

of subunits for the same complex across replicate for PCprophet and the number of subunits for every 500 

complex in the EPIC output.  501 

Benchmarking using the DDA-SILAC dataset18. Condition1.tsv and condition2.tsv were 502 

downloaded from https://github.com/fosterlab/PrInCE-Matlab and separated into the different 503 

replicates. PCprophet and EPIC were run as described above. TPR and PPV were calculated as 504 

described above for CORUM. For BioPlex and STRING both networks were filtered to remove 505 

proteins not identified. PCprophet, EPIC_RF and EPIC_SVM derived complexes were collapsed to 506 

generate a PPIs network and then recall was calculated using a PPI-centric approach by assessing which 507 

fraction of PPIs was present over the entire reference (TPR) and which fractions of PPIs was correct 508 

across all of the predicted one (PPV). Centrality assessment via KS test and AUC calculation was done 509 

as described above. 510 

 511 
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 512 

Post-prediction processing 513 

During this stage, GO (Gene Ontology) term score filtering and complex combination and collapsing 514 

are performed in order to ensure the reliability of predicted complexes. Despite the incompleteness of 515 

GO term annotation of CORUM database, we compared the distributions of GO terms of predicted 516 

protein complexes and documented protein complexes in the CORUM database13 (Supplementary Fig. 517 

S6a). We first collected GO terms of each protein in a predicted complex based on the annotation of 518 

AmiGO2 database (i.e. the Gene Ontology resource)39-41. Then, for every possible protein pair we 519 

calculated pairwise GO term semantic similarity using the strategy published by Wang et al42. For 520 

instance, given a protein complex PC with three subunits A, B and C, all the GO terms, including 521 

molecular function (MF), biological process (BP), and cellular component (CC) are collected. For all 522 

the three possible protein pairs, including A-B, A-C and B-C, within each category, the semantic 523 

similarity scores of all the pairwise GO terms are calculated and the average score is reported as the 524 

overall score for the current GO category. The final overall GO score of protein complex PC in this 525 

case is then defined as follows: 526 

 𝐺𝑂(𝑃𝐶) = 𝜇(𝑀𝐹(𝐴, 𝐵),𝑀𝐹(𝐴, 𝐶),𝑀𝐹(𝐵, 𝐶)) + 𝜇(𝐵𝑃(𝐴, 𝐵), 𝐵𝑃(𝐴, 𝐶), 𝐵𝑃(𝐵, 𝐶))
+ 𝜇(𝐶𝐶(𝐴, 𝐵), 𝐶𝐶(𝐴, 𝐶), 𝐶𝐶(𝐵, 𝐶)). (11) 

 527 

The GO term scores of core protein complexes from the CORUM database are calculated using the 528 

same strategy. Given the two distributions of the GO term scores of both protein complex hypothesis 529 

and the complexes harboured from the CORUM database, we then estimated false discovery rate for 530 

the positively predicted hypothesis by calculating global FDR for every GO scores of positive CORUM 531 

complexes with the following formula: 532 

 𝐹𝐷𝑅(#|%&!,%(") =
∫ 𝐺𝑜*(𝑥)𝑑𝑥
+
#

∫ 𝐺𝑜,(𝑥)𝑑𝑥
+
-

, (12) 

 533 

where 𝐺𝑜4 and 𝐺𝑜0 are defined as distributions of the Wang similarity score for hypothesis (h) and 534 

CORUM-derived complexes (c).  This allows us to obtain the specific GO term score that satisfies the 535 
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target FDR for filtering the predicted protein complexes without having to use a fixed threshold, thereby 536 

allowing for more or less conservative searches. 537 

    Given the possibility that the positive complex hypothesis might be a subset of a bigger complex 538 

or might contain multiple smaller complexes, PCprophet allows users to select a complex collapsing 539 

mode to further process the predicted complexes (Supplementary Fig. S6b), including ‘GO’ (based 540 

on GO terms), ‘CAL’ (based on the provided calibration curve), ‘SUPER’ (to find the biggest protein 541 

complex), and ‘NONE’ (to ignore this process). Specifically, following prediction and FDR control, 542 

overlap is calculated and complexes for which the overlap is more than 0.75 are merged on the different 543 

criterion. Given a set of complexes defined as follows in Supplementary Table S3, for example, 544 

collapsing using ‘GO’ will results in the complex which has the greatest GO score (i.e. PC2). The 545 

