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Abstract 

Coronavirus disease 2019 (COVID-19) is caused by the severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2). The rapid, sensitive and 

specific diagnosis of SARS-CoV-2 by fast and unambiguous testing is widely 

recognized to be critical in responding to the ongoing outbreak. Since the 

current testing capacity of RT-PCR-based methods is being challenged due to 

the extraordinary demand of supplies, such as RNA extraction kits and PCR 

reagents worldwide, alternative and/or complementary testing assays should be 

developed. Here, we exploit the potential of mass spectrometry technology 

combined with machine learning algorithms as an alternative fast tool for SARS-

CoV-2 detection from nasopharyngeal swabs samples. According to our 

preliminary results, mass spectrometry-based methods combined with 

multivariate analysis showed an interesting potential as a complementary 

diagnostic tool and further steps should be focused on sample preparation 

protocols and the improvement of the technology applied. 
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Introduction 

The novel coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 

virus, was declared a pandemic by the World Health Organization on March 12th 

2020 following its emergence in Wuhan China. As of the April 4th 2020 there 

were over 1.2M confirmed cases of COVID-19 in 175 countries, with over 

65,000 fatalities (Johns Hopkins Coronavirus Resource Center, 2020). SARS-

CoV-2 is one of four new pathogenic viruses which have jumped from animal to 

human hosts over the past 20 years, and the current pandemic sends warning 

signs about the need for preparedness and associated research. Clinical 

presentation of COVID-19 ranges from mild to severe with a high proportion of 

the population having no symptoms yet being equally infectious (Yang et al., 

2020; Zhou et al., 2019). Together, these features have led to intensive 

lockdown measures in most countries with the aim to restrict the spread of the 

virus, limit the burden on healthcare systems and reduce mortality rate. In 

parallel, there has been an extraordinary response from the scientific 

community. These collective efforts aim to understand the pathogenesis of the 

disease, to evaluate treatment strategies and to develop a vaccine at 

unprecedented speeds in order to minimize its impact on individuals and on the 

global economy (Li, 2016; Wenzhong and Hualan, Preprint). 

The rapid, sensitive and specific diagnosis of SARS-CoV-2 by fast and 

unambiguous testing is widely recognized to be critical in responding to the 

outbreak. Since the current testing capacity of RT-PCR-based methods is being 

challenged due to the extraordinary global demand of supplies such as RNA 

extraction kits and PCR reagents, alternative and/or complementary testing 
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assays need to be deployed now in an effort to accelerate our understanding of 

COVID-19 disease (Chin et al., 2020; Antezack et al., 2020). 

The aim of this work was to assess the potential of MALDI-TOF MS technology 

to create mass spectra from nasopharyngeal swabs in order to find specific 

discriminatory peaks by using machine learning algorithms, and whether those 

peaks were able to differentiate COVID-19 positive samples from COVID-19 

negative samples.  

Materials and methods 

Sample preparation and MALDI-TOF data acquisition.    

Samples. First, we analyzed in triplicate 25 samples of nasopharyngeal swab, 

preliminary tested by RT-PCR (Corman et al., 2020) at the Reference 

Respiratory Virus Laboratory INEI-ANLIS “Dr. Carlos G. Malbrán” in Argentina. 

Of the 25 samples, 13 were positive for SARS-CoV-2 and 12 had non-

detectable viral load for SARS-CoV-2 (8/12 were positive for the other 

respiratory virus such as respiratory syncytial virus, Measles virus, Influenza A 

and B virus, and endemic human coronavirus). 

