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ABSTRACT 21 

The gut microbiota influences development and homeostasis of the mammalian immune system1–3, 22 

can alter immune cell compositions in mice4–7, and is associated with responses to immunotherapy 23 

that rely on the activity of peripheral immune cells8–12. Still, our understanding of how the microbiota 24 

modulates immune cells dynamics remains limited, particularly in humans where a lack of deliberate 25 

manipulations makes inference challenging. Here we study hundreds of hospitalized—and closely 26 

monitored—patients receiving hematopoietic cell transplantation as they recover from chemotherapy 27 

and stem cell engraftment. This aggressive treatment causes large shifts in both circulatory immune 28 

cell and microbiota populations, allowing the relationships between the two to be studied 29 

simultaneously. We analyzed daily changes in white blood cells from 2,235 patients, and 10,680 30 

longitudinal microbiota samples to identify bacteria associated with those changes. Bayesian 31 

inference and validation across patient cohorts revealed consistent associations between gut bacteria 32 

and white blood cell dynamics in the context of immunomodulatory medications, clinical metadata 33 

and homeostatic feedbacks. We contrasted the potency of fermentatively active, obligate anaerobic 34 

bacteria with that of medications with known immunomodulatory mechanism to estimate the potential 35 

of the microbiota to influence peripheral immune cell dynamics. Our analysis establishes and 36 

quantifies the link between the gut microbiota and the human immune system, with implications for 37 

microbiota-driven modulation of immunity.  38 
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MAIN TEXT 39 

Experiments in mice provide evidence that the mammalian intestinal microbiome influences the 40 

development1–3 and homeostasis of its host’s immune system4–7,13–15. In humans, inflammatory bowel 41 

diseases correlate with functional dysbiosis in the gut microbiota16,17. Children born preterm and at 42 

term have different gut microbiome compositions and differ in the development of immune cell 43 

populations in their blood18. The composition of the gut microbiota may also influence the success of 44 

immunotherapies8–11. Immune checkpoint inhibitor therapy relies on activation of circulating T-cells 45 

and its success has, independently, been associated with abundances of intestinal anaerobic genera 46 

such as Akkermansia9 and Faecalibacterium10. It is therefore an intriguing prospect to augment 47 

treatments such as cancer immunotherapy19, including the burgeoning field of chimeric antigen 48 

receptor (CAR) T-cell therapy20, by leveraging microbiome-driven immune system modulation.  49 

Our understanding of how the microbiota influences the dynamics of immune cells in 50 

humans, and how this compares to deliberate immunomodulatory interventions nevertheless remains 51 

limited. Experiments with animals may not always be sufficient to study mechanisms of 52 

microbiome-immune interactions and translate them to human biology as the microbial ecology in the 53 

gut of an animal model may be different from humans receiving treatment21. On the other hand, 54 

studies directly in patients may be criticized when they have small subject numbers, are cross-55 

sectional, lack statistical power, or disregard key confounders such as medications21.  56 

To overcome these limitations, we conducted a large-scale longitudinal study of the gut 57 

microbiota and day-by-day changes in circulatory immune cell counts. We investigated immune 58 

reconstitution dynamics after allogeneic hematopoietic cell therapy (HCT) within all 2,926 patients 59 

who underwent HCT at Memorial Sloan Kettering for various hematological malignancies, including 60 

leukemia, between 2003 and 2019 (Figure 1A, Table S1). The conditioning regimen of radiation and 61 

chemotherapy administered to HCT patients is the most severe perturbation to the immune system 62 

deliberately performed in humans and thus offers a unique opportunity to investigate dynamic links 63 

between the gut microbiota and the immune system directly in humans. Conditioning depletes white 64 

blood cell counts (Figure 1A) and can lead to prolonged periods of neutropenia (<500 neutrophils per 65 

µl blood). Immune reconstitution begins after transplanted stem cells have matured sufficiently to 66 
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release granulocytes from the bone marrow (neutrophil engraftment is defined as 3 consecutive days 67 

with >500 neutrophils per µl blood, Figure 1A-C). The blood of each patient is carefully monitored 68 

throughout this recovery, and medications are administered to modulate the immune cell dynamics, 69 

including granulocyte-colony stimulating factor (GCSF) to increase neutrophil counts, and 70 

immunosuppressants such as mycophenolate mofetil or tacrolimus to prevent complications such as 71 

graft-vs-host disease (Figure 1 J,K). To investigate if the composition of the gut microbiota is 72 

associated with the dynamics of circulating white blood cells, we analyzed detailed blood and clinical 73 

Figure 1: Immune reconstitution and microbiome dynamics after allogeneic hematopoietic cell 
transplantation (HCT). A) Three major periods of HCT—immunoablation during chemotherapeutic 
conditioning before HCT, defined as day 0, post-HCT neutropenia, and reconstitution following neutrophil 
engraftment—lead to recovery trajectories with large variability between patients. Shown are the mean counts 
(shaded: ±1 standard deviation, σ) of neutrophils, lymphocytes and monocytes per day relative to HCT from 
patients transplanted between 2003 and 2019 (A), contrasted with two individual patients (B,C) representative of 
the recovery trajectories for different stem cell graft source; patient 1 who received a peripheral blood stem cell 
graft, PBSC (line with circles: patient data, solid line and shaded region: mean±1 standard deviation of all PBSC 
patients), and patient 2 who received a graft of umbilical cord blood (line with circles: patient data, solid line and 
shaded region: mean±1 standard deviation of all cord patients). Fecal samples collected and analyzed by 16S 
rRNA gene sequencing reveal the loss of microbial diversity reported previously23,24 (D, line: mean per day, 
shaded: ±1 standard deviation); E,F: individual patient measurements) and commensal families (G, line: mean 
relative abundances of bacterial families, shaded: ±1 standard deviation); H,I: individual patient measurements), 
often replaced by Enterococcaceae domination. J,K). Administration of immunomodulatory medications for the 
two example patients.  
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metadata of our patients between 3 days before HCT and until 100 days post neutrophil engraftment 74 

(excluding pediatric patients, and other exclusion criteria: N=2,235, supplementary methods, Figure 75 

S1). During this period patients are monitored carefully, and our analysis included over 140,000 host 76 

phenotype measurements in the form of complete blood counts which quantify the most abundant 77 

white blood cells—neutrophils, lymphocytes, monocytes, eosinophils—as well as platelet counts 78 

(Figure 1, S1). We started collecting patients’ fecal microbiota data in 200922, and by now obtained 79 

10,680 high frequency, longitudinal microbiota compositions. 80 

HCT patients lose gut microbiota biodiversity and commensal microbial families during their 81 

treatment (Figure 1D-I); this figure generated from N=1,294 HCT patients clarifies the preliminary 82 

trends observed in previous studies from smaller datasets23,24. We have shown recently that mice with 83 

a depleted intestinal flora had worse recoveries of white blood cells after bone-marrow 84 

transplantation25. In our patients, microbial diversity usually recovers slowly during white blood cell 85 

reconstitution (Figure 1D); however, microbiota recovery as well as immune reconstitution can vary 86 

strongly between patients and treatment types (Figure 1B,C,J,K, S1). This variation is illustrated by 87 

the distinct trajectories of patient 1 who received a graft of peripheral blood stem cells (PBSC), 88 

retained high microbiota diversity and engrafted earlier (Figure 1B,E,H), and patient 2 who received 89 

a graft of umbilical cord blood (cord), lost microbiota diversity and engrafted later (Figure 1C,F,I). 90 

Low microbiota diversity at the time of neutrophil engraftment has been associated with 5-fold 91 

increased transplant-related mortality26, suggesting that that the joint recovery of the microbiota and 92 

white blood cells in circulation is critical for clinical outcomes. 93 

To detect a directional and causal link between the microbiota and white blood cells, we first 94 

used data from a recent prospective randomized trial of autologous fecal microbiota transplantation 95 

(auto-FMT), which is a microbiota manipulation experiment done directly in our patients23 96 

(supplementary methods). Twenty-four patients (Figure 2A, Table S2) underwent randomization, 97 

resulting in 10 untreated control and 14 treated patients, including patient 3 in Figure S2. To 98 

investigate if auto-FMT affected white blood cell reconstitution, we compared the 24 patients’ 99 

neutrophil, lymphocyte, monocyte (Figure 2) and total white blood cell counts (Figure S3) post-100 

engraftment (i.e. when the transplanted hematopoietic cells begin producing new white blood cells, 101 
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Figure 2A,S3). FMT procedures were conducted at variable time points relative to neutrophil 102 

engraftment, but overall, we observed higher counts of each white blood cell type in patients who 103 

received an auto-FMT during the first 100 days post neutrophil engraftment (p<0.001, Figure 2B,S3-104 

S6).  105 

 106 

Figure 2: Neutrophil, lymphocyte and monocyte counts increased in FMT-treated patients 107 
during the weeks following the treatment compared to control patients. A) Absolute counts of 108 
neutrophils (blue), lymphocytes (green) and monocytes (orange) in 24 patients enrolled in a randomized 109 
controlled trial to receive an autologous fecal microbiota transplant post-neutrophil engraftment (10 control: 110 
black vertical line, 14 FMT treated: red vertical line,). B) Weekly mean cell counts aligned to the date of 111 
randomization into FMT treatment arm (red) or control (black). Line: mean per week, shaded region: 95%-CI. 112 
C) Results from a linear mixed effects model with random effects per patient and per day relative to neutrophil 113 
engraftment confirms that neutrophil, lymphocyte and monocyte counts are higher in patients receiving auto-114 
FMT after their treatment as compared to control patients after the randomization date; bars and confidence 115 
intervals for the averages of observed white blood cell counts without FMT and post-FMT (***: p<0.001).  116 
 117 
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The increased white blood cells in patients receiving auto-FMT could be due to the 118 

reconstitution of a complex microbiota that we saw in these patients23 and the associated metabolic 119 

capabilities6,7,25, or it could be a systemic response to a severe therapy which introduced billions of 120 

intestinal organisms at once via an enema (no enema was administered to control patients23). 121 

Moreover, while the mixed-effects model accounted for patient-specific HCT treatments in this 122 

randomized patient cohort, chance differences in extrinsic factors such as different 123 

immunomodulatory drug exposures may have affected this result due to the small cohort size. 124 