‘SUPER’ option will select the of the complex with the highest number of subunits (i.e. PC3) while 546 

choosing ‘CAL’ will calculate the difference between apparent MW from the SEC and extrapolated 547 

molecular weight from the calibration curve. The complex with the smaller difference (i.e. PC3) will 548 

therefore be selected. The ‘CAL’ mode is selectable only if the calibration and a molecular weight 549 

table from the UniProt43 database or similar format is provided. ‘NONE’ option will skip the collapsing 550 

procedure. 551 

 552 

Protein complex differential analysis across different conditions 553 

Bayesian inference of differential regulation of protein abundance. Inferring differentially regulated 554 

proteins assumes that protein abundance measurements were obtained for a number of samples which 555 

differ in a biological phenotype of interest. This situation allows representing the protein abundance 556 

measurements for one protein as a matrix X where rows correspond to samples and columns correspond 557 

to retention time. Phenotype information t is assumed to be discrete with cardinality #t and order 558 

matched such that the phenotype information for sample n, 𝑡& = 𝒕[𝑛]  corresponds to the protein 559 

abundance row vector 𝑥& = 𝑿[𝑛]. If we assume that the correct model is among the investigated 560 

candidate models, we have a problem termed ‘m-closed model selection’44. In this situation the 561 

Bayesian approach to inferring whether a phenotype change corresponds to differential regulation in 562 
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protein abundance suggests to use marginal likelihoods to derive the corresponding Bayes factors44. To 563 

obtain a solution which may be calculated analytically, we use the model illustrated in Supplementary 564 

Fig. S7a. The model represents protein abundance measurements by Normal-Whishart distributions. 565 

Differential regulation is implicitly represented (variable not shown in the graph) via a protein specific 566 

indicator variable Ip. Differential regulation is coded by 𝐼1 = 1 and results in modelling the protein 567 

abundances 𝑥& conditionally on phenotype states 𝑡& by phenotype specific Gaussian distributions. To 568 

obtain a measure of differential protein regulation we compare the 𝐼1 = 1  model with a simpler 569 

explanation which we denote as 𝐼1 = 0. The simple model corresponds to a non-differential regulation 570 

assumption and uses one common Gaussian distribution to model 𝑥& irrespective of the phenotype state 571 

𝑡&. Irrespective whether we have #𝑡 multivariate Gaussians in case of 𝐼1 = 1 or one shared Gaussian 572 

in case of 𝐼1 = 0 , the joint distribution of data and model parameters 𝑃(𝑿, 𝜇, Λ|𝒕, 𝛾,𝑚, 𝑔, ℎ)  is 573 

represented by the directed acyclic graph (DAG) in Supplementary Fig. S7a. In case of 𝐼1 = 1 we 574 

have 575 

 𝑝H𝑿, 𝜇, ΛK𝒕, 𝛾,𝑚, 𝑔, ℎ, 𝐼. = 1S = 𝑝(Λ|𝑔, ℎ)U𝑝(𝜇/|𝑚, 𝛾, Λ)
#𝒕

/23

U𝑝H𝑥4K𝜇-# , ΛS
4

, (13) 

whereas in case of 𝐼1 = 0 we have the simpler relation 576 

 𝑝(𝑿, 𝜇, Λ|𝒕, 𝛾,𝑚, 𝑔, ℎ, 𝐼. = 0) = 𝑝(Λ|𝑔, ℎ)𝑝(𝜇|𝑚, 𝛾, Λ)U𝑝(𝑥4|𝜇, Λ)
4

. (14) 