The analysis was carried out using the Bruker Daltonics MicroFlex LT 

instrument version 3.4 (Bruker Daltonics, Bremen, Germany). Briefly, for the 

assay, 1ul of each nasopharyngeal swab was applied onto 3 wells of the steel 

MALDI plate (MSP 96 target ground steel; Bruker Daltonics), after the wells 

have got dried, they were overlaid with 1 μl of HCCA matrix (a solution 

containing α-cyano-4-hydroxycinnamic acid diluted into 500μL of acetonitrile, 

250μL of 10% trifluoroacetic acid and 250μL of HPLC grade water).  All 

manipulations were performed under certified class II biological safety cabinet 

TELSTARTM BIO IIA (Thermo Fischer Scientific, Villebon sur Yvette, France) 
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and wearing all the appropriate personal protective equipment ( PPE)  required 

to comply with biosafety standards (World Health Organization, 2020) . After 

drying for a few minutes at room temperature, the plate was loaded into the 

instrument and analyzed using MALDI-TOF software. 

Spectra acquisition. Spectra were acquired manually (mode OFF), reaching 

160-200 laser shots per well and within a mass-range of 1960-20200 Da using 

FlexControl software v3.4 (Bruker Daltonics, Bremen, Germany). The platform 

was previously calibrated using the Bruker Daltonics Bacterial Test Standard. 

All spectra were verified using the Flex Analysis v3.4 software (Bruker 

Daltonics, Bremen, Germany).  The spectra selected for model generation and 

classification were treated according to a standard workflow including the 

following steps: baseline subtraction, normalization, recalibration, average 

spectra calculation, average peak list calculation, peak calculation in the 

individual spectra and normalization of peak list for model generation.  

MALDI-TOF MS spectra analysis. 

Database development. MSP library construction. 

Main Spectrum Profiles (MSPs) were performed according to manufacturer’s 

instructions. All 25 samples were used to build an “in-house” database with 

Maldi Biotyper OC V3.1 (Bruker Daltonics, Bremen, Germany); in addition, 

dendrograms were performed to assess the relatedness of these MSPs using 

default settings. 

Biomarker assignment.  

Spectra files from MSPs were exported as mzXML files using CompassXport 

CXP3.0.5. (Bruker Daltonics, Bremen, Germany) for visual analysis.  At the 

same time, a new database was created in Bionumerics v7.6.2 (Applied Maths, 
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Ghent, Belgium) according to the manufacturers’ instructions. All raw spectra 

were imported into the Bionumerics database with x-axis trimming to a minimum 

of 1960 m/z.  

Baseline subtraction (with a rolling disc with a size of 50 points), noise 

computing (continuous wavelet transformation, CWT), smooth (Kaiser Window 

with a window size of 20 points and beta of 10 points), and peak detection 

(CWT with a minimum signal to noise ratio of 1) were performed.  Spectrum 

summarizing, peak matching and peak assignment was performed according to 

instructions from Bionumerics. In short, all raw spectra were summarized into 

isolate spectra, and peak matching, using the option “existing peak classes 

only”, was performed on isolate spectra using a constant tolerance of 1.9, a 

linear tolerance of 550 and a peak detection rate of 10%. Binary peak matching 

tables were exported to summarize the presence of peak classes. By assigning 

biomarkers, only the presence and absence of peaks was investigated. To also 

assess quantitative peak data such as peak intensity and peak area, a 

multivariate unsupervised statistical tool PCA was additionally performed. All 

samples were examined for the unique masses (± 10 Da). 

Classifier models based on machine learning. 

ClinProTools software. Peak data of all samples were used to define and train 

machine learning based classifiers using ClinProTools V.2.2 software (Bruker 

Daltonics, Bremen, Germany) according to the manufacturer’s instruction. In 

brief, data analysis began with the loading of the raw data into the software and 

they were grouped into different classes; first we created a two-class model 

(Class 1 = SARS-CoV-2 detectable samples; Class 2= undetectable viral load 

samples). The distribution of the elements is showed in Fig. 1.  
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Figure 1. 2D Peak Distribution Plot of 2 classes model. This plot displays the distribution of two 

selected peaks in the non-excluded spectra on the loaded model generation classes. The data 

is shown on a two-dimensional plane. By default, the first two (=best separating) peaks of the 

current statistic sort order are displayed. The ellipses represent the standard deviation of the 

peak area/intensities. 

