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Abstract. The timing of reproductive behaviour – age at first sexual intercourse (AFS) and age at first 31 

birth (AFB) – has implications for reproductive health, adolescent development and evolutionary 32 

fitness. In the largest genome-wide association study to date (AFS, N=387,338; AFB, N=542,901), we 33 

identify 370 independent signals, 11 which are sex-specific, with a 5-6% polygenic score prediction. 34 

Heritability shifted from 10% for those born in 1940 to 23% for the 1965 birth cohort. Using Genomic 35 

SEM, we show that signals are largely driven by the genetics of reproductive biology and 36 

externalizing behaviour. This is supported by extensive biological follow-up that isolates key genes 37 

related to follicle stimulating hormone (FSHB), implantation (ESR1), infertility (endometriosis, 38 

spontaneous abortion) and spermatid differentiation, morphogenesis and binding (KLF17, ZPBP).  39 

Later AFB is protective against later-life disease (type 2 diabetes, cardiovascular) and associated with 40 

longevity. Those from higher childhood socioeconomic circumstances and polygenic scores in the 41 

highest deciles (90%+) experience markedly later reproductive onset. Results are relevant for 42 

interventions in teenage sexual, reproductive and mental health, deepen our understanding of the 43 

drivers of later-life health and longevity, and fuel infertility and functional follow-up experiments.  44 
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The timing of onset of human reproductive behaviour – age at first sexual intercourse (AFS) 46 

and age at first birth (AFB) – has implications for reproductive health, adolescent 47 

development and evolutionary fitness. First sexual intercourse has occurred increasingly 48 

earlier, by the age of 16 for one-third of contemporary UK teenagers.1 Early reproductive 49 

onset is linked to teenage pregnancy2 but also adverse health outcomes such as cervical 50 

cancer, depression, sexually transmitted diseases2 and substance use disorders.3,4 In 51 

contrast to earlier sexual debut, we have witnessed progressively later ages at first birth for 52 

women, now reaching an average of 30 years in many modern societies and even later for 53 

men (Supp Note Fig S1).5 Late reproductive behaviour is associated with lower fecundity 54 

and subfertility6 and infertility traits such as endometriosis and early menopause,7,8 with 55 

over 20% of women born after 1970 in many modern countries now remaining childless.9 56 

Earlier ages of sexual debut and later ages at first birth has marked the decoupling of 57 

reproduction from sexual behaviour in many contemporary societies, with implications for 58 

sexual, reproductive and later-life health (Supp Note Fig S2).   59 

Since reproductive behaviour is shaped by biology, disease and behaviour, a 60 

multidisciplinary approach is required to understand the common genetic aetiology and 61 

how it relates to health, reproductive biology and externalizing behaviour. Since the onset 62 

of reproductive behaviour generally occurs in adolescence to early adulthood, it is often 63 

linked to externalizing behaviour such as self-control and psychiatric (e.g., ADHD) and 64 

substance use disorders (e.g., smoking, alcohol use), often mediated by the environment 65 

(e.g., childhood socioeconomic conditions) (Supp Note Fig S3). Furthermore, it may be that 66 

individuals inherit a common genetic liability for a spectrum of interlinked complex traits 67 

related to reproduction, health and longevity. There has also been limited attention to 68 
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understanding how these genetic effects are stratified by sex or across different 69 

socioeconomic and historical contexts. 70 

In a previous GWAS of AFS (n=125,667)10 and AFB (n=343,072),8 we identified 38 and 71 

10 novel independently-associated single-nucleotide polymorphisms (SNPs), respectively. 72 

The current study comprises a markedly expanded sample size for AFS (N=387,338) and AFB 73 

(N=542,901), uncovering 370 independent autosomal or X chromosomal loci, some of which 74 

are sex-specific, with 99 candidate genes expressed at the protein level in the brain, glands 75 

and reproductive organs. With methods and main findings summarized in Fig 1, this study 76 

reveals underlying genetic drivers, common genetic liabilities, heterogeneity by childhood 77 

socioeconomic status and historical period and further evidence of the relationship of later 78 

reproductive onset with fewer later-life metabolic life diseases and increased longevity.  79 

 80 

Results 81 

Phenotypic changes in human reproductive behaviour and heritability over time. 82 

Descriptive analyses using the UK Biobank (see Online Methods) illustrate shifts in mean 83 

AFS and AFB, changes in the shape of the distribution by birth cohort, and a bi-modal 84 

distribution of AFS in earlier cohorts (Fig 2A, Supp Note Fig S1). Whereas AFB was often in 85 

the early 20s for older birth cohorts, this distribution has spread and shifted to older ages 86 

over time, with a marked drop in Pearson’s correlation between AFS and AFB from those 87 

born <1941 (0.60) to those born >1960 (0.31) (Supp Note Fig S2). Using GREML,11,12 we 88 

found a steady increase in SNP-heritability by birth cohort for AFB for women from just 89 

under 10% for those born in 1940, climbing to around 23% for the latest cohorts born in 90 
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Fig 1. Summary and description of methods and main results, onset of timing of human reproductive behaviour GWAS 91 

 92 

Note: Dark grey indicates analysis method, light grey the purpose of the analysis and white the main results.  93 
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 94 