The next step to obtain a measure of differential regulation is to calculate the marginal likelihood for 577 

both models in Equation (13) and Equation (14). For Equation (13) we get 578 

 𝑝(𝑿|𝒕, 𝛾,𝑚, 𝑔, ℎ, 𝐼. = 1) =WX Y𝑝(Λ|𝑔, ℎ)U𝑝(𝜇/|𝑚, 𝛾, Λ)
#𝒕

/23

U𝑝H𝑥4K𝜇-# , ΛS𝑑Λ
4

U𝑑𝜇/

#𝒕

/23

Z ,
5$∀/

7

 (15) 

while Equation (14) leads to 579 

 𝑝H𝑿K𝒕, 𝛾,𝑚, 𝑔, ℎ, 𝐼. = 0S = X[𝑝(Λ|𝑔, ℎ)𝑝(𝜇|𝑚, 𝛾, Λ)
7

U𝑝(𝑥4|𝜇, Λ)𝑑𝜇, 𝑑Λ
45

. (16) 

For coding equal preference for the indicator values 𝐼1 = 1 and 𝐼1 = 0 we use a flat prior and hence 580 

𝑃;𝐼1 = 1= = 𝑃;𝐼1 = 0= = 0.5. The marginal likelihoods in Equations (15) and (16) can subsequently 581 

be converted to the posterior probability for differential regulation of protein abundance 582 

𝑃;𝐼1 ≡ 1|𝒕, 𝛾,𝑚, 𝑔, ℎ=: 583 
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 𝑃H𝐼. = 1K𝒕, 𝛾,𝑚, 𝑔, ℎS =
𝑝H𝑿K𝒕, 𝛾,𝑚, 𝑔, ℎ, 𝐼. = 1S

𝑝H𝑿K𝒕, 𝛾,𝑚, 𝑔, ℎ, 𝐼. = 1S + 𝑝H𝑿K𝒕, 𝛾,𝑚, 𝑔, ℎ, 𝐼. = 0S
. (17) 

 584 

Taking the posterior probability 𝑃;𝐼1 = 1|𝒕, 𝛾,𝑚, 𝑔, ℎ= in Equation (17) as measure of differential 585 

protein regulation is justified by the fact that Bayesian model selection has Occam’s razor built in44. 586 

Posterior probability values 𝑃;𝐼1 = 1|𝒕, 𝛾,𝑚, 𝑔, ℎ= which are larger than 0.5 will only be observed if 587 

the more complex model (𝐼1 = 1) provides a substantially better fit of the data X and t than the simpler 588 

model (𝐼1 = 0).  589 

Inferring differentially regulated protein complexes. Inference of differential regulation of 590 

protein complexes assumes that the assignment of proteins to protein complexes is known. All 591 

subsequent derivations assume thus that the protein complex 𝑐 is defined as a set of proteins 𝐶0 =592 

[𝑃7, 𝑃#, … , 𝑃8]  of cardinality 𝐶 . We assume furthermore that a set of retention profiles 𝑋0 =593 

[𝑋98 , 𝑋9! , … , 𝑋99] and a corresponding set of phenotype descriptions 𝑡0 = [𝑡98 , 𝑡9! , … , 𝑡99] is available. 594 

If the retention profiles in 𝑋0 and thus the corresponding phenotype characteristics in 𝑡0 can at least in 595 

part be paired among all proteins which establish a complex, we have the subset 𝑁0 = [𝑛7, 𝑛#, … , 𝑛:]  596 

of samples for which complete observations are available. To prepare inferring differentially regulated 597 

protein complexes we may in this situation aggregate the protein specific retention profiles to a column 598 

concatenated matrix 𝒀0  which represents all retention profiles of the entire complex. Denoting the 599 

selection of the nth row of matrix 𝑋9: 	as 𝑋9:[𝑛]	and column wise row concatenation of row vectors 600 

𝑋9:[𝑛] and 𝑋9:;8[𝑛]	as [𝑋9:[𝑛], [𝑋9:;8[𝑛]],	we obtain 601 

𝒀0 =

⎝

⎜
⎛
𝑋98[𝑛7], 𝑋9![𝑛7], . . . , 𝑋99[𝑛7]
𝑋98[𝑛#], 𝑋9![𝑛#], . . . , 𝑋99[𝑛#]