 

Then a three-class model (Class 1 = SARS-CoV-2 detectable samples; Class 2 

= undetectable viral load samples and Class 3 = other respiratory virus) was 

developed. Pretreatment, normalization, baseline subtraction, peak defining 

(range 1960-20000 m/z), recalibration; and then, the automatic comparison of 

multiple spectra was performed. Values of m/z from the average spectra of 

each class and informative peaks were identified according to their statistical 

significance, as determined by the different statistical tests supported by 

ClinProTools: Anderson–Darling test, t-/ analysis of variance (ANOVA) test and 

Wilcoxon/Kruskal–Wallis tests. Informative peaks were those showing a 

significant difference between the classes whether: the p-value for the 

Anderson–Darling test was >0.05 and for the t-/ANOVA or Wilcoxon/Kruskal–

Wallis test was ≤0.05, or if the p-value for the Anderson–Darling test was ≤0.05 
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and for the Wilcoxon/ Kruskal–Wallis test was ≤0.05 (Stephens, 1974).  The 

best top ten peaks are summarized in Table 1. 

Table 1. Characteristic MALDI-TOF MS peaks, obtained by ClinProTools 

software. 

2 Classes model peak statistic table. 3 Classes model peak statistic table. 

Index Mass DAve PTTA PWKW PAD Index Mass DAve PTTA PWKW PAD 

33 3098.4 1.21 0.00084 0.00025 0.198 9 2178.68 7.24 < 0.000001 0.0000104 < 0.000001 

181 11985.13 0.61 0.00169 0.00183 < 0.000001 10 2200.65 2.95 < 0.000001 0.000154 < 0.000001 

34 3142.88 2.08 0.00226 0.00000558 0.000742 11 2223.56 2.72 < 0.000001 0.0000378 < 0.000001 

19 2435.27 1.46 0.00226 0.00487 0.372 62 4470.31 1.51 < 0.000001 0.0000135 < 0.000001 

57 4035.25 1.45 0.00226 0.0014 0.0000118 14 2340.85 4.29 0.000011 0.0000104 0.0000314 

124 6825.04 0.74 0.00226 0.000216 < 0.000001 29 3319.23 3.23 0.0000268 0.0000104 < 0.000001 

175 11370.78 0.29 0.00265 0.00646 < 0.000001 105 6177.9 0.8 0.0000268 0.0000104 < 0.000001 

56 3937.83 1.2 0.00411 0.000216 0.000815 64 4573.76 3.71 0.000038 0.0000104 < 0.000001 

114 5993.37 0.64 0.00966 0.0184 < 0.000001 155 10095.58 0.41 0.000038 0.0000183 0.0000492 

26 2633.7 2.83 0.0106 0.000216 0.00000165 5 2118.03 3.93 0.0000481 0.000121 0.00428 

 

 

DAve: Difference between the maximal and the minimal average peak intensity of all classes. 

PTTA: P-value obtained through t-test. PWKW: P-value obtained through Wilcoxon/Kruskal-

Wallis test. PAD: P-value obtained through Anderson-Darling test. 

 

Classification models were generated using all three available algorithms 

(Supervised Neural Network, Genetic Algorithm and QuickClassifier) and they 

were later compared.  For each model, the recognition capability (RC) and 

cross validation (CV) percentage was generated to demonstrate the reliability 

and accuracy of the model. RC and CV percentages were indicators of the 

model’s performance and useful predictors of the model’s ability to classify test 

samples. The model with the highest RC and CV values was used in the 

analysis. 
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Statistical analysis 

For evaluating the performance of the different approaches mentioned, 

accuracy, sensitivity, specificity, positive prediction and negative prediction were 

calculated (ClinPro Tools 3.0: User Manual, 2011). 

Results 

The results were analyzed according to the following approaches: Biomarker 

findings, construction of an “in-house” database and through the design of 

predictive models by machine learning. 

Detection of potential Biomarkers.  

Manual analysis of the spectra obtained by Flex Analysis v3.4 software 

revealed one potential peak of negativity which was not detected in most of the 

positive samples: 4551 Da. 