Note: Dark grey indicates analysis method, light grey the purpose of the analysis and white the main results.  95 
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Fig 2. Age at first sex (AFS) and age at first birth (AFB) changes over time, polygenic score (PGS) prediction and bi-directional MR 97 

 98 
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1965.  For AFS, heritability ranges between 13 and 23% with a trend for women similar to 99 

AFB and a U-shaped trend for men (Supp Note Fig 4A-B).  100 

Meta-analysis GWAS Human Reproductive Behaviour. We conducted a meta-analysis of 101 

GWAS results from 36 cohorts for AFS and AFB in individuals of European ancestry. We 102 

imputed to the 1000 Genomes Project reference panel in a pooled sample and then 103 

stratified the analysis by sex (Supp Note Tables S1-8). In total, we discovered 370 associated 104 

loci. The GWAS of AFS identified 281 (271 pooled of which 4 on the X chromosome; 2 105 

women; 8 men) independent SNPs at genome-wide significance (p<5 x 10–8, Fig S5; Table 106 

S10). The GWAS of AFB identified 89 (84 pooled of which 4 on the X chromosome; 1 107 

women) independent SNPs at genome-wide significance (p<5 x 10–8, Fig S6; Table S9). The 108 

distribution of genome-wide test statistics for AFS and AFB showed significant inflation (λGC 109 

= 1.84 and 1.47, respectively), however LD score regression showed that this could be 110 

attributed almost entirely to polygenicity rather than to population substructure (LD 111 

intercept AFS 1.07 (SE = 0.01); AFB 1.03 (SE = 0.01, Supp Note). The LD Score intercept test 112 

confirmed that only a very small percentage (5.5%) of the observed inflation in the mean �2 113 

statistic was due to population stratification or other confounders, rather than to a 114 

polygenic signal.  115 

Polygenic prediction. We then calculated polygenic scores (PGSs) using three different 116 

specifications (Supp Note, Sect 4). To validate the performance of the PGSs, we performed 117 

out-of-sample prediction in the AddHealth and UKHLS cohorts using ordinary least-squares 118 

(OLS) regression models and report the R2 as a measure of goodness-of-fit of the model 119 

(Supp Note 4; Fig S7). PGSs including all SNPs explain up to 5.8% of the variance for AFS and 120 

4.8% for AFB. A 1 SD change in the AFS/AFB PGS is associated with a 7.3 and 6.3 month 121 
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delay in AFS and AFB, respectively.  We then ran survival models to account for right-122 

censoring, which occurs when an individual does not experience the event of first sex or 123 

birth by the time of the interview.13 Using AddHealth data, we estimated nonparametric 124 

hazard functions and then compared individuals at the top and bottom 5% of the PGS (see 125 

Fig 2B, 2C women, Supp Note Fig S8-9 men). Those in the top 5% PGS for AFS (i.e., genetic 126 

predisposition for later AFS) are less likely to have their sexual debut before age 19. AFS 127 

PGSs appear more relevant in explaining women’s AFS in comparison to men. Those in the 128 

top 5% PGS for AFB (i.e., genetic predisposition for later AFB) postpone AFB across all ages 129 

until approximately age 27, with similar curves for both sexes.  130 

Environmentally mediated childhood socioeconomic status. Disadvantaged socioeconomic 131 

status has been shown to be highly related to early sexual behaviour and teenage 132 

pregnancy.14 To explore the impact of environmentally mediated parental genetic effects on 133 

our PGSs, we examined PGS prediction across low (0-10%), medium (50-60%) and high (90-134 

100%) PGS percentiles by parents’ education (college versus no college) as a proxy for 135 

childhood socioeconomic status (Supp Note Fig 10A-B). Indeed, those in the highest decile 136 

of the PGS (90-100%) for later AFB have a higher AFB, particularly past age 27, which is 137 

accentuated for those with highly educated parents (Fig 2D; Fig S10A). Likewise, being in the 138 

highest PGS decile for AFS is associated with later sexual intercourse, especially for those 139 

from highest socioeconomic childhood households (Supp Note Fig 10B).  140 

Genetic correlations. To test the relationships of AFS and AFB with related phenotypes, we 141 

calculated genetic correlations using LD score regression15 (Fig 3, Supp Note Fig S11, S13, 142 

Tab S11). Given previous evidence,8 we examined 28 traits by sex from six relevant 143 

categories including: reproductive (e.g., age at menarche, miscarriage or stillbirth, number  144 
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Fig 3. Genetic correlations of age at first birth (A) and age at first sex (B) with a selection of related traits. 145 

 146 

Note: Brief definitions and full results are in Supplementary Table S13. P-values for the genetic correlations are reported above each symbol and the horizontal bars 147 
represent 95% confidence intervals. If the trait was initially assessed separately for males and females, this is indicated on the left in brackets.    148 
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of sexual partners), behavioural (e.g., educational attainment, risk tolerance), psychiatric 149 

disorders (e.g., ADHD, schizophrenia), substance use (e.g., age of initiation of smoking, 150 

cannabis use), personality (e.g., openness to experience) and anthropometric (e.g., BMI, 151 

height). The strongest genetic correlations were observed for reproductive traits, followed 152 

by behavioural traits, particularly with AFB and educational attainment in women (0.74, 153 