Nonetheless, observing that auto-FMT recipients had increased white blood cell counts supports the 125 

notion that the microbiota can modulate the peripheral immune system. High counts of lymphocytes 126 

during immune reconstitution has been associated with improved clinical outcomes27. Additionally, in 127 

our HCT patients, a higher average level of white blood cells measured across a period of 100 days 128 

after neutrophil engraftment (supplementary methods) confirms a positive association with 3-year 129 

survival (hazard ratio: 0.91, p:0.04). Determining which taxa modulate immune dynamics could open 130 

new ways to improve robust immune reconstitution, which is critical for clinical outcomes27–29. 131 

To address this question, we next investigated the link between the gut microbiota and the 132 

dynamics of white blood cell recovery in our large observational cohort of HCT patients. Homeostasis 133 

of circulatory white blood cell counts is a complex, dynamic process: neutrophils, lymphocytes and 134 

monocytes are formed and released into the blood de novo by differentiation of hematopoietic 135 

progenitor cells from the bone marrow, and they can be mobilized from thymus and lymph nodes 136 

(lymphocytes), spleen, liver and lungs (neutrophils); they can also migrate from the blood to other 137 

tissues when needed30. These processes are dynamic sources and sinks of circulatory white blood 138 

cells, and they can be modulated by drugs administered to patients receiving HCT. To identify factors 139 

associated with these dynamic source- and sink-processes—including the microbiota—we developed 140 

a two-stage approach analyzing the changes of white blood cell counts between two days (i.e. the 141 

rates of cell count increases and decreases). Stage 1 served as a feature selection stage where we used 142 

data of 1,096 patients (after filtering for qualifying samples and applying exclusion criteria, see 143 

supplementary methods) without available microbiome information to identify associations between 144 

clinical metadata, including immunomodulatory medications (methods), and changes of white blood 145 
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cell counts from one day to the next (Figure 3A). Stage 2 was performed on data from an independent 146 

cohort of 841 different patients at MSK from whom concurrent microbiome samples were available. 147 

Stage 2, our main analysis, sought to reveal associations between the abundance of microbial taxa and 148 

the daily changes in blood cell counts in context of immunomodulatory medications, additional 149 

clinical metadata and the current state of the blood itself.  150 

In stage 1 we calculated the changes in neutrophil, lymphocyte and monocyte counts during 151 

patients’ recovery from >20,000 pairs of post-engraftment blood samples separated by a single day 152 

(Figure 3B, S7-9, supplementary methods). Using a cross-validated feature selection approach, we 153 

detected medications and HCT treatment parameters that were associated with different rates of 154 

change in neutrophil, lymphocyte and monocyte counts, including, as expected, GCSF and the graft 155 

stem cell sources (Figure S7-S9, Table S1).  156 

During stage 2 we sought to identify associations between bacterial taxa of the gut microbiota 157 

and the dynamics of immune cells in circulation. For this, we performed Bayesian inferences using 158 

data from different sets of patients with available microbiome samples. Stage 1 had identified—as 159 

expected—that stem cell graft sources are associated with immune reconstitution kinetics (e.g. cord 160 

on average slower compared with PBSC31), and we therefore stratified our patients by graft source in 161 

stage 2. The model of stage 2 now included microbial genera as predictors of observed changes in 162 

white blood cell counts, in addition to the medications selected in stage 1, clinical features 163 

(conditioning intensity, age, sex), and the current state of the blood in the form of counts of 164 

neutrophils, lymphocytes, monocytes, eosinophils, and platelets. The data comprised 841 patients, but 165 

approximately 60% of the stool samples paired with a daily change in white blood cell counts were 166 

taken before neutrophil engraftment (Figure 3B, Table S1, supplementary methods), i.e. when blood 167 

cells counts were zero. In total, we analyzed 2,615 post-engraftment observations of changes in 168 

neutrophil counts during immune reconstitution (lymphocytes: 2,006, monocytes: 2,534) with paired 169 

stool samples which provided a large sample of observed white blood cell dynamics (Figure 3B, 170 

Table S3,S4). We first focused on the data from the largest (Figure 3C) cohort—patients who 171 

received a PBSC graft—and withheld the other cohorts (bone marrow, BM; T-cell depleted graft 172 

(ex-vivo) by CD34+selection, TCD; and cord) to use as independent validation cohorts. For this 173 
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validation, we analyzed TCD, BM, and cord patients’ data in the same way as PBSC patients’ data 174 

and compared the resulting posterior coefficient distributions (methods). We assigned coefficients 175 

obtained from the PBSC cohort a validation score (v-score) between 0 and 3, representing the number 176 

of times that the focal coefficient was validated in the other cohorts; but, conservatively, the score was 177 

always set to zero if we observed counter-evidence among any of the other data sets, i.e. evidence that 178 

coefficients had the opposite sign, ensuring only the most consistent associations were considered as 179 

validated. Finally, we analyzed data from another patient cohort consisting of 493 bone marrow 180 

transplantation recipients treated at Duke University including 9,603 blood samples and a total of 629 181 

microbiota samples from 218 patients, albeit with lower sampling density, and we used the results 182 

from this analysis for further validation.  183 

Notably, as a verification of our approach, we detected associations between the 184 

administration of immunomodulators and increased or decreased rates of immune cell count changes 185 

consistent with the known biological mechanism of these medications (Figure 3C,S10-S13). The 186 

strongest across all predictors is the well-known neutrophil-increasing effect of GCSF32; GCSF 187 

administration—used to accelerate recovery from chemotherapy-induced neutropenia32—was 188 

associated with a +140% increase in the rate of neutrophil changes from one day to the next ([+114%, 189 

+170%], 95 percent probability density interval [HPDI95]). This finding was observed in all MSK 190 

validation data sets (v-score=3, Figure 3D), as well as among Duke University patients (Figure 191 

S14,S15). We furthermore found a GCSF-associated increase of +43% ([+30%, +58%]HPDI95, v-192 

score=3) in monocyte rates, and, although smaller, in lymphocyte rates (+16%, [+5%, +27%]HPDI95, 193 

v-score=3). Both neutrophil and lymphocyte rates decreased following the exposure to antihistamine 194 

or immunosuppressive medications (cetirizine -18%, [-35%, +5%]HPDI95, mycophenolate 195 

mofetil -8% [-15%,+1%]HPDI95, respectively). Finally, less intensive chemotherapeutic conditioning 196 

regimens (non-ablative conditioning and reduced intensity) were associated with larger lymphocyte 197 

and monocyte count growth rates during immune reconstitution (Figure S10C) 198 

Beyond associating medications in agreement with their known biological mechanism, our 199 

analysis detected associations between the current count of white blood cells and their rate of change: 200 

a negative association among lymphocytes, negative associations between counts of neutrophils and 201 
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lymphocytes with the rates of monocytes, and a negative association between the counts of platelets 202 

and lymphocytes and the rates of neutrophils (Figure 3E). Conversely, we found positive associations 203 

between monocytes and the rates of each of the investigated white blood cell subsets. These 204 

associations, derived from daily counts of white blood cells, could reflect a complex network 205 

underlying the regulation of blood immune cell composition30. More importantly, the associations 206 

quantified for medications and potential homeostatic feedbacks provided a benchmark against which 207 

we could compare associations from gut microbial taxa. 208 

 209 

Figure 3: Bayesian inference conducted in context of the host state (white blood cell and platelet counts) 210 
and clinical variables including immunomodulatory medications reveals the microbiota potential to affect 211 
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daily changes in circulatory white blood cell counts. A) Cartoon of the model: observed changes in white 212 
blood cell counts between two consecutive days are associated with the current state of the host in the form of 213 
blood cell counts in circulation, the administration of immunomodulatory medications, patient and clinical 214 
metadata, and the state of the microbiome. B) Visualization of the dynamic white blood cell data; scatter plot of 215 
the principal components (PC) of observed daily changes of neutrophils, lymphocytes and monocytes without 216 
(grey, see Figures S7-9) and with (orange) concurrent longitudinal microbiome data (bold: post engraftment 217 
sample counts). C) PBSC patients (N=312) provided the most blood samples with simultaneous microbiome 218 
data (n=995) relative to TCD, BM and cord patients, who were used as validation data sets. D-F) PBSC patient 219 
data inference results; bars show the posterior parameter estimate distributions (thin: 95% highest posterior 220 
density intervals, HPDI95, thick: HPDI50) for the jointly inferred associations between treatments (D), white 221 
blood cells counts (E), and fecal microbiota genus log-relative abundances (F) with the observed daily changes 222 
in neutrophils, lymphocytes and monocytes. v-score: number of validation cohort confirming associations, 223 
always set to zero if invalidated in any of the TCD, BM, or cord cohorts (additional coefficients in Figure S10). 224 
G) 100 microbiota samples with highest (left) or lowest (right) relative abundances of Faecalibacterium, 225 
Ruminococcus 2 and Akkermansia. H) Simulation of the neutrophil population over time in presence of GCSF 226 
with microbiota compositions sampled either from those high (blue) or low (red) in Faecalibacterium, 227 
Ruminococcus 2 and Akkermansia relative abundance as shown in G); line: median of 1,000 simulations, shaded 228 
regions: quartile range of simulated neutrophil trajectories. I) In absence of GCSF, equivalent simulations to H) 229 
predict that the time to reach neutrophil counts >2K*μl-1 for the first time after HCT when the microbiota is 230 
high (red) in Faecalibacterium, Ruminococcus 2 and Akkermansia compared with when these genera are low 231 
(blue) will decrease from 6.8 (95%-confidence interval, CI: [6.5, 7]) days to 4.4, (CI: [4.3, 4.5]). 232 
 233 

We identified microbial genera that consistently associated with increases or decreases in 234 

white blood cell counts by first using data from the PBSC patients and then validating the associations 235 

in the other cohorts (Figure 3F). Higher abundances of Faecalibacterium (+8%, [+1%, 236 

+14%]HPDI95 per log10), Ruminococcus 2 (+5%, [0%, +10%]HPDI95) and Akkermansia (+4%, 237 

[+1%, +7%]HPDI95) were associated with greater neutrophil increases, whereas increased Rothia (-238 