⋮ . . . . . . ⋮
𝑋98[𝑛:], 𝑋9![𝑛:], . . . , 𝑋99[𝑛:]⎠

⎟
⎞
, 602 

as protein complex specific matrix of retention profiles and 𝒖0 = [𝑡98[𝑛7], 𝑡98[𝑛#], … , 𝑡98[𝑛:]]
;  as 603 

protein complex specific phenotype vector. Inference of differentially regulated complexes is now a 604 

straightforward application of Equation (15), Equation (16) and Equation (17). We have just got to 605 

replace the protein specific retention profiles X in these equations with the protein complex specific 606 
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retention profiles Yc and exchange the phenotype characterization 𝒕  with the phenotype 607 

characterization of the protein complex 𝒖0. Pooling of retention profiles requires in addition to the 608 

assumptions which led to the DAG in Figure 1 no additional assumptions. While this is an advantage 609 

of the approach, we have to consider that pooling of samples requires compete sets of paired retention 610 

profiles which have to be available for all proteins which aggregate to the complex. In practice 611 

measurement errors will lead to random dropouts and thus to a potentially small number of samples 612 

where all data is available. To avoid such information loss by pairing of samples, we propose an 613 

additional approach for assessing differentially regulated protein complexes by Bayesian model 614 

probabilities. For assessing differential regulation of protein complex 𝑐 we apply Equations (15), (16) 615 

and (17) for every protein 𝑃< ∈ 𝐶0 separately. Following the assessment on protein level, differential 616 

expression of protein complex 𝑐 is coded via a binary indicator variable 𝐶0 . Assuming conditional 617 

independence among proteins we may represent this proposition by the DAG in Supplementary Fig. 618 

S7b. The DAG leads for the posterior probability of differential regulation of protein complex 𝐶0 619 

finally to Equation (18). 620 

 621 

 𝑃H𝐶, ≡ 1K𝑿<% , . . . , 𝑿<& , 𝒕<% , . . . , 𝒕<& , 𝛾,𝑚, 𝑔, ℎS =
𝑃(𝐶, ≡ 1)U 𝑝H𝑿<'K𝒕<' , 𝛾,𝑚, 𝑔, ℎ, 𝐼<' ≡ 1S

<'∈>"

∑ 𝑃(𝐶, ≡ 𝐼)3
?2@ U 𝑝H𝑿<'K𝒕<' , 𝛾,𝑚, 𝑔, ℎ, 𝐼<' ≡ 𝐼S

<'∈>"

, (18) 

 622 

with 𝑃< ∈ 𝐶0 denoting all proteins which aggregate to the protein complex 𝑐 . The prior probability for 623 

protein complex 𝑐 being differentially regulated, 𝑃(𝐶0), is assumed to be identical for both indicator 624 

values and thus 𝑃(𝐶0 = 1) = 𝑃(𝐶0 = 0) = 0.5. The expression 𝑝H𝑿<'K𝒕<' , 𝛾,𝑚, 𝑔, ℎ, 𝐼<' = [0,1]S denotes 625 

for 𝐼 = [0, 1] the marginal likelihoods we obtain with the model in Supplementary Fig. S7a for 626 

protein 𝑃< 	according to Supplementary Equations (15) and (16). 627 

 628 

Software implementation and data visualisation 629 

The command-line version of PCprophet was implemented and visualised using Python, together with 630 

third-party packages including SciPy, Pandas45, scikit-learn37, NetworkX46, and Matplotlib47.  631 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.05.06.080465doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.080465
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26 

 632 

Source code availability 633 

PCprophet is open-access and freely available for academic purposes at 634 

https://github.com/fossatiA/PCprophet under the MIT License. 635 

 636 
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 733 

Fig. 1. The framework of PCprophet. It consists of the six major modules including (i) data pre-734 

processing, (ii) database query and de novo complex (i.e. hypothesis) generation, (iii) feature 735 

calculation and prediction, (iv) error estimation and post-prediction processing, (v) complex-centric 736 

differential analysis, and (vi) report generation and data visualisation. 737 

 738 
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 739 
Fig. 2. Benchmarking PCprophet against existing tools for protein complex profiling and prediction. a, 740 