±0.01), compared to AFS (0.53, ±0.01). There was also a negative genetic correlation 154 

between adult risk tolerance and AFS/AFB (AFS ~–0.40; AFB ~–0.25); i.e., those less 155 

genetically prone to risk are more genetically predisposed to postpone reproductive 156 

behaviour. Amongst psychiatric traits, the strongest correlation was with ADHD (AFS 157 

females –0.58, ±0.03, males –0.61, ±0.03; AFB females –0.63, ±0.03; males – 0.68, ±0.09) 158 

and Major Depressive Disorder (MDD) (AFS females –0.37, ±0.03, males –0.32, ±0.03; AFB 159 

females, –0.42, ±0.03; AFB males, –0.33, ±0.08). Previous studies have linked MDD to the 160 

serotonin transporter gene locus.16 We also observed strong genetic correlations with age at 161 

onset of smoking (AFS ~ 0.68, ±0.03; AFB ~0.74, ±0.03), a trait that provides a unique 162 

window into adolescent substance use behaviour around the same time of early 163 

reproductive behaviour. Genetic factors influencing early smoking, early sexual debut and 164 

teenage pregnancy are thus – to some extent – shared. As shown in Fig 3, there are few sex 165 

differences in these correlations, with the exception of small variations in number of 166 

children, anorexia and openness to experience.  167 

GenomicSEM, Exploratory Factor Analysis and Bi-Directional Mendelian Randomization to 168 

explore aetiology and causality. To understand the relationships underlying these genetic 169 

correlations, we first used GenomicSEM.17 GenomicSEM uses structural equation modelling 170 

to decompose the genetic covariance matrix, calculated using multivariate LD score 171 
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regression, of a set of traits. Parameters are estimated by minimizing the difference 172 

between the observed genetic covariance matrix and the covariance matrix derived from 173 

the model (Supp Note). We fit a series of genetic regression models in which AFB (or AFS) 174 

was regressed on both years of education and one other possible mediating trait, such as 175 

openness, cognitive performance, ADHD and age of initiation of smoking (Supp Note Tab 176 

S12A-L, Fig S12A-B). In other words, we wanted to test whether the strong genetic 177 

correlation of AFS/AFB with education was the result of another mediating trait such as 178 

personality, ADHD or substance use. We found that the genetic correlation of years of 179 

education with AFB and AFS was independent of factors like risk tolerance, substance use, 180 

and psychiatric disorders. This suggests that the genetic correlation between years of 181 

education and AFB is largely a product of direct coupling between these traits, rather than 182 

being both downstream of a common identified cause. The exception was age at initiation 183 

of smoking – as noted previously, a window into risky adolescent behaviour – which partially 184 

mediated the relationship of AFB and AFS with years of education.  185 

Exploratory factor analysis (EFA) was then used to examine whether the genetic 186 

signal of the onset of reproductive behaviour originated from two genetically 187 

distinguishable subclusters of reproductive biology versus externalizing behaviour. Using a 188 

two-factor EFA model (Methods) to fit the genetic covariance matrix AFS and AFB with 189 

these two additional traits, we found that the entire model accounted for 47% of the overall 190 

variance, with 22% attributed to risk tolerance and 4% to age at menarche. In a more robust 191 

analysis we fit a Genomic SEM for AFB in women and regressed several genetic measures of 192 

reproductive biology (age at menarche, age at menopause) and a latent factor representing 193 

a common genetic tendency for externalizing behaviour (age at initiation of smoking, age 194 
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first used oral contraception, ADHD) (Fig S14). These genetic factors predicted 88% of the 195 

variance, with the majority of variance significantly predicted by externalizing factors 196 

(0.90,±0.02), followed by age at menopause (0.20, ±0.04) and age at menarche (0.16,±0.03). 197 

We note that selection bias, induced by the fact that AFB can only be measured among 198 

individuals with at least one live birth, may have inflated this estimate. 199 

Given the strong genetic correlations between the phenotypes discussed above, we 200 

used Mendelian Randomization (MR)-based analyses18 to explore causality and assess the 201 

direction of effect between AFB, AFS and years of education19 as well as risk taking 202 

(measured in adulthood)4 and age at smoking initiation20 (Supp Note Sect 8, Tab S13A). For 203 

the majority of pairs of phenotypes we found strong evidence of bi-directionality, which was 204 

also seen after applying Steiger fitting. The relationship between AFB and years in education 205 

appeared to be the explanatory factor that linked AFB to the two risk taking phenotypes. 206 

This was not the case, however, for AFS where the analysis suggests that age at initiation of 207 

smoking (and the environment and processes that lead to this) are upstream of the start of 208 