3%, [-7%, 0%]HPDI95), and Clostridium sensu stricto 1 (-3%, [-6%, 0%]HPDI95) relative 239 

abundances associated with reduced neutrophil rates. These results were validated in univariate 240 

analyses conducted in the Duke University cohort (Figure S14, S15). We also conducted the 241 

inference using total genus abundances as predictors instead of relative abundances; this analysis 242 

confirmed Faecalibacterium as most strongly associated with neutrophil dynamics (Figure S16, 243 

supplementary methods). Staphylococcus was positively associated with lymphocyte rates (+4%, 244 

[+1%, +6%]HPDI95) and, again, Ruminococcus 2 was also associated with faster lymphocyte 245 

increases (+5%, [+1%, +9%]HPDI95). Both Faecalibacterium as well as Ruminococcus 2 also 246 

associated with increases in monocytes, and while this association was validated in other cohorts (v-247 

score 3 and 1, respectively), there was higher uncertainty of the association estimate (HPDI50>0). 248 

Again, Clostridium sensu strictu 1 (-3% [-5%, -1%]HPDI95) associated consistently with decreased 249 

rates of monocytes. The associations we identified—and validated in other cohorts—between 250 
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microbial taxa in the gut and daily changes in white blood cell counts support the idea that 251 

hematopoiesis and mobilization respond to the composition of the gut microbiome, influencing 252 

systemic immunity33.  253 

Most of the taxa that strongly associated with white blood cell dynamics were obligate 254 

anaerobes. Rothia, was a notable exception: this aerobic genus is typically found in the oral cavity34 255 

but can become an opportunistic pathogen in immunosuppressed patients and is not known to provide 256 

metabolic functions to the host35. Some obligate anaerobes, on the other hand, produce short-chain 257 

fatty acids36,37 and bacterial cell-wall molecules1,38,39 that modulate immune responses and 258 

granulopoiesis6. Nutritional support from the intestinal microbiota improved hematopoietic 259 

reconstitution in a mouse model25. To identify a similar association in our patients, we estimated a 260 

microbiota potency by multiplying the log10-relative abundances of microbial genera in a sample with 261 

their corresponding posterior coefficients. We analyzed shotgun metagenomics sequences from 124 of 262 

the samples and observed that samples with positive microbiota potency were associated with 263 

enrichment in cholate degradation and vitamin-B1 synthesis related pathways, as well as butanoate 264 

formation (Figure S17). Our findings are in line with evolutionary theory40 that essential but broadly 265 

available microbial traits such as the production of B vitamins, secondary bile acid metabolism, and 266 

fermentation to short-chain fatty acids41 could be co-opted by the host’s immune system as part of the 267 

homeostatic interplay between immune system and a complex microbiota42,43. For example, 268 

Ruminococcus 2 is a genus that contains R. bromii, a keystone species necessary for the efficient 269 

release of energy from complex starch in the normal diet44. Reassuringly, the genera 270 

Faecalibacterium, Ruminococcus 2 and Akkermansia that we associated with faster rates of white 271 

blood cells (Figure 3F) were among those best reconstituted by auto-FMT23, potentially explaining 272 

why we found higher counts of neutrophils, monocytes and lymphocytes in patients who received the 273 

auto-FMT (Figure 2B,C).  274 

The associations we reveal are interpretable as potential effectors on sources and sinks of 275 

white blood cell counts in circulation. Intestinal bacteria may affect white blood cell counts in 276 

circulation by influencing either their sources in the bone marrow or their cytokine profiles45 and 277 

proliferation rates in the blood, their sinks in different organs, or both. The human immune system in 278 
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turn can interact with the microbiota and modulate its composition, for example via 279 

immunoglobulin A responses targeting specific bacteria as studied in mice43,46,47. To investigate a 280 

reverse effect of the peripheral immune cell system onto bacterial populations, we employed an 281 

analogous approach to the stage 1 analysis of white blood cell dynamics. Dynamics of white blood 282 

cells can be estimated from changes in absolute cell counts, and to obtain the necessary measurements 283 

in absolute bacterial abundances, we measured total bacterial 16S rRNA gene copies per gram of stool 284 

for a subset of our samples (3,995 samples from 481 patients). Using absolute abundances of bacteria 285 

as predictors in addition to medications, we jointly inferred the association network of dynamics 286 

between the gut bacterial ecosystem and the peripheral immune system. All of our patients receive 287 

antibiotics on some days during their treatment24 and their strong effects on microbiota dynamics 288 

were the dominant effects that survived cross-validated regularized elastic net regression (Figure 289 

S18). Relaxing the strength of the regularization (methods), however, revealed several bi-directional 290 

relationships between immune cells in circulation and bacterial dynamics in the gut (Figure S19). Of 291 

note, we detected a negative association of absolute [Ruminococcus] gnavus group abundance with 292 

lymphocytes dynamics, confirming our main result based on relative bacterial abundances (Figure 3). 293 

In the reverse direction, we saw a positive association of [Ruminococcus] gnavus group dynamics 294 

with lymphocyte counts. This result agrees with findings that Ruminococcus gnavus thrives in and 295 

promotes inflammatory conditions such as Crohn’s disease and other inflammatory bowel diseases 296 

(IBD)48; our analysis suggests it may drive high neutrophil to lymphocyte ratios that are broadly 297 

characteristic for poor disease outcomes in IBD49,50 and beyond51,52. 298 

Overall, our analysis identified that the microbiome is associated with immune cell dynamics 299 

in addition to medications. The effects should be interpreted as net effects since they do not 300 

distinguish, for example, how the microbiota impacts de novo hematopoiesis in isolation from its 301 

impact on other sources and sinks. Unlike the plausible role of obligate anaerobe fermenters in 302 

augmenting hematopoiesis via nutritional support25, the positive association detected between 303 

Staphylococcus and lymphocyte dynamics could instead result from reduced extravasation of T cells 304 

from circulation into the gut epithelium53, especially since high abundances of Staphylococcus are 305 
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associated with low gut microbiota diversity (p<0.001, Figure S20), which indicates a depleted 306 

microbiota.  307 

Nevertheless, our approach allows us to leverage the chronology of events and assess 308 

“mathematical causality”54. Of course, due to the observational nature of these data there are risks of 309 

confounding that could explain some of the associations found, but the close temporal 310 

correspondence54 between microbiota and blood cell dynamics, and the validation across cohorts 311 

reduces the number of plausible confounders. Our results, therefore, quite naturally suggest candidate 312 

microbial taxa to manipulate if we seek to steer complex hematopoietic dynamics and utilize the 313 

microbiota as an immunomodulatory component of the human body. Intriguingly, members of 314 

Faecalibacterium and Ruminococcus in one study10, and Akkermansia in another9, were identified as 315 

enriched in patients with better responses to anti–PD-1 immunotherapy, which suggested a 316 

disagreement between the two studies55. Our results, however, revealed Faecalibacterium, 317 

Ruminococcus 2, and Akkermansia as the most strongly associated taxa with increases in white blood 318 

cell counts from one day to the next. Therefore, our results agree with the findings of both anti PD-1 319 

therapy studies that these taxa are associated with immune modulation in humans. Our results also 320 

allow us to compare the potency of manipulating these intestinal commensals to that of 321 

immunomodulatory drugs. While these genera are common in the gut microbiota of healthy people17, 322 

the relative abundance of each genus can drop below detection in our patients during the intestinal 323 

damage related to HCT24. Therefore, realistic ranges of 3-5 orders of magnitude in bacterial log-324 

relative abundances (Figure 3G, S21) can yield effect sizes similar to that of homeostatic feedbacks 325 

between white blood cells and several immunomodulatory medications (e.g. a change in 326 

Ruminococcus 2 from below detection to 1% relative abundance associated with a +67% and +63% 327 

increases in neutrophil and lymphocyte rates, respectively). Therefore, while the effect sizes of 328 

intestinal bacteria at first may appear smaller than those of immunomodulatory drugs, the herein 329 

estimated homeostatic effects of gut bacteria may not be that small since their coefficients refer to 330 

changes in exponential rates of white blood cells and accumulate each day. To better demonstrate how 331 

this accumulation of effects would work, we conducted simulations of the inferred dynamic system of 332 

white blood cells using our posterior coefficient distributions (methods). We simulated 1,000 time 333 
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series for microbiota compositions either chosen from the 100 samples highest or lowest in 334 

Faecalibacterium, Ruminococcus 2 and Akkermansia (Figure 3G), in presence (Figure 3H) or 335 

absence (Figure 3I) of GCSF administration. Simulations predict that a microbiota enriched in these 336 

genera could accelerate immune reconstitution, and reduce the time until neutrophils reach >2K*µl-1 337 

in absence of GCSF by 2.4 days, from predicted 6.8 (CI: [6.5, 7]) to 4.4 days (CI: [4.3,4.5]) days. Gut 338 

bacteria, in concert and over time, could therefore have significant impact on systemic immunity even 339 

in individuals with less severely injured microbiomes.  340 

In sum, our work links the gut microbiota to the dynamics of the human immune system via 341 

peripheral white blood cell populations. Our analysis uses white blood cells counted directly from 342 

patients, which are coarse-grained clinical analyses conducted at large scale but lack details such as 343 

lymphocyte and other immune cell subsets. Nonetheless, because it is in humans, this study fills an 344 

important gap at a critical time for microbiome research when the clinical relevance of animal models 345 

of microbiome-immune interaction has been questioned21. By studying a large number of patients 346 

over time, we were able to infer and quantify for the first time the association of microbiota 347 

components on systemic immune cell dynamics, and our results help to consolidate previous 348 

findings10,9 that seemed in conflict with each other55. Our study demonstrates that the composition of 349 

the microbiota does indeed modulate systemic immune cell dynamics, a link that could be used in the 350 

future to improve immunotherapy and help identify microbiota treatments for inflammatory 351 

diseases9,10,56–60. 352 

  353 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2020. ; https://doi.org/10.1101/618256doi: bioRxiv preprint 

https://doi.org/10.1101/618256


 16 

 354 

 355 
Bibliography 356 

 357 
1. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory 358 

molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 359 
107–118 (2005). 360 

2. Gomez de Agüero, M. et al. The maternal microbiota drives early postnatal innate 361 
immune development. Science 351, 1296–1302 (2016). 362 

3. Sonnenberg, G. F. & Artis, D. Novel connections and precision approaches. Nat. Rev. 363 
Immunol. 19, 75–76 (2019). 364 