When BioNumerics software was used, another potential biomarker was found 

in 60% of negative samples and only in 16% of positives: 3142 Da.  

This peak is also detected with reproducible intensity in the average spectrum 

of that same class in ClinProTools (Fig. 2). 
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Figure 2. Average spectra of characteristic peaks among detectable viral load samples versus 

undetectable viral load samples. Intensities of characteristic peaks: A- (m/z 4551) Obtained by 

Flex Analysis v3.4 software manual analysis. B- (m/z 3142) Obtained by Bionumerics v7.6.2 

software. 

Evaluation of the novel “in-house” database. 

The novel database was challenged with 30 previously-characterized samples 

different than those used to create it. They were processed in the same way as 

to create the complementary library and the wells were read in the MALDI 

Biotyper OC v3.1 software according to the manufacturer's recommendations, 

for an offline classification, obtaining the following results: 12 of 19 positive 

samples (63%) were correctly identified with score values >1.70; 1 of 19 (5%) 

was miss identified and 6 of 19 (32%) presented low score values, making 

identification not reliable. Contrasting, 8 of 11 of negative samples (73%) were 

identified correctly presenting score values above 1.70; 2 samples (18%) were 

miss identified and only 1 (9%) presented low score values. Samples with low 

score values were not included in the statistical analysis. 

Machine Learning models. 

The results of Recognition capacity (RC) and Cross-Validation (CV) values of all 

models used are summarized in Table 2. 

Table 2. Machine Learning results. 
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Classifier 

Models 

Recognition Cross 

Capacity  

(%) 

Validation  

(%) 

Genetic Algorithm 
100 93.9 

2 classes 

Supervised Neural 

Network 100 82.9 

2 classes 

QuickClassifier 
82.1 68.1 

2 classes 

Genetic Algorithm 
100 85.5 

3 classes 

 

With the application of a combined algorithm (GA 3 classes/ GA 2 classes/ SNN 

2 classes, in that order) and considering two of three models as concordant, it 

was possible to identify 68% (13/19) SARS-CoV-2 positive samples, on the 

other hand, 16% (3/19) were miss identified and 3 of 19 (16%) were discordant 

for the GA 2 classes and SNN 2 classes but correctly identified by the GA 3 

classes (not included in the statistical analysis). 

Considering the SARS-CoV-2 undetectable samples: 91% (10/11) were 

correctly identified and only 1 sample was miss classified (Table 3). 

Table 3. Parameters of the different approaches evaluated. 
 

Methods Evaluated 
Accuracy Specificity Sensitivity 

Positive  

Prediction 

Negative 

 Prediction 

(%) (%) (%) (%) (%) 

 “in-house” Database  86.9 80.0 92.3 85.7 88.9 

Machine Learning  85.2 90.9 81.2 92.8 76.9 
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Discussion 
 

MALDI-TOF MS is a simple, inexpensive and fast technique that analyses 

protein profiles with a high reliability rate, and could be used as a rapid 

screening method in a large population (Croxatto et al., 2012). These 

preliminary results suggest that MALDI-TOF MS coupled with ClinProTools 

software represents an interesting alternative as a screening tool for diagnosis 

of SARS-CoV-2, especially because of the good performance and accuracy 

obtained with samples in which viral presence was not detected. More samples 

need to be analyzed in order to make a definitive statement. However, this 

study using MALDI-TOF combined with machine learning has proven to be, as 

far as we know, a revolutionary alternative that deserves further development. 

Conclusions 

The identification of specific biomarkers responsible for each peak or group of 

peaks represents a difficult and demanding task that requires further specific 

studies. Based on the promising preliminary results, we should focus on the 

improvement of this potential diagnosis approach by assaying various 

techniques for proteins extraction to the clinical samples and on the expansion 

of the complementary database in the near future. 

These results constitute the basis for further research and we encourage 

researchers to explore the potential of MALDI-TOF MS in order to assess the 

feasibility of this technology, widely available in clinical microbiology 

laboratories, as a fast and inexpensive SARS-CoV-2 diagnostic tool. 
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