AFS. In that case the relationship was significant when assessed as age at smoking to AFS 209 

but not the other way round. Of note, associations were much stronger for age at initiation 210 

of smoking initiation than for risk-taking behaviour assessed in adulthood, suggesting that 211 

the timing of this behaviour is key.  212 

A second set of MR analyses examined whether AFS and AFB PGSs have effects on 213 

type 2 diabetes (T2D)21 and coronary artery disease (CAD),22 independently of years of 214 

education (Fig 1E, Tab S13B, Fig S15). T2D and CAD were chosen since they are two 215 

common major diseases, with broadly defined behavioural risk factors. Findings show that 216 

the association with years of education and later life diseases are substantially attenuated 217 
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by the effects of AFB.  This concurs with a large body of research that has established a 218 

biological association with the timing of AFB and metabolic diseases including early AFB 219 

linked to high blood pressure,23 obesity24 and diabetes.25 Reproductive timing thus appears 220 

to capture a latent variable that detects these metabolic effects but also years of education 221 

and other behavioural traits and can therefore serve as a more powerful predictor of later 222 

life disease than years of education alone. This also suggests that many of the associations 223 

with diseases that have previously been ascribed to years of education, may result from a 224 

more broadly defined socio-behavioural trajectory.  225 

Cox proportional hazard models of a polygenic score for AFB on longevity. The disposable 226 

soma theory of evolution hypothesizes that longevity demands investments in somatic 227 

maintenance – such as remaining in education – that in turn reduces resources available for 228 

reproduction. To test trade-offs between reproductive behaviour and senescence as argued 229 

in the ageing and longevity literature,26 we conducted additional analyses to test whether 230 

our AFB PGS was associated with (parental) longevity (Supp Note, Tab S14). We first 231 

estimated a baseline Cox proportional hazard model of our AFB PGS on parental longevity 232 

and then included the EA3 PGS and risk covariates followed by a final model including 233 

number of siblings as a proxy for parental fertility. We found that a genetically predicted 1 234 

SD increase in AFB is associated with a 2-4% lower mortality, suggesting that there is likely a 235 

trade-off between reproduction and longevity.  236 

Gene prioritization. To understand the biology represented by the variants associated with 237 

AFS and/or AFB, we performed a gene prioritization analysis that connected variants to 238 

genes and prioritized candidate genes based on likely involvement reproductive biology or 239 

psychiatric traits. To this end, we used predicted gene function,27 single-cell RNA sequencing 240 
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data in mice,28,29 literature mining,30 in silico sequencing,31 and Summary-data based 241 

Mendelian Randomization(SMR)32 using eQTL data from brain and blood.33 Integrating 242 

results across all approaches resulted in the prioritization of 386 unique genes; 314 genes in 243 

159 loci for AFS and 106 genes in 42 loci for AFB (Supp Tab 15A-19C). Of these, 99 were 244 

expressed at the protein level in cell types of brain, glands, and/or (fe)male reproductive 245 

organs34 (Fig 4). Gene prioritization in sex-specific loci resulted in the prioritization of 11 246 

genes for AFB in women, one gene for AFS in women and 23 genes for AFS in men. Of these, 247 

12 genes at three loci were expressed at the protein level in relevant tissues (Supp Note, Fig 248 

S16). 249 

Genes that play a role in follicle stimulating hormone (CGA 35), oocyte development 250 

(KLF1736), and implantation and placental growth (ESR1, SUMO137, ARNT,38 CAV1,39 E2F140) 251 

were prioritized for AFS in data from men and women combined, while FSHB41 and ESR1 252 

were (also) prioritized for AFB. Other genes prioritized in loci identified in the pooled meta-253 

analyses were expressed at the protein level in (developing) sperm – highlighting a role for 254 

spermatid differentiation (KLF1742) for AFS – as well as for sperm morphogenesis and 255 

binding between acrosome-reacted sperm and the zona pellucida (ZPBP43) for AFB. The 256 

meta-analysis in women only yielded genes related to endometriosis (CCR1)44 and 257 

spontaneous abortion (CXCR6) for AFB (Supp Note Fig S18).45 Taken together, these results 258 

suggest that intrinsic biological processes that influence fertility also influence the onset of 259 

sexual behaviour in men and women. Interestingly, NUP210L – prioritized for AFS and highly 260 

expressed in developing and mature sperm34 – is normally testis-specific, but was recently 261 

shown to be expressed in prefrontal cortex neurons of G allele carriers in rs114697636 (MAF 262 

3%, D’ 0.90 with AFS lead SNP rs113142203), attributed to allele-specific activation through  263 
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Fig 4. Gene prioritization of age at first sex (AFS) and age at first birth (AFB) 264 

 265 

Note: Information for 99 genes prioritized in loci identified by GWAS for age at first sex and/or age at first birth 266 

that are located within 1 million bp of lead SNPs and are highly expressed at the protein level in brain, glands 267 

and/or reproductive organs. Blue and orange indicate transitions from one locus to the next. The first panel 268 

indicates if the locus was identified as being associated at genome-wide significance with age at first sex (AFS), 269 

age at first birth (AFB). The second panel shows which bioinformatic approaches highlighted the gene as a 270 

candidate. The third panel shows – from left to right - the cell types in brain, glands, female reproductive 271 

organs, and male reproductive organs in which the genes are expressed at a low, moderate or high level 272 