4. Geva-Zatorsky, N. et al. Mining the human gut microbiota for immunomodulatory 365 
organisms. Cell 168, 928–943.e11 (2017). 366 

5. Tan, T. G. et al. Identifying species of symbiont bacteria from the human gut that, alone, 367 
can induce intestinal Th17 cells in mice. Proc. Natl. Acad. Sci. USA 113, E8141–E8150 368 
(2016). 369 

6. Balmer, M. L. et al. Microbiota-derived compounds drive steady-state granulopoiesis via 370 
MyD88/TICAM signaling. J. Immunol. 193, 5273–5283 (2014). 371 

7. Deshmukh, H. S. et al. The microbiota regulates neutrophil homeostasis and host 372 
resistance to Escherichia coli K1 sepsis in neonatal mice. Nat. Med. 20, 524–530 (2014). 373 

8. Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer 374 
immunity. Nature 565, 600–605 (2019). 375 

9. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy 376 
against epithelial tumors. Science 359, 91–97 (2018). 377 

10. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 378 
immunotherapy in melanoma patients. Science 359, 97–103 (2018). 379 

11. Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut 380 
microbiota. Science 350, 1079–1084 (2015). 381 

12. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in 382 
metastatic melanoma patients. Science 359, 104–108 (2018). 383 

13. Atarashi, K. et al. ATP drives lamina propria T(H)17 cell differentiation. Nature 455, 384 
808–812 (2008). 385 

14. Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-386 
helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008). 387 

15. Cahenzli, J., Köller, Y., Wyss, M., Geuking, M. B. & McCoy, K. D. Intestinal microbial 388 
diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 389 
14, 559–570 (2013). 390 

16. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel 391 
diseases. Nature 569, 655–662 (2019). 392 

17. Integrative HMP (iHMP) Research Network Consortium. The integrative human 393 
microbiome project. Nature 569, 641–648 (2019). 394 

18. Olin, A. et al. Stereotypic immune system development in newborn children. Cell 174, 395 
1277–1292.e14 (2018). 396 

19. Brandi, G. & Frega, G. Microbiota: Overview and Implication in Immunotherapy-Based 397 
Cancer Treatments. Int. J. Mol. Sci. 20, (2019). 398 

20. Xin Yu, J., Hubbard-Lucey, V. M. & Tang, J. The global pipeline of cell therapies for 399 
cancer. Nat. Rev. Drug Discov. 18, 821–822 (2019). 400 

21. Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or Exaggerating 401 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2020. ; https://doi.org/10.1101/618256doi: bioRxiv preprint 

https://doi.org/10.1101/618256


 17 

Causality for the Gut Microbiome: Lessons from Human Microbiota-Associated 402 
Rodents. Cell 180, 221–232 (2020). 403 

22. Taur, Y. et al. Intestinal domination and the risk of bacteremia in patients undergoing 404 
allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis. 55, 905–914 (2012). 405 

23. Taur, Y. et al. Reconstitution of the gut microbiota of antibiotic-treated patients by 406 
autologous fecal microbiota transplant. Sci. Transl. Med. 10, (2018). 407 

24. Morjaria, S. et al. Antibiotic-Induced Shifts in Fecal Microbiota Density and 408 
Composition during Hematopoietic Stem Cell Transplantation. Infect. Immun. 87, 409 
(2019). 410 

25. Staffas, A. et al. Nutritional Support from the Intestinal Microbiota Improves 411 
Hematopoietic Reconstitution after Bone Marrow Transplantation in Mice. Cell Host 412 
Microbe 23, 447–457.e4 (2018). 413 

26. Taur, Y. et al. The effects of intestinal tract bacterial diversity on mortality following 414 
allogeneic hematopoietic stem cell transplantation. Blood 124, 1174–1182 (2014). 415 

27. Savani, B. N. et al. Absolute lymphocyte count on day 30 is a surrogate for robust 416 
hematopoietic recovery and strongly predicts outcome after T cell-depleted allogeneic 417 
stem cell transplantation. Biol. Blood Marrow Transplant. 13, 1216–1223 (2007). 418 

28. Mehta, R. S. & Rezvani, K. Immune reconstitution post allogeneic transplant and the 419 
impact of immune recovery on the risk of infection. Virulence 7, 901–916 (2016). 420 

29. Kim, H. T. et al. Absolute lymphocyte count recovery after allogeneic hematopoietic 421 
stem cell transplantation predicts clinical outcome. Biol. Blood Marrow Transplant. 21, 422 
873–880 (2015). 423 

30. Scheiermann, C., Frenette, P. S. & Hidalgo, A. Regulation of leucocyte homeostasis in 424 
the circulation. Cardiovasc. Res. 107, 340–351 (2015). 425 

31. Thompson, P. A. et al. Umbilical cord blood graft engineering: challenges and 426 
opportunities. Bone Marrow Transplant. 50 Suppl 2, S55-62 (2015). 427 

32. Gabrilove, J. L. et al. Effect of granulocyte colony-stimulating factor on neutropenia and 428 
associated morbidity due to chemotherapy for transitional-cell carcinoma of the 429 
urothelium. N. Engl. J. Med. 318, 1414–1422 (1988). 430 

33. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 431 
157, 121–141 (2014). 432 

34. Hall, M. W. et al. Inter-personal diversity and temporal dynamics of dental, tongue, and 433 
salivary microbiota in the healthy oral cavity. npj Biofilms and Microbiomes 3, 2 (2017). 434 

35. Ramanan, P., Barreto, J. N., Osmon, D. R. & Tosh, P. K. Rothia bacteremia: a 10-year 435 
experience at Mayo Clinic, Rochester, Minnesota. J. Clin. Microbiol. 52, 3184–3189 436 
(2014). 437 

36. Ulven, T. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new 438 
potential therapeutic targets. Front. Endocrinol. (Lausanne) 3, 111 (2012). 439 

37. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic 440 
Treg cell homeostasis. Science 341, 569–573 (2013). 441 

38. Hergott, C. B. et al. Peptidoglycan from the gut microbiota governs the lifespan of 442 
circulating phagocytes at homeostasis. Blood 127, 2460–2471 (2016). 443 

39. Ladinsky, M. S. et al. Endocytosis of commensal antigens by intestinal epithelial cells 444 
regulates mucosal T cell homeostasis. Science 363, (2019). 445 

40. Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host 446 
microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017). 447 

41. Yoshii, K., Hosomi, K., Sawane, K. & Kunisawa, J. Metabolism of dietary and microbial 448 
vitamin B family in the regulation of host immunity. Front. Nutr. 6, 48 (2019). 449 

42. Zaza, G. et al. Impact of maintenance immunosuppressive therapy on the fecal 450 
microbiome of renal transplant recipients: Comparison between an everolimus- and a 451 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2020. ; https://doi.org/10.1101/618256doi: bioRxiv preprint 

https://doi.org/10.1101/618256


 18 

standard tacrolimus-based regimen. PLoS One 12, e0178228 (2017). 452 
43. McLoughlin, K., Schluter, J., Rakoff-Nahoum, S., Smith, A. L. & Foster, K. R. Host 453 

selection of microbiota via differential adhesion. Cell Host Microbe 19, 550–559 (2016). 454 
44. Ze, X., Duncan, S. H., Louis, P. & Flint, H. J. Ruminococcus bromii is a keystone 455 

species for the degradation of resistant starch in the human colon. ISME J. 6, 1535–1543 456 
(2012). 457 

45. Schirmer, M. et al. Linking the human gut microbiome to inflammatory cytokine 458 
production capacity. Cell 167, 1125–1136.e8 (2016). 459 

46. Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota 460 
and the immune system. Science 336, 1268–1273 (2012). 461 

47. Palm, N. W. et al. Immunoglobulin A coating identifies colitogenic bacteria in 462 
inflammatory bowel disease. Cell 158, 1000–1010 (2014). 463 

48. Henke, M. T. et al. Ruminococcus gnavus, a member of the human gut microbiome 464 
associated with Crohn’s disease, produces an inflammatory polysaccharide. Proc. Natl. 465 
Acad. Sci. USA 116, 12672–12677 (2019). 466 

49. Okba, A. M. et al. Neutrophil/lymphocyte ratio and lymphocyte/monocyte ratio in 467 
ulcerative colitis as non-invasive biomarkers of disease activity and severity. Auto 468 
Immun. Highlights 10, 4 (2019). 469 

50. Celikbilek, M. et al. Neutrophil-lymphocyte ratio as a predictor of disease severity in 470 
ulcerative colitis. J Clin Lab Anal 27, 72–76 (2013). 471 

51. Gao, Y. et al. Neutrophil/lymphocyte ratio is a more sensitive systemic inflammatory 472 
response biomarker than platelet/lymphocyte ratio in the prognosis evaluation of 473 
unresectable pancreatic cancer. Oncotarget 8, 88835–88844 (2017). 474 

52. Choi, S.-J. et al. High neutrophil-to-lymphocyte ratio predicts short survival duration in 475 
amyotrophic lateral sclerosis. Sci. Rep. 10, 428 (2020). 476 

53. Fu, Y.-Y. et al. T Cell Recruitment to the Intestinal Stem Cell Compartment Drives 477 
Immune-Mediated Intestinal Damage after Allogeneic Transplantation. Immunity 51, 478 
90–103.e3 (2019). 479 

54. Gerber, G. K. The dynamic microbiome. FEBS Lett. 588, 4131–4139 (2014). 480 
55. Jobin, C. Precision medicine using microbiota. Science 359, 32–34 (2018). 481 
56. Zitvogel, L., Ma, Y., Raoult, D., Kroemer, G. & Gajewski, T. F. The microbiome in 482 

cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science 359, 1366–483 
1370 (2018). 484 

57. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities 485 
associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013). 486 

58. Lakritz, J. R. et al. Gut bacteria require neutrophils to promote mammary tumorigenesis. 487 
Oncotarget 6, 9387–9396 (2015). 488 

59. Lakritz, J. R. et al. Beneficial bacteria stimulate host immune cells to counteract dietary 489 
and genetic predisposition to mammary cancer in mice. Int. J. Cancer 135, 529–540 490 
(2014). 491 

60. Chen, H. et al. A forward chemical genetic screen reveals gut microbiota metabolites 492 
that modulate host physiology. Cell 177, 1217–1231.e18 (2019). 493 

61. Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the 494 
Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012). 495 

62. Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon 496 
data. Nat. Methods 13, 581–583 (2016). 497 

63. Murali, A., Bhargava, A. & Wright, E. S. IDTAXA: a novel approach for accurate 498 
taxonomic classification of microbiome sequences. Microbiome 6, 140 (2018). 499 

64. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data 500 
processing and web-based tools. Nucleic Acids Res. 41, D590-6 (2013). 501 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2020. ; https://doi.org/10.1101/618256doi: bioRxiv preprint 

https://doi.org/10.1101/618256


 19 

65. Pinheiro, J. C., Bates, D. M., DebRoy, S. S. & Sarkar, D. Nlme: Linear and Nonlinear 502 
Mixed Effects Models. (2013). 503 

66. Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the Royal 504 
Statistical Society: Series B (Methodological) 58, 267–288 (1996). 505 

67. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine 506 
Learning Research (2011). 507 

68. Salvatier, J., Wiecki, T. V. & Fonnesbeck, C. Probabilistic programming in Python using 508 
PyMC3. PeerJ Computer Science 2, e55 (2016). 509 

69. Hoffman, M. D. & Gelman, A. The No-U-Turn Sampler: Adaptively Setting Path 510 
Lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research (2014). 511 

70. Franzosa, E. A. et al. Species-level functional profiling of metagenomes and 512 
metatranscriptomes. Nat. Methods 15, 962–968 (2018). 513 

71. Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P.-C. Rank-514 
normalization, folding, and localization: An improved $\widehat{R}$ for assessing 515 
convergence of MCMC. arXiv (2019). 516 

 517 
  518 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2020. ; https://doi.org/10.1101/618256doi: bioRxiv preprint 

https://doi.org/10.1101/618256


 20 

Supplementary Information 519 

Appended and available online. 520 

 521 

Acknowledgments and Conflicts of Interest 522 

We thank Marc Lipsitch, Sandra B. Andersen, Kevin R. Foster, Jonathan Kevin Sia, Eric G. Pamer, 523 

Kat Coyte, Sibylle Mitschka and the members of the Xavier lab for helpful discussion and comments 524 

on the manuscript. This work was supported by the National Institutes of Health (NIH) grant U01 525 

AI124275 to JBX and grant R01 AI137269 to JBX, by the MSKCC Cancer Center Core Grant P30 526 

CA008748, the Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer 527 

Center, the Sawiris Foundation, the Society of Memorial Sloan Kettering Cancer Center, MSKCC 528 

Cancer Systems Immunology Pilot Grant and Empire Clinical Research Investigator Program. MS 529 

received funding from the Burroughs Wellcome Fund Postdoctoral Enrichment Program, the Damon 530 

Runyon Physician-Scientist Award, and the Robert Wood Johnson Foundation. MRMvdB and JUP 531 

received financial support from Seres Therapeutics. TMH is investigator in the Pathogenesis of 532 

Infectious Diseases from the Burroughs Wellcome Fund, and funded via an award from Geoffrey 533 

Beene Foundation, and NIH RO1 AI093808. M-AP has received honoraria from AbbVie, Bellicum, 534 

Bristol-Myers Squibb, Incyte, Merck, Novartis, Nektar Therapeutics, and Takeda; has received 535 

research support for clinical trials from Incyte, Kite (Gilead) and Miltenyi Biotec; and serves on data 536 

and safety monitoring boards for Servier and Medigene and scientific advisory boards for MolMed 537 

and NexImmune. The funders had no role in study design, data collection and analysis, decision to 538 

publish, or preparation of the manuscript. 539 

 540 

Author Contributions 541 

J.S. and J.B.X. wrote the manuscript. J.S. and J.B.X. designed the analyses with expert help from 542 

R.N.. J.U.P. and Y.T. contributed to the clinical data preparation, B.P.T. provided the 16S data 543 

processing pipelines, A.D. provided the shotgun processing pipelines. All authors contributed to the 544 

writing and interpretation of the results. 545 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2020. ; https://doi.org/10.1101/618256doi: bioRxiv preprint 

https://doi.org/10.1101/618256


 21 

SUPPLEMENTARY INFORMATION 546 

Methods 547 

Complete blood count collection and characterization 548 

Absolute white blood cells count data were obtained from routine complete blood counts ordered by 549 

clinicians during normal clinical practice, used to obtain informative diagnostic and monitoring 550 

information. Blood samples received in the clinical hematology laboratory were analyzed using 551 

Sysmex XN automated hematology analyzers (Sysmex, Lincolnshire, IL) and, when needed based on 552 

specific flags and parameters as per MSKCC standard operating procedures, were validated manually 553 

using the Sysmex DI-60 Slide Processing System or CellaVision DM9600 Automated Digital 554 

Morphology System (Sysmex, Lincolnshire, IL). 555 

 556 

16S rRNA gene amplification and multiparallel sequencing 557 

For each sample, duplicate 50-μl PCRs were performed, each containing 50 ng of purified DNA, 0.2 558 

mM deoxynucleotide triphosphates, 1.5 mM MgCl2, 2.5 U Platinum Taq DNA polymerase, 2.5 μl of 559 

10× PCR buffer, and 0.5 μM of each primer designed to amplify the V4-V5: 563F (5′-nnnnnnnn-560 

NNNNNNNNNNNN-AYTGGGYDTAAAGNG-3′) and 926R (5′-nnnnnnnn-NNNNNNNNNNNN-561 

CCGTCAATTYHTTTRAGT-3′). A unique 12-base Golay barcode (Ns) precedes the primers for 562 

sample identification61, and one to eight additional nucleotides were placed in front of the barcode to 563 

offset the sequencing of the primers. Cycling conditions were 94°C for 3 min, followed by 27 cycles 564 

of 94°C for 50 s, 51°C for 30 s, and 72°C for 1 min. For the final elongation step, 72°C for 5 min was 565 

used. Replicate PCRs were pooled, and amplicons were purified using the QIAquick PCR Purification 566 

Kit (Qiagen). PCR products were quantified and pooled at equimolar amounts before Illumina 567 

barcodes and adaptors were ligated, using the Illumina TruSeq Sample Preparation protocol. The 568 

completed library was sequenced on an Illumina MiSeq platform following the Illumina 569 

recommended procedures with a paired-end 250 × 250 bp kit 570 

 571 

Sequence analysis 572 
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The 16S (V4-V5) paired-end reads were merged and demultiplexed. Amplicon sequence variants 573 

(ASVs) were identified using the Divisive Amplicon Denoising Algorithm (DADA2) pipeline 574 

including filtering and trimming of the reads62. Reads were trimmed to the first 180 bp or the first 575 

point with a quality score Q<2. Reads were removed if they contained ambiguous nucleotides (N) or 576 

if two or more errors were expected based on the quality of the trimmed read. We assigned taxonomy 577 

to ASVs using a 8-mer based classifier trained by IDTaxa63 using the SILVA database64. We 578 

determined the copy number of 16S rRNA genes per gram of stool for 4,158 of our samples as 579 

reported previously24, by quantitative PCR on total DNA extracted from fecal samples. 580 

 581 

Quantification of total microbiota density per gram of stool and estimation of total genus 582 

abundances.  583 

Quantitative PCR (qPCR) was performed on DNA extracted from the 1g wet weight of a stool sample 584 

using DyNAmo SYBR Green qPCR kit (Finnzymes) and 0.2 μM of the universal bacterial primer 8F 585 

(5′-AGAGTTTGATCCTGGCTCAG) and the broad-range bacterial primer 338R 586 

(5′-TGCTGCCTCCCGTAGGAGT-3′). Standard curves were prepared by serial dilution of the PCR 587 

blunt vector (Invitrogen) containing 1 copy of the 16s rRNA gene. Cycling conditions were 95°C for 588 

10 minutes followed by 40 cycles of 95°C for 30 seconds, 52°C for 30 seconds, and 72°C for 1 589 

minute. We used the measurements of total 16S rRNA gene counts per gram of stool to multiply the 590 

relative abundances of taxa obtained from 16S amplicon sequencing to obtain the estimate of their 591 

total abundance per gram of stool (supplementary methods).  Importantly, this does not account for 592 

16S copy number variation between taxa, but the observed dynamic ranges in total abundances of taxa 593 

in our data set span up to 9 orders of magnitude, exceeding the potential inaccuracies due to copy 594 

number variation.  595 

 596 

Diversity calculations 597 
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Microbiome alpha-diversity was measured by the inverse Simpson (IS) index of a sample. It was 598 

calculated by IS! =
"

∑ $!"
#$

"%&
, where p is the relative abundance of the jth ASV out of N total ASVs in 599 

sample i. 600 

 601 

Linear mixed-effects model of white blood cell counts 602 

To study the effect of auto-FMT on white blood cells, we investigated the white blood cell counts of 603 

24 enrolled patients of this trial from the day of neutrophil engraftment until 100 days after. FMT 604 

occurred on different days relative to neutrophil engraftment. Thus, we performed an analogous 605 

analysis to that conducted in the original publication that demonstrated how FMT re-established a 606 

diverse microbiome in the post-FMT period23. To answer if white blood cell counts differed post-607 

FMT, we used a linear mixed effects model of white blood cell counts, y, modeled as a function of the 608 

FMT treatment as well as patient and timepoint specific random effects. We included random 609 

intercept terms for each day i and each patient j, and a fixed effects term for the post-FMT period with 610 

associated coefficient “armpost”, using the indicator variable “FMT”, that is 1 when a patient was 611 

from the FMT treated arm of the trial and day was greater than or equal to the day of the FMT 612 

procedure. We conducted independent analyses for neutrophil, lymphocyte and monocyte counts. 613 

This resulted in the following model of a cell count, y, for patient j on day i: 614 

𝑦%& =	𝛽' +	𝑎𝑟𝑚𝑝𝑜𝑠𝑡 ∗ 𝐹𝑀𝑇%& + 𝑑𝑎𝑦% + 𝑝𝑎𝑡𝑖𝑒𝑛𝑡& + 𝜀%& , 𝑖 = 0,… , 𝐷, 𝑗 = 1,… , 𝑃	 615 

with prior distributions 𝑑𝑎𝑦%~𝒩(0, 	𝜎()*+ ), and 𝑝𝑎𝑡𝑖𝑒𝑛𝑡&~𝒩(0, 	𝜎$),%-.,+ ), independent error 616 