The numbers of CORUM complexes recovered and the numbers of overlapping complexes by the 741 

assessed tools. b, Absolute number of CORUM complexes recovered by each tool. c, Number of 742 

subunits per complex predicted and identified by different tools. Boxplot shows the medians and the 743 

ticks represent standard deviation. d, The precision values (refer to the ‘Methods’ section for more 744 

details) of PPI prediction for de novo protein complex prediction tools.  e, Log-log plot showing the 745 

degree distribution of the network generated by each tool versus ground-truth databases (STRING, 746 

BioPlex and CORUM). f, Distribution of shortest path per complex across all subunits, as reported by 747 

the indicated tools. The medians are highlighted in white dots.748 
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 749 
Fig. 3. Evaluation of de novo prediction using PCprophet. a, The PPI map generated by PCprophet 750 

from HeLa cell proteomic data. Edge width represents the number of technical replicates for which a 751 

particular PPI was found. Black edge are novel PPIs and grey edges are reported PPIs. Protein 752 

communities are highlighted in different node colours. b, Number of novel and reported PPIs across 753 

all conditions within technical replicates (i.e. interphase and mitosis). c, Annotation of novel PPIs (i.e. 754 

not documented in the CORUM databases) in PPI databases (STRING, BioPlex, BioGrid). d, 755 

Enrichment analysis for GO Cellular Component for PPIs without prior evidence in any database. e, 756 

26S proteasome and ADRM1 coelution from interphase and mitotic cells. f, Co-elution of ASB6 with 757 

the NAE1 and UBA3 complex.758 
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 759 
Fig. 4. Differential analysis of complexes across the cell cycle states tested. a, Absolute number of 760 

novel and reported complexes in the indicated cell cycle stages. b, Stacked histogram for differentially 761 

regulated proteins (n=1518) and differentially regulated complexes (n=238). c, Enrichment for GO 762 

Biological Process for differentially regulated proteins between the two conditions using as background 763 

all proteins identified. Node size represents number of proteins within the particular category. Nodes 764 

colour represents Bonferroni adjusted p value, ranging from p=10-3 (yellow) to p=10-8 (orange). d, 765 

Mirror plot for co-elution profiles of Prmt5-Wdr77 complex in mitosis (upper positive Y axis) and 766 

interphase (negative y axis). Values were averaged across the three replicates for each condition and 767 

bar represents standard error of the mean. e, Bar-plot of Prmt5/Wdr77 complex stoichiometry in 768 

interphase (red, mean=1.04) and mitosis (blue, mean=1.75). f, Co-elution profile for the CCNB1/CKD1 769 

complex (G) Co-elution profile for the Anaphase promoting complex. h, Co-elution profile for the 770 

cohesion complex. 771 
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Supplementary Methods 772 

Mathematical details for Bayesian inference of differential regulation of protein abundance and 773 

protein complexes 774 

We now present further mathematical details how we may express the marginal likelihoods in 775 

Equations (15) and (16). We start this derivation by expressing the prior densities over Λ and μ for the 776 

simpler model 𝐼1 = 0	and the densities over μτ∀τ for the more complex model 𝐼1 = 1. As is mentioned 777 

above, the prior over the precision matrix Λ is coded as a product of Gamma densities. With Λ =778 

𝑑𝑖𝑎𝑔([𝜆7, … , 𝜆=]) and D denoting the input dimension (number of columns) of X we get 779 

 𝑝(Λ|𝑔, ℎ) =`(
ℎA

Γ(𝑔) 𝜆B
AC3exp	(−ℎ𝜆B))

D

B23

, (19) 