(small, medium and large circles) based on data from the Human Protein Atlas. The fourth panel shows gene 273 

functions as extracted from Entrez, Uniprot and GeneCards. The fifth panel indicates which phenotypes were 274 

observed in mutant mice, as reported by the Mouse Genome Informatics (MGI) database. 275 

improved binding affinity for testis receptor 2.46 Methylation of, and variants near NUP210L 276 

have been associated with psychologic development disorders, intelligence, and 277 
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mathematical ability,47 illustrating how a testis-specific gene can influence the brain in some 278 

individuals. 279 

Several genes prioritized in AFS-associated loci in data from men and women 280 

combined have previously been implicated in risk seeking behaviour, sociability and anxiety 281 

(GTF2I,48 TOP2B,49 E2F150, NCAM1,51 NFASC,52 MEF2C53). In the sex-specific meta-analysis for 282 

AFS, a role for externalizing behaviour was supported through ERBB4 in women; and 283 

through SLC44A1 and NR1H3 in men. ERBB4 has previously been linked to fear, anxiety,54 284 

schizophrenia,55 and polycystic ovary syndrome (PCOS);56 SLC44AI encodes a choline 285 

transporter that plays a key role in cerebral inhibition related to substance use and 286 

depressive disorders57; and NR1H3 has been implicated in major depressive disorder 287 

(MDD).58 These genes provide concrete examples of how an innate predisposition for 288 

externalizing behaviour can influence initiation of reproductive behaviour. 289 

The gene prioritization results partly mirror and compliment the rigorous post-GWAS 290 

in silico association analyses we performed for loci identified for AFS and AFB. However, 291 

experimental validation is required before firm conclusions can be drawn about the 292 

involvement of, and mechanisms through which prioritized candidate genes influence AFS 293 

and AFB. More information on protein-protein interaction hubs, as well as on genes 294 

highlighted by literature mining30 are provided in the supplementary information. 295 

Discussion 296 

In this study, we presented the results of the largest GWAS to date of the onset of human 297 

reproductive behaviour in the form of age at first sex (AFS) (N=387,338) and age at first birth 298 

(AFB) (N=542,901). We identified 370 independent signals harbouring at least 386 299 
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prioritized candidate genes, using 1000G imputed genotype data and an X-Chromosome 300 

analysis, which allowed us to detect considerably more signals than ever before (Fig 5). In 301 

comparison, a recent GWAS for type 2 diabetes,59 for instance, detected 243 loci. Similar to 302 

previous work, we showed that the total SNP heritability accounted for 10-22% of 303 

phenotypic variance and varied by birth cohort.12,60 The incremental R2 of our PGSs based 304 

on significantly associated loci is around 5-6%, similar what is observed for common 305 

demographic and social variables (e.g., years of education, age at marriage), which have 306 

been classically used to explain the timing of human reproductive behaviour. Comparatively, 307 

5-6% is in the range observed for other complex traits, like BMI (5.8%)61 and schizophrenia 308 

(8.4%).62 The number of signals also opened up opportunities for functional follow-up 309 

analyses which suggested a role for spermatid differentiation and oocyte development. The 310 

analyses of the correlation and underlying aetiology of these traits revealed a common 311 

genetic basis of both AFS and AFB with externalizing behaviour and substance use and links 312 

to internalizing traits and infertility. Finally, we showed that AFB is an important predictor 313 

for late age at onset of disease and longevity, and that it substantially attenuates the effect 314 

of years in education.  315 

Although we opened many new avenues for research, the present GWAS still faces 316 

certain limitations. First, the sample sizes for men were still appreciably smaller than for 317 

women since reproductive and fertility data is routinely collected less often from men. In 318 

order to understand the causes of infertility in men this needs to be taken into 319 

consideration in future data collection. Initial within-family analyses showed that our 320 

discovery GWAS may actually overestimate causal effects (Supp Note), genotypes 321 

associated with later onset of reproductive behaviour genotypes are also associated with 322 
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Fig 5. Summary genome-wide association study of timing of onset of reproductive behaviour: age at first sex (AFS) and age at first birth (AFB)  323 

 324 
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parental reproductive genotypes, likely leading to a social environment that affects 325 

reproductive and other behaviours. Collection and analysis of family data is clearly a future 326 

area of research for reproductive and related behaviour. The lack of accessibility of 327 

publically available summary statistics from published research, meant that we were unable 328 

to examine the relationship with other traits, particularly with infertility related traits (e.g., 329 

PCOS). Future data collection could benefit from focussing on behavioural disinhibition 330 

markers that appear to be highly related to self-control, which has implications for disease 331 

prevention and behavioural interventions into lifestyle factors related to obesity, Type 2 332 

diabetes or substance use disorders. A glaring limitation is our focus on European-ancestry 333 

individuals in Western countries. Whilst common in this area of research,63 extension to 334 

other ancestries and geographical contexts is required in the future. This is particularly 335 

relevant in the context of parent gene-environment interactions, which may be specific to 336 

the social background of the sample.  337 

 Our detailed correlation, GenomicSEM and MR analyses also provided a deeper 338 

understanding of the underlying aetiology of related traits and pleiotropy and the 339 

associations between human reproductive behaviour and disease risk. We anticipate that 340 

our results will provide leads to address important interventions in infertility, teenage sexual 341 

and mental health, as well as for functional follow-up experiments that will likely yield 342 

targets that can be translated in efficient medication to improve fertility (e.g., in IVF) but 343 

also for interventions on reproductive health related to earlier sexual debut and teenage 344 

pregnancy.  345 

 346 
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Online Methods 

This article has a Supplementary Note with more details.  