𝜀%&~𝒩(0, 𝜎+) and fixed intercept β0, for the D days post neutrophils engraftment and P patients, 617 

(D=100, P=24). For convenience of those interested in reanalyzing our data, the part of our data 618 

concerning the auto-FMT analysis is available in tidy format (supplementary data 11), and the 619 

analysis code conducted in the R programming language is available as an exported notebook 620 

(fmt_effect_on_wbc.pdf) on github: https://github.com/jsevo/wbcdynamics_microbiome/.65 We 621 

conducted an additional analysis with “day” as a continuous predictor which did not change our 622 

conclusions (supplementary methods).  623 

 624 
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Dynamic systems analyses 625 

We analyzed factors associated with the observed changes of absolute counts of neutrophils, 626 

lymphocytes and monocytes between two days. In the following we describe how chronology of 627 

events and biological samples were encoded, and the models used to infer a role of medications, 628 

clinical parameters and the microbiome on dynamics of white blood cells.  629 

To reveal factors that associate with day-to-day changes in white blood cell counts, we started 630 

from a first-order differential equation of white blood cell (W) dynamics: 631 

d(W)
d𝑡

= 𝑊(𝑔𝑟 +H𝛽&𝑋&)
/

&0"

	 632 

Where gr represents the intercept, i.e. the base line rate of change during immune reconstitution, and 633 

𝛽& are the to-be-estimated coefficients of the 𝑃 predictors 𝑋& , 𝑗 ∈ 𝑃, of the white blood cell dynamics. 634 

This equation was then linearized to 635 

d 𝑙𝑛(W)
d𝑡

= 𝑔𝑟 +H𝛽&𝑋&

/

&0"

 636 

And we parameterized the corresponding discrete difference equation: 637 

Δ ln(W)
Δ𝑡

= 𝑔𝑟 +H𝛽&𝑋&

/

&0"

	 638 

where Δln(W) is the log-difference between single days of neutrophils, lymphocytes or monocytes 639 

counts, and Δt=1 for all intervals. Predictors include the counts of neutrophils, lymphocytes, 640 

monocytes, eosinophils and platelets during an interval (homeostatic feedbacks), immunomodulatory 641 

medication and clinical observations such as a blood stream infection and the onset of graft versus 642 

host disease, HCT parameters such as graft types and conditioning regimens, and, additionally, the 643 

microbiota composition in “stage 2” of our analysis (supplementary methods for data exclusion and 644 

additional details on interval definitions). Importantly, by parameterizing a dynamic equation and 645 

analyzing rates of change, our coefficient estimates have an immediate causal interpretation within 646 

our modeling framework (i.e. a 𝛽&>0 implies that higher levels of the corresponding 𝑋& increases the 647 
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respective white blood cell type, W). To differentiate such results from other associations, analyses of 648 

this type have been termed “mathematical causality”54.  649 

 650 

Stage 1 analysis: Feature selection. Identifying medications and clinical observations associated with 651 

white blood cell dynamics from patients without microbiome data  652 

Stage 1 uses data of patients without any available microbiome samples and the following model of 653 

white blood cell changes, y: 654 

𝑦 = 𝑔𝑟 +%𝛽!𝑋! ,
"

!#$

	 655 

with intercept, gr.The predictors, X, include dummy variables for the HCT graft type, patients’ age on 656 

the date of HCT, sex, 13 most frequently observed positive blood cultures with remaining other blood 657 

stream infections grouped into a separate category “other infections”, an indicator for the onset of 658 

graft versus host disease, administrations of 55 different, most common immunomodulatory 659 

medications and platelet transfusion events, and HCT conditioning intensity regimens as well as the 660 

log-transformed geometric mean counts of neutrophils, lymphocytes, monocytes, eosinophils and 661 

platelets during the respective interval. We used elastic net regression66 for feature selection using the 662 

sklearn package for the Python programming language67. For elastic net regression with 50% L1-663 

penalty, predictors were scaled between zero and 1, and we used 10-fold cross validation (i.e. leaving 664 

out 10% of patients at each cross-validation step) to choose the regularization strength, 𝜆, solving for 665 

𝑎𝑟𝑔𝑚𝑖𝑛%&,( /
1
2𝑁	%(𝑦) − 𝑔𝑟 −%𝑥)!𝛽!)*

"

!#$

+

)#$

	+	
1
2 𝜆%|𝛽!|

"

!#$

	+	
1
2 𝜆%𝛽!*

"

!#$

8		 666 

 667 
Stage 1 yielded a sparse coefficient matrix of predictors used to design the model in stage 2. 668 

 669 

Expanded analysis on patients with microbiome data – stage 2 670 

To identify associations between microbiota and white blood cell dynamics, we conducted an 671 

analogous, Bayesian regression using the package PyMC3 for the Python programming language68. 672 

Stage 1 identified important difference between transplant types, and we therefore stratified our data 673 

into 4 cohorts according to their stem cell graft source. Using data independently from each cohort, 674 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2020. ; https://doi.org/10.1101/618256doi: bioRxiv preprint 

https://doi.org/10.1101/618256


 26 

we applied “no U-turn” sampling69 to produce 10,000 posterior samples from 5 independent MCMC 675 

chains that parameterized the model: 676 

𝑦 ~  𝒩(𝜇,  𝜎+) 677 

𝜇	 = 	𝑔𝑟 +H𝑥&𝛽&

/1

&0"

 678 

with uninformative prior distributions 679 

𝑔𝑟 ~ 𝒩 (𝑚𝑒𝑎𝑛 = 0,  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 	100) 680 

  𝛽&  ~ 𝒩 (𝑚𝑒𝑎𝑛 = 0,  𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 	100) 681 

	𝜎 ~ 𝐻𝑎𝑙𝑓𝐶𝑎𝑢𝑐ℎ𝑦 ( 𝑏𝑒𝑡𝑎 = 2) 682 

where y is the observed daily change of a focal white blood cell type as in stage 1 with normal 683 

distributed mean, 𝜇, and σ, the model uncertainty with a thick-tailed half Cauchy prior (importantly, 684 

our posterior estimates do not depend on this choice as we obtain the same results with an inverse 685 

Gamma prior, figure S19). 𝜇 was a function of the baseline growth rate, gr, and predictors, 𝑃[: 686 

medications with non-zero coefficients in stage 1, the white blood cell counts, patient age and sex, 687 

and HCT conditioning intensities; additionally, 𝑃[ now included the log-abundances of microbial 688 

genera as measured by 16S sequencing from DNA in the stool collected on the second day of a daily 689 

interval (see supplementary methods for details). We considered taxa that were among the 100 most 690 

abundant, or had reached maximum relative abundances of at least 10%, and selected those who were 691 

non-zero in more than 75% of our samples. White blood cell counts and microbiota data present 692 

during a daily interval were log-transformed, and zeros were filled with half of the minimum observed 693 

non zero counts (i.e. 0.5e3 and 2e-6, respectively).  We focused on the largest cohort (PBSC) and 694 

used the independent inference results from TCD, BM, and cord cohorts for validation.  695 

 696 

Validation score  697 

Coefficients learnt from the PBSC patient cohort were assigned a “validation score” based on the 698 

results obtained from the other three MSK patient cohorts. Our requirements for validation were 699 

conservative; we required evidence from our validation data sets as well as absence of counter 700 
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evidence. For regression results from each of the validation graft type cohorts, i.e. TCD, BM, and 701 

cord, we checked if a coefficient had more than 75% probability (50%HPDI) to have the same sign as 702 

the mean of the PBSC coefficient posterior for a given predictor. If so, this was considered evidence 703 

of validation, and we summed the evidence over the three validation sets (i.e. maximum score of 3, 1 704 

from each of TCD, BM, and cord cohorts). Conversely, if we found more than 75% probability 705 

among any of the validation data sets that a given predictor had the opposite sign as the posterior 706 

mean calculated from PBSC data, this was considered counter evidence and the validation score was 707 

always set to zero.  708 

 709 

Analysis of white blood cell dynamics with absolute bacterial abundances as predictors instead of 710 

relative abundances 711 

We conducted an ordinary least squares regression using the statsmodels package in the Python 712 

programming language of the same model as in the main Bayesian analysis using total bacterial 713 

abundances as predictors. This was only possible on a subset of 389 neutrophil, 331 lymphocyte and 714 

376 monocyte rate observations from PBSC patients. 715 

 716 

Forwards simulation of predicted immune system reconstitution kinetics 717 

To assess the impact of the estimated microbiota coefficients on immune system dynamics, we 718 

conducted 1,000 simulations of the system of 3 differential equations describing the dynamics of 719 

neutrophils, lymphocytes and monocytes. We ran 1,000 simulations four times: in presence and 720 

absence of GCSF, each with microbiota compositions enriched or depleted in Faecalibacterium, 721 

Ruminococcus 2 and Akkermansia. To identify these compositions, we ranked the observed 722 

microbiota compositions by these taxa, and chose randomly either from the top or bottom 100. The 723 

coefficients for white blood cell interactions, interactions with the microbiota and the effect of GCSF 724 

were sampled from our posterior coefficient distributions. Using these coefficients sampled at the start 725 

of the simulation, and using 50 cells*μl-1 of neutrophils, lymphocytes and monocytes as initial values, 726 

we simulated these differential equations forwards in time using the odeint function of the scipy 727 

package for the Python programming language. 728 
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 729 

Validation on data from Duke University 730 

We analyzed 9,603 blood samples with 25,581 associated administrations of immunomodulatory 731 

medications, and 741 microbiota samples from Duke as an orthogonal data set to validate our 732 

findings. The temporal resolution of this data was much lower, and after filtering for samples from the 733 

relevant post neutrophil engraftment period, and by requiring daily intervals, 83 valid, complete data 734 

points were available. Using these data, we correlated daily blood cell changes individually in 735 

univariate, or jointly in a partial least squares regression, with those predictors that achieved more 736 

than 95% probability density in the positive or negative domain in the PBSC data regression. For each 737 

of these predictors, we present the sign of slopes and Bonferroni corrected p-values from individual 738 

linear regressions. 739 

 740 

Joint analysis of the effect of antibiotics and white blood cell counts on the microbiota and the 741 
microbiota and immunomodulatory medications on white blood cell counts 742 
Analogous to stage 1, we performed cross-validated, regularized linear regressions (ElasticNet) using 743 

the scikit-learn package for the Python programming language to jointly estimate the association 744 

network between microbiota and circulatory white blood cells. For this, we constructed a block matrix 745 