 780 

where Γ(𝑔) = ∫ 𝑥3!7exp	(−𝑥)𝑑𝑥>
"?@  denotes the Gamma function. The multivariate Gaussian prior 781 

over μ for the non-differentially regulated case 𝐼1 = 0 is 782 

 𝑝(𝜇|Λ, 𝛾,𝑚) = (2𝜋)C
D
E𝛾

D
E‖Λ‖

3
Eexp	(−0.5𝛾(𝜇 −𝑚)FΛ(𝜇 −𝑚)), (20) 

 783 

where ∥Λ∥ denotes the determinant of the precision matrix. Finally, we get the multivariate Gaussian 784 

prior over μ for the differentially regulated case 𝐼1 = 1 as 785 

 𝑝(𝜇|Λ, 𝛾,𝑚) =U((2𝜋)C
D
E𝛾

D
E‖Λ‖

3
Eexp	(−0.5𝛾(𝜇/ −𝑚)FΛ(𝜇/ −𝑚)))

#𝒕

/23

. (21) 

 786 

To calculate the marginal likelihood for the model 𝐼1 = 1 we integrate Equation (13) first with respect 787 

to all μτ and then with respect to Λ to get 788 

 

𝑝(𝑿|𝒕, 𝛾,𝑚, 𝑔, ℎ, 𝐼. ≡ 1) = ( *
(

G(A)
)D(2𝜋)C

)∗+
, 𝛾

)#𝒕
, U (𝛾 + 𝑛/)

C),
#𝒕

/23
` Γ(𝑔

^
) ℎ

^

B
A
^

k
D

B23

, where 

𝑔
^
= 𝑔 +

𝑁
2, 

ℎ
^
B = ℎ + 0.5 Y𝒕𝛾𝑚B

E +l𝑥4,BE
I

423

−l(𝜉B/)E 𝛾 + 𝑛/⁄
#𝒕

/23

Z, 

𝜉/ = 𝛾𝑚 + l 𝑥4
4|-#≡/

,	

(22) 
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and we use N to denote the number of all samples and nτ to denote the number of samples which have 790 

phenotype level τ. The final expression for the marginal likelihood of the simpler model 𝐼1 = 0 from 791 

Equation (16) is easily obtained from Equation (22). We just have to replace nτ with N and #t with 1. 792 

We should note that for numerical stability we calculate log	(𝑝(𝑋|𝑡, 𝛾,𝑚, 𝑔, ℎ, 𝐼1)). The calculations 793 

reported in this paper set the hyper parameters for g, h and γ to g = 0.8, h = 1.5 and γ = 0.025. As prior 794 

location m we use the sample mean or set m = 0. 795 

 796 
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Supplementary Results 797 

Optimization of PCprophet machine learning framework for complex prediction 798 

In order to reach optimal performance in correctly classifying protein complex signals from the co-799 

fractionation datasets, we explored different types of machine learning strategies and their performance 800 

to recall a set of manually curated protein complex signals in a previously published dataset10. To train 801 

the machine learning models, we used manually annotated data (refer to the ‘Methods’ section for 802 

more details) using criteria similar to the strategy applied in Heusel et al10. As the negative complexes 803 

significantly outnumbered the positive complexes (i.e. 738 vs. 242) based on our manual annotation, 804 

we evaluated the performance of PCprophet on two instances of the input dataset: one where all the 805 

negatives were used and the other where an equal number of negatives as positives were randomly 806 

selected We tested the performance of PCprophet based on five well-established machine learning 807 

models using five-fold cross-validation including Decision Tree (J48)31, Random Forest32 (RF), Naïve 808 

Bayes33 (NB), Support Vector Machines34 (SVM) and Logistic Regression35 (LR) algorithms[Figure 809 

comparing the performance of the different algorithms. We determined that the RF achieved its best 810 

performance when the number of trees was set to 500 via a separate stratified 10-fold cross-validation 811 

on the entire dataset (Supplementary Fig. S8); for all other algorithms, we used default parameters. In 812 

the latter dataset, we performed 100 trials for this random selection procedure (Supplementary Table 813 

S4). RF outperformed all the other machine-learning algorithms and selected as the algorithm for 814 

PCprophet, for example, achieving an AUC of 0.991, accuracy of 96.9% and MCC of 0.916, 815 

irrespective of the number of negative complexes used (Supplementary Fig. 9; Supplementary Table 816 

S4). To build a balanced and unbiased classifier, we rebuilt the RF model on the dataset with equal 817 

positive and negative complexes, on which RF achieved the best performance according to the 100 818 

trials of 5-fold cross-validation. This rebuilt RF model is then used as the core predictor for PCprophet.819 
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Supplementary Figures 820 
 821 