Samples. For Age at First Sexual intercourse (AFS), we included 397,338 pooled individuals 

(n=182,791 males; n=214,547 females) from the UK Biobank. For Age at First Birth (AFB), we 

included 542,901 individuals (n=124,088 males; n=418,758 females) from 36 studies. We 

performed a GWAS separately restricted to European ancestry individuals that passed 

quality control. European ancestry was chosen in this discovery study due to the availability 

of samples1 and for no biological or substantive reason. We acknowledge that social science 

research has found large differences in the earlier initiation of AFS and AFB by lower 

socioeconomic status, which often coincides with societal inequality2,3 and the socially (not 

biologically) constructed categories of race and ethnicity. Socioeconomic differences are 

examined in this article, but results are only applicable to European Ancestry groups, with a 

need for further cross-ancestry discovery research.   

The Human Reproductive Behaviour Consortium. This consortium is a collaboration studying 

the GWAS of human reproductive behaviour including age at first sex and birth, number of 

children ever born, childlessness and related traits. In some cases we used summary 

statistics from our first GWAS of AFB and NEB4 on discovery cohorts (see Supp Note Tables 

S1-S3b).  

Phenotype measurements, genotyping, imputation and meta-analysis. AFS is treated as a 

continuous measure with individuals considered as eligible if they had given a valid answer 

and ages lower than 12 excluded (see Supp Note 1.2). Since AFS has a non-normal 

distribution, a within-sex inverse rank normal transformation is required. AFB is also treated 

as a continuous measure, assessed for those who have ever given birth to a child. Details 

about participating cohorts, sample inclusion criteria, genotyping and imputation, models 

used to test for association, X chromosome analysis, quality control filters and diagnostics, 

and meta-analysis are in the Supp Note. A sample-size weighted meta-analysis of quality-

controlled cohort-level results was performed using the METAL software.5 We performed 

conditional and joint multiple SNP analyses (COJO) to identify further independent SNPs and 

sex-specific analyses.  

Sex-specific genetic effects. We used LD score bivariate regression6 to estimate the genetic 

correlation between men and women based on the sex-specific summary statistics from the 

meta-analysis results. There was a large genetic overlap among the sexes for AFB (0.95) and 

a somewhat lower overlap for AFS (0.79), suggesting sex-specific effects would be important 

to examine. In order to determine if there was evidence for sex-specific effects, we 

compared the allelic effects for these SNPs between men and women and derived a p-value 

for heterogeneity.7  A multiple testing correction was applied (0.05/242=2 × 10-4) to identify 

sex-specific associations. We then selected a region of ±1Mb around these lead SNPs to 
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identify the genes that may be represented by these lead SNPs, followed by gene 

prioritization as we did for the main AFB and AFS analyses. 

X chromosome analysis. For AFS, the UK Biobank provided results for between 977,536 and 

990,735 variants on the X chromosome after QC (see Table S8). For AFB, 13 cohorts 

provided information on the X chromosome. Overall, we received 23 files, 13 for women, 8 

for men and 2 for the pooled analysis in case there were individuals who were relatives in 

the data. On average, 275,023 variants survived QC with a minimum of 99,794 in women 

from WLS to 998,304 for the women in the UK Biobank sample (see TableS7 for full 

descriptives). Association analyses on the X chromosome were performed using software 

suggested in the analysis plan (XWAS, SNPtest or BOLT-LMM) using BOLT-LMM for AFS as 

this was only assessed in the UK Biobank data, for AFB, METAL was used as described above 

(see sup. note 3.5) 

Phenotypic and genotypic historical changes. Descriptive analyses and correlations were 

undertaken using the UK Biobank data to illustrate phenotypic shifts in the age of AFS and 

AFB by birth cohort, in addition to changes in the spread of the distribution. Pearson’s 

correlation coefficients were calculated and correlation graphs illustrate the changing 

relationship between the two phenotypes over time. Genotypic changes and SNP-

heritability by birth cohort were quantified in UK Biobank data using GREML8 as described 

earlier.9 

MTAG. MTAG results10 were calculated using GWA meta-analysis results of the following 

related phenotypes: AFS, AFB, number of children ever born, childlessness. Using summary 

statistics from the pooled GWAS of each of the traits, MTAG uses bivariate LD score 

regression to account for unobserved sample overlap.  

Polygenic score prediction. We performed out-of-sample prediction in two cohorts, the 

National Longitudinal Study of Adolescence to Adult Health (Add Health),11 based in the US 

and the UK Household Longitudinal Study - Understanding Society (UKHLS).12 We calculated 

three sets of polygenic risk scores (PGS) with weights based on meta-analysis results 

excluding the specific cohort from the calculation. First, pruning and thresholding of all SNPs 

was performed (250kb window; r2=.1) using PRSice13. Second, LDpred PGSs14 with the LD 

reference were calculated from the same genotyped files, using prior distributions for the 

causal fraction of SNPs equal to 1 and LDpred weights calculated under the infinitesimal 

model. Third, MTAG + LDpred PGSs were calculated using the same methodology as in the 

second PGSs, but this time based on MTAG results10. For both traits, we ran ordinary least-

squares (OLS) regression models and report the incremental R2 as a measure of goodness-

of-fit of the model. Confidence intervals are based on 1,000 bootstrapped samples.  