X of predictor matrices Xi  that include the absolute bacterial abundances, drug data (antibiotics for 746 

bacterial dynamics and immune modulators for white blood cell dynamics), as well as the counts of 747 

white blood cells and a separate intercept term per block. Each block 𝑿𝒏𝒍,𝒑𝒍	𝒍 , with nl observations and pl 748 

predictors (l=0...k), on the diagonal of X corresponds to the indices of the observed daily log-changes 749 

of one of the 41 bacterial genera considered in our main analysis or the log changes in neutrophil, 750 

lymphocyte and monocyte counts from PBSC patients contained in Y (in total we calculated 15,833 751 

rates from 256 patients). Our regression problem can thus be written as: 752 

	𝑎𝑟𝑔𝑚𝑖𝑛(	(𝐘 − 𝐗𝜷)		where	𝐗 = 	
𝑿𝒏𝟎,𝒑𝟎	
𝟎 	 ⋯ 𝟎𝒏𝟎,𝒑𝒌	
⋮ ⋱ ⋮	

𝟎𝒏𝒌,𝒑𝟎	 ⋯ 𝑿𝒏𝒌,𝒑𝒌	
𝒌

 753 

with k=44, i.e. 41 bacterial genera and 3 white blood cell types, the to-be estimated coefficient vector 754 

β and 0 the zero matrix. This system is underdetermined and we therefore chose the same approach as 755 
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in stage 1, elastic net regression, for feature selection. Predictors were scaled between zero and 1, and 756 

we used 3-fold cross validation, leaving out 1/3rd of the patients at each iteration to identify a global 757 

regularization strength, 𝜆, solving for 758 

𝑎𝑟𝑔𝑚𝑖𝑛( /
1
2h 	%(𝑦) −%𝑥)!𝛽!)*

r

!#$

h

)#$

	+	
1
2 𝜆%|𝛽!|

r

!#$

	+	
1
2 𝜆%𝛽!*

r

!#$

8		 759 

 760 
where h is the total number of observed daily log changes in genera and white blood cells, and r the 761 
total number of predictors. This yielded a strongly regularizing 𝜆2, and thus few predictors. To 762 
characterize potential bidirectional relationships between white blood cell counts and the gut 763 
microbiota, we iteratively reduced the regularization strength until the strongest interaction between 764 
microbiota and white blood cell dynamics, i.e. Faecalibacterium with neutrophil dynamics, was 765 
detected. We than re-ran the regression with this reduced regularization strength, 𝜆3. 766 
 767 
Shotgun sequencing 768 

Sequencing of 124 post-neutrophil engraftment was conducted on the Illumina HiSeq platform. For 769 

details and the processing of the FASTQ files, see supplementary methods. We used the HUMAnN2 770 

pipeline70 with default settings for functional profiling of our samples, with the UniRef90 data base 771 

and ChocoPhlAn for alignment, and we renormalized our samples by library depth to copies per 772 

million. We used MetaCyc to obtain stratified and unstratified pathway abundances. 773 

 774 

Statistical analysis of shotgun data 775 

We calculated the predicted microbiota potency score for each sample and separately for neutrophils, 776 

lymphocytes and monocytes, by multiplying the abundances of taxa in each of the 124 samples with 777 

the corresponding posterior coefficients obtained from the PBSC inference. To distinguish the sets of 778 

metabolic functions that separate samples with positive and negative predicted potencies, we 779 

converted the pathway abundances into presence and absences profiles. We performed a linear 780 

discriminant analysis between positive and negative potency samples with a least squares solver and 781 

automatic shrinkage using the Ledoit-Wolf lemma using the sklearn package for the Python 782 

programming language67. To assess differences in the presence or absence of pathways between 783 

samples with positive and negative potency, we used Fisher’s exact test for each pathway.  784 
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Supplementary Figures 785 

 786 
Figure S1: White blood cell counts and platelet counts per graft source over the first 100 days post HCT per day 787 
relative to HCT; lines: mean, shaded: ± standard deviations). 788 
 789 
 790 
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 791 
 792 
Figure S2: HCT patient who received an autologous fecal microbiota transplant (auto-FMT, dashed red line) 793 
that restored commensal microbial families and ecological diversity in the gut microbiota, with concurrent cell 794 
counts of peripheral neutrophils, lymphocytes and monocytes and immunomodulatory drug administrations. 795 
 796 
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 797 
Figure S3: Total counts of white blood cells increased in FMT-treated patients in the weeks 798 
following the treatment compared to control patients. A) Total white blood cell counts in 24 patients 799 
enrolled in a randomized controlled trial to receive an autologous fecal microbiota transplant post-neutrophil 800 
engraftment (10 control: black vertical line, 14 FMT treated: red vertical line,). B) Weekly mean cell counts 801 
aligned to the date of randomization into FMT treatment arm (red) or control (black). Line: weekly mean, 802 
shaded region: 95%-CI C) Results from a linear mixed effects model with random effects per patient and per 803 
day relative to neutrophil engraftment confirms that the total white blood cell counts is higher in patients 804 
receiving auto-FMT after their treatment as compared to control patients after the randomization date, bars and 805 
confidence intervals for the averages of observed white blood cell counts without FMT and post-FMT (***: 806 
p<0.001).  807 
 808 
 809 
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 810 
 811 
Figure S4: Neutrophil counts in 24. FMT trial patients. Thin lines: raw data (blue: post-FMT); thick black: 812 
mean per day, thick blue: mean+post-FMT coefficient.  Means and confidence intervals (shaded region) from 813 
linear mixed effects model (methods). 814 

 815 
 816 
Figure S5: Lymphocyte counts in 24. FMT trial patients. Thin lines: raw data (blue: post-FMT); thick black: 817 
mean per day, thick blue: mean+post-FMT coefficient.  Means and confidence intervals (shaded region) from 818 
linear mixed effects model (methods). 819 
 820 

 821 
 822 
Figure S6: Monocyte counts in 24. FMT trial patients. Thin lines: raw data (blue: post-FMT); thick black: mean 823 
per day, thick blue: mean+post-FMT coefficient.  Means and confidence intervals (shaded region) from linear 824 
mixed effects model (methods). 825 

post−FMT: +1.99, p***<0.0001

0.3

1.0

3.0

10.0

30.0

0 25 50 75 100
day

N
eu

tro
ph

ils

post−FMT: +0.27, p*** < 0.001

0.1

0.3

1.0

3.0

0 25 50 75 100
day

Ly
m

ph
oc

yt
es

post−FMT: +0.56, p*** < 0.001

0.1

0.3

1.0

3.0

0 25 50 75 100
day

M
on

oc
yt

es

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2020. ; https://doi.org/10.1101/618256doi: bioRxiv preprint 

https://doi.org/10.1101/618256


 34 

 826 
 827 

 828 
 829 
Figure S7: “Stage 1” regression on neutrophil dynamics on patients without microbiome data. Coefficients 830 
from 10-fold cross-validated elastic net regression daily changes in neutrophils. gr: intercept; TCD: T-cell 831 
depleted graft (ex-vivo) by CD34+selection; PBSC: peripheral blood stem cells; BM: bone marrow; cord: 832 
umbilical cord blood; NONABL: Nonmyeloablative; REDUCE: reduced-intensity conditioning regimen; F: 833 
female; N: patients, n: samples (daily changes in neutrophils). 834 
 835 

 836 
Figure S8: “Stage 1” regression on lymphocytes dynamics on patients without microbiome data. Coefficients 837 
from 10-fold cross-validated elastic net regression daily changes in lymphocytes. gr: intercept; TCD: T-cell 838 
depleted graft (ex-vivo) by CD34+selection; PBSC: peripheral blood stem cells; BM: bone marrow; cord: 839 
umbilical cord blood REDUCE: reduced-intensity conditioning regimen; F: female. N: patients, n: samples 840 
(daily changes in lymphocytes). 841 
 842 

Effect on
̪ neutrophils

lymphocytes
neutrophils

mycophenolate mofetil
tacrolimus

cord
estradiol norgestrel

hydroxyzine
BM

cyclosporine
immune globulin

diphenhydramine
octreotide
cetirizine

TCD
cytomegalovirus immune globulin

hydrocortisone
REDUCE

fludrocortison
NONABL

levothyroxine sodium
prednisone

platelet_transfusion
methylprednisolone

eosinophils
monocytes

GCSF
gr

-2.85e-01
-2.37e-01
-9.73e-02
-9.62e-02
-8.69e-02
-7.88e-02
-7.70e-02
-7.62e-02
-7.16e-02
-6.68e-02
-5.51e-02
-3.83e-02
-3.65e-02
-3.62e-02
-3.39e-02
-3.11e-02
-1.19e-02
-1.90e-03
2.32e-03
4.84e-03
2.22e-02
3.47e-02
5.27e-02
7.73e-02
5.22e-01
6.88e-01
5.42e-02

R2: 0.160
N: 1,096
n:20,751

í����

í����

0.00

0.15

0.30

co
e!

ci
en

t v
al

ue
s

Effect on
̪ lymphocytes

lymphocytes
platelets

cord
neutrophils

hydroxyzine
methylprednisolone

immune globulin
platelet_transfusion

BM
mycophenolate mofetil

prednisone
diphenhydramine

REDUCE
eosinophils
tacrolimus

age
loratadine

TCD
GCSF

monocytes
gr

-1.86e-01

-9.71e-02

-4.56e-02

-4.21e-02

-2.69e-02

-2.42e-02

-2.27e-02

-1.45e-02

-1.42e-02

-1.24e-02

-1.17e-02

-1.09e-02

-9.03e-03

-5.27e-03

5.33e-03

6.30e-03

1.49e-02

2.88e-02

1.36e-01

3.16e-01

6.60e-02

R2: 0.031
N: 1,061
n:18,444

í����

í����

0.00

0.15

0.30

co
e!