 822 

Supplementary Fig. S1. Benchmarking PCprophet with state-of-the-art software for complex profiling 823 

on the DDA-SILAC dataset. a, Absolute number of CORUM complexes recovered by each tool. b, 824 

Complex IDs overlap across all tools. c, Precision of PPI prediction for de novo protein complex 825 

prediction tools. d, Distribution of shortest path per complex across all subunits. The medians are 826 

highlighted using the white dots. e, Log-log plot showing the topology of the network generated by 827 

each tool versus ground-truth databases. f, Number of subunits per complex across different tools. 828 

Boxplot shows the medians and the ticks represent standard deviation.  829 

 830 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.05.06.080465doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.080465
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36 

 831 

Supplementary Fig. S2. Evaluation of GO score for estimating the false discovery rate. a, The boxplot 832 

illustrating the separation of hypothesis and CORUM using the three individual ontologies or the 833 

combination of the three (i.e. Molecular Function – MF; Biological Process – BP; Cellular Component 834 

– CC). b, The density plot showing the separation of hypothesis and ground-truth CORUM database 835 

using the sum of the three ontologies. c, Performance of GO term for separation of true and false PPIs. 836 

d, Empirical cumulative distribution plot between hypothesis and reported complexes from CORUM. 837 

e, Distribution of the sum of the three GO ontologies across different subunits size for reported 838 

complexes.839 
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 840 
Supplementary Fig. S3. Elution profiles of reported binders for ABS6 (CUL5) and NAE1-UBA3 841 

(TP53BP2, UBE2M) across the two experimental conditions and the three replicates. The region 842 

between the dotted lines represent the peak position of the novel ASB6-UBA3-NAE1 complex. The 843 

absence of coelution of reported interactors between the dotted lines suggests the presence of a novel 844 

complex rather than co-occurrence of complexes of similar size. 845 

 846 
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 848 

 849 

Supplementary Fig. S4. A conceptual illustration of hypothesis generation. Every protein is clustered 850 

into possible complexes using Euclidian distance clustering. Following construction of a dendrogram, 851 

all resulting clusters are retrieved by cutting at all heights (i.e. distances). This generates a 852 

comprehensive set of all possible complexes in the data. 853 

 854 
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 855 

 856 

Supplementary Fig. S5. Feature calculation based on protein co-elution profiles. a, average intensity 857 

difference of proteins. b, local correlation of proteins at each fraction. c, shift of apex fraction. d, 858 

average full width half maximum. 859 
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 860 

Supplementary Fig. S6. Graphical illustration of post-prediction processing. a, GO term score filtering. 861 

b, complex combination and collapsing. Positively predicted complexes either from the provided 862 

database or PCprophet are decomposed into PPI and pairwise metrics are calculated based on semantic 863 

similarity between the different ontologies which is then filtered based on a user-defined FDR threshold. 864 

Overlapping complexes are combined based on the user-defined criteria.865 
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 866 

 867 
 868 

Supplementary Figure S7. Using Bayesian inference to analyse the difference of protein complexes 869 

across conditions. a, An analytically tractable model for inferring differentially regulated proteins. 870 

Variable μ denotes the mean of a multivariate Gaussian distribution over the protein abundance vector 871 

xn which depends on the phenotype state tn. The prior over μ is a Gaussian distribution and 872 

parameterized by m (the prior location), Λ and γ (together specifying the precision of the Gaussian 873 

distribution). Variable Λ acts also as a precision matrix in the Gaussian 𝑝(𝑥&|𝜇, Λ). The prior over Λ is 874 

a diagonal Wishart distribution (a product of Gamma distributions) which is parameterised by the hyper 875 

parameters g and h. The conditional distribution 𝑝(𝜇, Λ|g, h,m, γ) which is represented by this DAG is 876 

referred to as Normal-Wishart distribution and allows for an analytical calculation of Bayes factors. b, 877 