Testing population stratification, survival models and environmentally mediated parental 

genetic effects of childhood socioeconomic status. To test whether population 

stratification biased our results or lead to false positives, we used the LD Score intercept 
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method.15 For each phenotype, we used the “eur_w_ld_chr” files of LD Scores.16 These LD 

Scores were computed with genotypes from the European-ancestry samples in the 1000 

Genomes Project using only HapMap3 SNPs with MAF > 0.01. We then ran survival models 

to account for right-censoring, which occurs when an individual does not experience the 

event of first sex or birth by the time of the interview.17 Using Add Health data, we 

estimated nonparametric hazard functions based on Nelson-Aalen estimates and then 

compared individuals at the top and bottom 5% of the PGS and plotted the estimated 

hazards. To further explore the impact of environmentally mediated parental genetic effects 

on our PGSs, we examined PGS prediction across low (0-10%), medium (50-60%) and high 

(90-100%) PGS percentiles by parent’s education status (college versus no college), which 

serves as a proxy for childhood socioeconomic status. 

Genetic correlations. Genetic correlation (rg) values were computed to estimate the genetic 

correlation between the two traits using all polygenic effects captured by the SNPs and LD-

score regression.18 We used summary statistics and the 1000 Genomes reference set, and 

restricted the analysis to European populations. We also followed the common convention 

of restricting our analyses to SNPs with MAF >0.01, thus ensuring that all analyses were 

performed using a set of SNPs that were imputed with reasonable accuracy across all 

cohorts. The standard errors (SEs) were produced by the LDSC python software package 

that uses a block jackknife over the SNPs. We estimated the genetic correlation between 28 

different traits, pooled by both sexes and then divided by sex. Traits were divided into the 

six categories of: reproductive, behavioural, psychiatric disorders, substance use disorders, 

personality and anthropometric.  

Genomic SEM (structural equation modelling). In an attempt to understand the aetiology of 

the correlations, we used the R package GenomicSEM to fit genetic multivariable regression 

models. GenomicSEM19 uses structural equation modelling to decompose the genetic 

covariance matrix, calculated using multivariate LD score regression, of a set of traits. 

Formally, structural equation models subsume many statistical methods and are quite 

flexible. We fit a series of genetic multivariable regression models, in which AFB was 

regressed on EA (educational attainment) and a trait X, in which we modelled various 

relevant traits such as openness, cognitive performance and AI (age initiation smoking). We 

also fit an analogous series of models in which AFS was regressed on EA.  

Exploratory factor analysis (EFA) and Genomic SEM by reproductive biology and 

externalizing behaviour. EFA was used to examine whether the genetic signal of the onset 

of reproductive behaviour originated from two genetically distinguishable sub-clusters of a 

biological component and an externalizing behaviour component. This would suggest 

distinct causal mechanisms and subtypes of individuals. We tested this by fitting a two 

factor EFA model to the genetic covariance matrix of AFB, AFS, NEB, and the proxies age at 

menarche (biological component) and risk tolerance (externalizing behaviour). To test this 

further, we estimated a more robust and additional measures of reproductive biology and 
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externalizing behaviour and a sex-specific analysis of AFB for women. We fit a genomic 

structural equation model (Genomic SEM) where AFB in women is regressed on age at 

menopause, age at menarche, and a latent factor representing the common genetic 

tendency to externalizing behaviour. The factor is measured by AFS in women, age at 

initiation of smoking, age first used oral contraception, and ADHD, with the model scaled to 

unit variance for the latent factor.  

Bi-directional Mendelian Randomization. We then tested whether causal pathways linking 

these phenotypes are potentially bidirectional and whether our phenotypes might offer 

distinct contributions. We identified 1000 Genomes proxies for our SNPs and used these in 

multivariate Mendelian Randomisation (MR) models. First, we modelled the interplay 

between AFB, AFS and EA (educational attainment)20 as well as risk taking (measured in 

adulthood)21 and age at smoking initiation (AI).22 In each case IVW23 and MR-EGGER24 

methods were performed, with an additional round of IVW performed once a Steiger filter25 

had been applied to remove SNPs that appears to show a primary association with the 

outcome rather than the exposure. Multivariate MR was use to try to dissect causal 

pathways.26 A second set of MR analyses focused on links to late life diseases, namely type 2 

diabetes (T2D)27 and coronary artery disease (CAD)28, using the same methods. In particular, 

we use multivariate methods to test whether AFS or AFB had independent effects once the 

well-established links to length of educational attainment were controlled for.  