ci
en

t v
al

ue
s

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2020. ; https://doi.org/10.1101/618256doi: bioRxiv preprint 

https://doi.org/10.1101/618256


 35 

 843 
Figure S9: “Stage 1” regression on lymphocytes dynamics on patients without microbiome data. Coefficients 844 
from 10-fold cross-validated elastic net regression daily changes in lymphocytes. gr: intercept; TCD: T-cell 845 
depleted graft (ex-vivo) by CD34+selection; PBSC: peripheral blood stem cells; BM: bone marrow; cord: 846 
umbilical cord blood REDUCE: reduced-intensity conditioning regimen; F: female. N: patients, n: samples 847 
(daily changes in lymphocytes). 848 
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 849 
 850 
Figure S10: Additional coefficient estimates of medications (A), additional genera (B) and metadata (C) from 851 
the Bayesian regression, see also Figure 3. REDUCE: reduced-intensity conditioning regimen; NONABL: non-852 
myeloablative conditioning regimen. F: female  853 
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 854 

Figure S11: Posterior sampling converged. 
Histograms of the ranked posterior draws from the 
model of neutrophil dynamics in PBSC patients 
(ranked over all chains), plotted separately for each 
chain (see supplementary methods), show no 
substantial differences between chains71. 
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 855 

Figure S12: Posterior sampling converged. 
Histograms of the ranked posterior draws from the 
model of lymphocyte dynamics in PBSC patients 
(ranked over all chains), plotted separately for each 
chain (see supplementary methods), show no 
substantial differences between chains71. 
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 856 
 857 
 858 
 859 
 860 
 861 
 862 

Figure S13: Posterior sampling converged. 
Histograms of the ranked posterior draws from the 
model of monocyte dynamics in PBSC patients 
(ranked over all chains), plotted separately for each 
chain (see supplementary methods), show no 
substantial differences between chains71. 
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 863 
 864 
Figure S14: Validation analysis of predictors on white blood cell dynamics using data from patients treated at 865 
DukeHealth. Individual univariate regressions of microbiome and clinical predictors identified in stage 2 of our 866 
analysis on daily changes in neutrophils, lymphocytes and monocyte. Bonferroni corrected p-values: ***<0.001, 867 
**<0.01, *<0.05; p>0.05: n.s. Sign of coefficients from MSK PBSC patients for comparison. 868 
 869 
 870 
 871 
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 872 
 873 
Figure S15: Validation analysis of predictors on white blood cell dynamics using data from patients treated at 874 
DukeHealth. Partial least squares regression of microbiome and clinical predictors identified in stage 2 of our 875 
analysis on daily changes in neutrophils, lymphocytes and monocyte. 876 
 877 
 878 
 879 
 880 
 881 
 882 

 883 
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Figure S16: Validation analysis of the main model using absolute bacterial abundances as predictors instead of 884 
relative abundances in Figure 3. Results show coefficients from a least squares regression for medications (A), 885 
white blood cell feedbacks (B) metadata (C) and total genus abundances (D) of neutrophil, lymphocyte and 886 
monocyte daily log-changes. This was only possible for only a subset of the data for which we obtained absolute 887 
bacterial abundance estimates (methods), n: samples, N: patients. 888 
 889 

 890 
 891 
 892 
Figure S17: Functional analysis of microbiota samples. To distinguish samples predicted to increase rates of 893 
white blood cells, a microbiota potency score was calculated from posterior coefficients (Figure 3, methods) and 894 
the relative abundance of taxa in samples. Bars show linear discriminant analysis (LDA) scores of MetaCyc 895 
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pathway profiles from 124 shotgun sequenced samples that distinguished positive and negative potency samples 896 
the most (LDA-score magnitude in the 95th percentile). Highlighted pathways are discussed in the main text. For 897 
each pathway, we tested differences between positive and negative potency samples using Fisher’s exact test; p-898 
value <0.001: ***, <0.01:**, <0.05:*. 899 
 900 
 901 
 902 
 903 
 904 

 905 
 906 
Figure S18: Jointly inferred association network between white blood cell and bacterial genus dynamics 907 
(methods). Strong regularization yields few non-zero coefficients and antibiotics dominate the dynamics. 908 
 909 
 910 
 911 
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 912 
 913 
Figure S19: Jointly inferred association network between white blood cell and bacterial genus dynamics with 914 
reduced regularization (methods) indicates potential bidirectional feedbacks, e.g. between lymphocytes and 915 
[Ruminococcus] gnavus group (highlighter green boxes, and cartoon). 916 
 917 
 918 
 919 
 920 

 921 
Figure S20: The relative non-zero abundance of Staphylococcus is inversely related to microbiome alpha 922 
diversity, shaded: 95% confidence intervals. 923 
 924 
 925 
 926 
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 927 
 928 
Figure S21: Abundance profiles of the two genera, Faecalibacterium and Ruminococcus 2, most strongly 929 
associated with white blood cell increase; number of times detected (left) and log10 abundance distribution when 930 
above detection (right). 931 
 932 
 933 

 934 
 935 
Figure S22: Posterior association coefficients do not depend on the choice of prior for σ in the main Bayesian 936 
model. Plotted are the posterior means from our main analysis against the equivalent inference with an inverse 937 
Gamma prior (alpha=1, beta=1). 938 
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Table S1: Data set summary and patient characteristics. HCT-graft types: TCD: T-cell depleted graft (ex-vivo) 942 
by CD34+selection; PBSC: peripheral blood stem cells; BM: bone marrow; cord: umbilical cord blood; 943 
Conditioning intensity: Bacigalupo classification, graded categories from most to least intense (ABLATIVE, 944 
REDUCE, NONABL). 945 
 946 

patients  2,926 
HCT therapies*  3,060 
blood samples total 450,635 
 between HCT-day -21 and HCT-day 183 193,396 
Disease  Leukemia 1,635 
 Non-Hodgkin's Lymphoma 415 
 Multiple Myeloma 170 
 Hodgkin's disease 88 
 other 752 
HCT graft type TCD 1,106 
 PBSC unmodified 959 
 BM unmodified 617 
 cord 378 
Conditioning intensity ABLATIVE 65% 
 REDUCE 21% 
 NONABL 13% 
Gender M 58% 
 F 42% 
Age of adults (years) 25%-tile 39 
 mean 50 
 75%-tile 62 
Microbiome samples total 12,633 
 - from patients with blood data 10,680 
 - of those, post engraftment 4,179  
 - of those with daily change in WBC 2,615 
 patients with microbiome sample 1,290 

*) some patient received several HCTs 947 
 948 
 949 
Table S2: Patient and HCT characteristics of 24 patients enrolled in the randomized controlled FMT trial. 950 

 control  FMT treated 
N patients 10 14 
ABLATIVE 6 7 
REDUCE 4 7 
BM unmodified 1 3 
PBSC unmodified 3 4 
TCD 5 3 
cord 1 4 

 951 
 952 
 953 
 954 
 955 
 956 
 957 
 958 
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Table S3: Patient and HCT characteristics of the subset of patients who donated microbiota samples. 959 
patients  1,294 
   
Disease distribution Leukemia 51% 
 Non-Hodgkin's Lymphoma 15% 
 Multiple Myeloma 8% 
 Hodgkin's disease 3% 
 other 23% 
HCT graft type TCD 37% 
 PBSC unmodified 38% 
 BM unmodified 9% 
 cord 16% 
Conditioning intensity ABLATIVE 55% 
 REDUCE 34% 
 NONABL 11% 
Gender M 59% 
 F 41% 
Age (years) 25%-tile 46 
 mean 54 
 75%-tile 65 

 960 
 961 
Table S4: Patient and HCT characteristics of the subset of patients who did not donate microbiota samples. 962 

patients  1,010 
   
Disease distribution Leukemia 53% 
 Non-Hodgkin's Lymphoma 17% 
 Multiple Myeloma 5% 
 Hodgkin's disease 5% 
 other 20% 
HCT graft type TCD 40%% 
 PBSC unmodified 31% 
 BM unmodified 17% 
 cord 12% 
Conditioning intensity ABLATIVE 65% 
 REDUCE 14% 
 NONABL 21% 
Gender M 58% 
 F 42% 
Age (years) 25%-tile 36 
 mean 47 
 75%-tile 59 

 963 
 964 
Table S5: Patient and HCT characteristics of the Duke University patient cohort. 965 
 966 

patients  493 
Disease distribution Lymphoma 11% 
 Leukemia 50% 
 Non-Hodgkin's Lymphoma 4% 
 Multiple Myeloma 8% 
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 Hodgkin's disease 4% 
 other 24% 
HCT graft type TCD 0% 
 PBSC unmodified 72% 
 BM unmodified 11% 
 cord 16% 
Conditioning intensity ABLATIVE 92% 
 NONABL 7% 
Gender M 65% 
 F 35% 
Age (years) 25%-tile 41 
 mean 49 
 75%-tile 57 

 967 
 968 
Data availability 969 

The data used in our study is organized in supplementary tables (data-tables.zip), with corresponding 970 
filenames (italic): 971 

1. cGENUS.csv:  relative taxon abundances in fecal microbiota samples from 12,633 stool 972 
samples 973 

2. cHCTMETA.csv: HCT characteristics 974 
3. cINFECTIONS.csv: positive blood culture results 975 
4. cMISAMPLES.csv:  NCBI SRA accession number, diversity (inverse Simpson index), total 976 

16S (where available), stool consistency for each fecal microbiota sample 977 
5. cMED.csv: medication data 978 
6. cPIDMETA.csv: anonymized patient demographics 979 
7. cWBC.csv: absolute counts of neutrophils, lymphocytes, monocytes, eosinophils, and platelets 980 

with indication if included in analyses 981 
8. cDUKE__GENUS.csv: relative taxon abundances in fecal microbiota samples from 12,633 982 

stool samples 983 
9. cDUKE__WBC.csv: absolute counts of neutrophils, lymphocytes, monocytes, eosinophils, 984 

and platelets with indication if included in analyses 985 
10. cDUKE__MED.csv: medication data 986 
11. cFMT_analysis.csv: convenience table for Figure 2 987 

 988 
 989 
Code availability 990 

The relevant scripts for stage 1, stage 2, and the model assessing the effect of FMT on white blood 991 
cell counts are on github:https://github.com/jsevo/wbcdynamics_microbiome. 992 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 7, 2020. ; https://doi.org/10.1101/618256doi: bioRxiv preprint 

https://doi.org/10.1101/618256