A probabilistic model for inferring differentially regulated protein complexes. Variable Cc denotes the 878 

state of differential regulation of a protein complex as binary variable. The elliptic node 𝑿9K , 𝒕9K 879 

represents the marginal likelihood of the protein retention profiles 𝑿9K  of protein 𝑃< ∈ 𝐶8  in 880 

dependence of the phenotype characterization 𝒕9K as they arise from Equation (15) for 𝐶8 = 1 and from 881 

Equation (16) for 𝐶8 = 0. For calculating the state of differential regulation of protein complex Cc we 882 

make thus a conditional independence assumption among all contributing marginal likelihoods. 883 

 884 
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 885 

 886 
Supplementary Fig. S8. Determination of the number of trees in the RF model using three 887 

performance evaluation measures, including accuracy, AUC and MCC, via stratified 10-fold cross-888 

validation on the entire dataset. 889 

 890 

 891 
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 893 

 894 

Supplementary Fig. S9. Radar plots demonstrating the prediction performance of PCprophet 895 

via five-fold cross-validation. Performance parameters are AUC, accuracy, F1, MCC, 896 

sensitivity and specificity. The analysis was based  on the HEK293 dataset10 using a, equal 897 

numbers of positives and negatives, which were randomly selected 100 times and b, positives 898 

and all negatives. Coloured lines show the performance measures of different machine-learning 899 

algorithms namely J48 decision tree (J48), linear regression (LR), Naïve Bayes (NB), Random 900 

Forest (RF) and Support Vector Machine with either polynomial kernel (SVM_Poly) or radial 901 

basis function kernel (SVM_RBF) 902 

 903 
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Supplementary Tables 904 

Supplementary Table S1. AUC values evaluating the similarity between ground-truth 905 
networks and prediction 906 

 907 
 908 

AUC Software ∆AUC 
PCprophet 0.096 0.013 
EPIC_SVM 0.390 0.282 
EPIC_RF 0.175 0.067 
CCprofiler 0.122 0.014 

BioPlex 0.040 0.068 
STRING 0.137 0.029 
CORUM 0.109 0 
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Supplementary Table S2. Detailed descriptions of the datasets applied for training and 910 

evaluating PCprophet 911 

Dataset Cell line Species Data acquisition 
method Separation technique 

HEK29310 HEK293 Homo 
sapiens SWATH SEC (Size Exclusion 

Chromatography) 
HeLa mitosis and 
interphase17 HeLa CCL2 Homo 

sapiens 
DDA-SILAC 
HeLa18 HeLa  Homo 

sapiens DDA-SILAC 

912 
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Supplementary Table S3. An example demonstrating the complex collapsing step using three 913 

protein complexes 914 

Complex Subunit GO score  Calibration MW Apparent MW 

PC1 A, B 0.5 150,000 100,000 

PC2 A, B, C 0.9 150,000 130,000 

PC3 A, B, C, D 0.7 150,000 160,000 

 915 
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Supplementary Table S4. Prediction performance of PCprophet on manually annotated HEK293 916 

datasets via 5-fold cross-validation using different numbers of negatives 917 

 AUC Accuracy F1 MCC Specificity Sensitivity 
 Using equal numbers of positives and negatives 

J48 0.957 96.531% 0.929 0.906 0.978 0.925 
LR 0.990 95.102% 0.902 0.869 0.962 0.917 
NB 0.975 95.714% 0.910 0.883 0.976 0.900 
RF 0.991 96.939% 0.935 0.916 0.989 0.908 

SVM_POLY 0.984 94.694% 0.887 0.854 0.976 0.858 
SVM_RBF 0.988 96.531% 0.931 0.907 0.973 0.942 

 Using positives and all negatives 

J48 0.923 95.603% 0.910 0.882 0.971 0.910 
LR 0.990 95.622% 0.913 0.884 0.965 0.929 
NB 0.979 95.796% 0.914 0.886 0.975 0.905 
RF 0.994 97.268% 0.934 0.926 0.989 0.906 

SVM_POLY 0.983 94.896% 0.891 0.860 0.981 0.850 
SVM_RBF 0.988 96.684% 0.933 0.911 0.976 0.939 

 918 
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