Cox proportional hazard models of AFB polygenic score on longevity. To test trade-offs 

between reproductive behaviour and senescence, we conducted additional analyses to test 

whether our PGS for AFB was predictive of (parental) longevity. We restricted our models to 

mortality after age 60 to limit the possibility that early mortality affects parental fertility 

(i.e., collider bias).29 We calculated PGSs for AFB, Educational attainment (EA)30 and risky 

behaviour21 from the UK Biobank adopting the following procedure. We first split the 

sample in 10 random groups. We then iteratively estimated genome-wide association 

results for 9/10th of the sample and used these association results as weights for the 

calculation of polygenic scores in the remaining 1/10th of the sample. Polygenic scores were 

calculated using PRSice on a set of independent genotyped SNPs. We then estimated three 

sets of Cox Proportional hazard models to estimate the effect of the PGS of AFB on maternal 

and paternal age at death. All models control for the first 10 Genetic Principal Components, 

sex and year of birth, and are stratified by Local Authority District at birth calculated using 

the geo-coordinates provided in the UK Biobank due to differences in mortality related to 

material deprivation.31 We first estimated a baseline model and then included PGSs for EA 

and risk as covariates, followed by a final model including number of sibling (proxy for 

parental fertility).  

Gene prioritization. We prioritized candidate genes in pooled and sex-specific GWAS-

identified loci using predicted gene functions,32 single-cell RNA sequencing data in mice,33,34 
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literature mining,35 in silico sequencing,36 and synthetic Mendelian Randomization37 using 

eQTL data from brain and blood.38,39  

DEPICT, RNAseq data from mouse brain and Tabula muris RNAseq data. First, DEPICT was 

used to perform pathway analyses, identify enrichment for cell types and tissues, and 

prioritize candidate genes.32 DEPICT is agnostic to the outcomes analyzed in the GWAS and 

employs predicted gene functions. For both AFS and AFB, all SNPs with p<1x10-5 in the 

pooled GWAS meta-analysis were used as input. Based on the results of the tissue 

enrichment analysis, we used DEPICT to identify nervous system cell types that are enriched 

for expression of genes in loci reaching p<1x10-5  in the GWAS, using RNAseq data from 

mouse brain.33 A similar approach using tabula muris RNAseq data34 helped prioritize 

additional central nervous system and pancreatic cell types for AFS. For enriched cell types 

from mouse brain and tabula muris, the top-10 contributing genes were selected as 

candidate genes resulting in the prioritization of 296 genes for AFS and 95 for AFB based on 

mouse brain; and 97 genes for AFS based on tabula muris data. 

Phenolyzer to integrate prior knowledge and phenotype information. We used Phenolyzer 

(v1.1) to prioritize candidate genes by integrating prior knowledge and phenotype 

information.40 Here we used the regions defined by DEPICT v1.1, reflecting loci reaching 

P<1x10-5 in first instance. Phenolyzer takes free text input and interprets these as disease 

names by using a word cloud to identify synonyms. It then queries precompiled databases 

for the disease names to find and score relevant seed genes. The seed genes are 

subsequently expanded to include related (predicted) genes based on several types of 

relationships, e.g., protein-protein interactions, transcriptional regulation and biological 

pathways. Phenolyzer uses machine-learning techniques on seed genes and predicted gene 

rankings to produce an integrated score for each gene. We used search terms capturing 

three broad areas, i.e., (in)fertility, congenital neurological disorders and psychological 

traits, based on results from pathway, tissue and cell type enrichment analyses. 

In silico sequencing. We used in silico sequencing to identify non-synonymous variants with 

an R2 for LD>0.7 with the lead SNPs in AFS and AFB-associated loci,36 which yielded genes 

that may drive the GWAS associations through direct effects on protein function. 

Summary data-based Mendelian Randomization (SMR) and Heterogeneity in Dependent 

Instruments (HEIDI).37 We conducted this using eQTL data from brain41 and whole 

blood.39 This approach provided a list of genes that showed Bonferroni corrected 

significant evidence (thresholds for blood <3.2x10-6 brain <6.7x10-6) of mediating the 

association between our phenotypes and GWAS-identified loci based on results from 

brain and blood.  

Integration of findings across all functional approaches. We integrated findings across all 

approaches and retained genes in loci that reached genome-wide significance, and that 

were located within 1M bp of a GWAS lead SNP. We next used data from the Human Protein 
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Atlas42 to identify genes amongst 387 genes that are expressed at a low, medium or high 

protein level in brain, glands, and/or reproductive organs at a ‘supported’ or ‘enhanced’ 

degree of reliability. For the 97 genes that fulfilled these criteria, we mapped the brain, 

glandular and reproductive cell types in which they are highly expressed at the protein 

level;43 used a text-mining approach to extract functions from entries in Entrez, GeneCards 

and Uniprot; and identified phenotypes in mutant mice from the Mouse Genome 

Informatics (MGI) database44. 

Ethics statement. All research was approved by the appropriate institutional review boards 

and participants of all studies provided informed consent to participate in those studies.  

Data availability. Our policy is to make genome-wide summary statistics widely and 

publically available. Upon publication, summary statistics will be available on the GWAS 

Catalog website: https://www.ebi.ac.uk/gwas/downloads/summary-statistics 

The phenotype and genotype data are available upon application from each of the 

participating cohorts and should be contacted directly regarding their different data access 

policies. Access to the UK Biobank is available through application with information 

available at: http://www.ukbiobank.ac.uk).  
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