
1

The transcriptomic profiling of COVID-19 compared to SARS, MERS,

Ebola, and H1N1
Alsamman M. Alsamman1 and Hatem Zayed 2*

1 Department of Genome Mapping, Molecular Genetics and Genome Mapping Laboratory, Agricultural Genetic

Engineering Research Institute, 9 Gamaa St. 12619, Giza, Egypt.

2 Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar.

*Correspondence to: Hatem Zayed, PhD, Department of Health Sciences, Biomedical Program, QU health, Qatar

University, Doha, Qatar, hatem.zayed@qu.edu.qa , Phone: 00974-4403-4809

Abstract
COVID-19 pandemic is a global crisis that threatens our way of life. As of April 29, 2020,

COVID-19 has claimed more than 200,000 lives, with a global mortality rate of ~7% and recovery rate

of ~30%. Understanding the interaction of cellular targets to the SARS-CoV2 infection is crucial for

therapeutic development. Therefore, the aim of this study was to perform a comparative analysis of

transcriptomic signatures of infection of COVID-19 compared to different respiratory viruses (Ebola,

H1N1, MERS-CoV, and SARS-CoV), to determine unique anti-COVID1-19 gene signature. We

identified for the first time molecular pathways for Heparin-binding, RAGE, miRNA, and PLA2

inhibitors, to be associated with SARS-CoV2 infection. The NRCAM and SAA2 that are involved in

severe inflammatory response, and FGF1 and FOXO1genes, which are associated with immune

regulation, were found to be associated with a cellular gene response to COVID-19 infection. Moreover,

several cytokines, most significantly the IL-8, IL-6, demonstrated key associations with COVID-19

infection. Interestingly, the only response gene that was shared between the five viral infections was

SERPINB1. The PPI study sheds light on genes with high interaction activity that COVID-19 shares

with other viral infections. The findings showed that the genetic pathways associated with Rheumatoid

arthritis, AGE-RAGE signaling system, Malaria, Hepatitis B, and Influenza A were of high

significance. We found that the virogenomic transcriptome of infection, gene modulation of host

antiviral responses, and GO terms of both COVID-19 and Ebola are more similar compared to SARS,

H1N1, and MERS. This work compares the virogenomic signatures of highly pathogenic viruses and

provides valid targets for potential therapy against COVID-19.
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Introduction

COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of

April 25, 2020, the COVID-19 pandemic has spread to more than 200 countries and territories with

about 3 million confirmed cases and ~ 7 % mortality (WHO 2020).

SARS-CoV-2 belongs to the Coronaviridae, of this family the severe acute respiratory

syndrome coronavirus (SARS-CoV/SARS) and the Middle East Respiratory Syndrome Coronavirus

(MERS-CoV/MERS). In 2002 and 2012, SARS and MERS were associated with ~8,000 cases and

~2,500 cases with a case fatality rate of ~10% and ~36%, respectively. As with previous coronaviruses,

there are no specific antivirals or approved vaccines available to control SARS-CoV-2, SARS, or

MERS, where only conventional control measures, including travel restrictions and patient isolation,

could stop or slow down their social impact (Hoffmann et al. 2020). The full-length genome of

SARS‐CoV‐2 revealed 87.99% sequence similarity with the bat SARS‐like coronavirus and 80%

identity nucleotide with the original SARS epidemic virus (Tan et al. 2020) ⁠ .

The current outbreak of SARS-CoV-2 virus is very similar to Ebola virus disease (EVD) and

influenza A virus subtype H1N1 outbreaks in 2009 and 2013–2016 . Similar to SARS-CoV-2, the main

reservoir for EVD is considered to be bats where the magnitude of its outbreak was unprecedented,

with > 28 500 reported cases and > 11 000 deaths in West Africa (Vetter et al. 2016) ⁠ . On the other

hand, swine-origin influenza (H1N1) spread rapidly throughout the world, leading the world health

organization (WHO) to declare a pandemic on June 11, 2009 (Girard et al. 2010) ⁠ . The virus was

determined to be an H1N1 virus clinically and antigenically identical to seasonal influenza viruses in

humans and closely similar to swine circulating viruses (Schnitzler and Schnitzler 2009) ⁠ .

Fatigue, fever, dry cough, myalgia, and dyspnoea are the most common symptoms at the onset

of SARS-CoV-2 infection and the less common symptoms were nausea, headache and gastrointestinal

symptoms (Song et al. 2020). The most common indicator of radiological detection was the bilateral

ground-glass or patchy opacity. Some of the patients had lymphopenia and eosinopenia. Blood

eosinophil levels positively correlates with the lymphocyte levels following hospital admission in

severe and non-severe patients. Severe patients were associated with substantially higher levels of

D‐dimer, C‐reactive protein, and procalcitonin relative to nonsevere patients (Zhang et al. 2020). A
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typical biological response for the different viral infections may be identified, whereas some particular

genes are dysregulated during the infection with specific viruses. Such response may have a major

impact on the ability of the host to mount an adaptive host response. For instance, both MERS and

SARS-CoV induced a similar activation of pattern recognition receptors and the interleukin 17 (IL-17)

pathway (Josset et al. 2013).

Only victims of crime may describe their perpetrators, only they can use the best words to

convey their experience. In the case of coronavirus, our own transcriptome is the victim, so we need to

listen to its comprehensive description. We conducted an extensive study of the transcriptomic

response of SARS-CoV-2. We located common and specific differential expressed genes to SARS-

CoV-2 that are shared with SARS-CoV, MERS-CoV, H1N1, and Ebola. We performed chromosomal

location, gene ontology and protein-protein interaction for such genes in order to understand SARS-

CoV-2 unusual high infection rate and mortality. These profiles could be used to better understand the

relationship between virus and host and to detect distinct responses to the expression of the host gene.

This could have an impact on in vivo pathogenesis and could guide therapeutic strategies against the

evolving virus.

Material and Methods

Datasets

The gene expression data of COVID-19, Ebola, H1N1, MERS-CoV, SARS-CoV have been

retrieved from NCBI-GEO archive (Barrett et al. 2009), with ID GSE147507,GSE86539, GSE21802,

GSE100504, and GSE17400, respectively . These data are based on Affymetrix human genome gene

chip sets and Illumina NextSeq 500, revealing the gene expression profiles of in vitro and in vivo

infections (Table S1).

Data Analysis

The identification of the differentially expressed genes (DEGs) in the transcription profile was

analyzed using GEO2R tool (Barrett et al. 2012) and differential expression analysis using DESeq2 and

DEApp (Li and Andrade 2017) using default parameters. DEGs were characterized for each sample (p-

value < 0.01) and were used as query to search for enriched biological processes. Gplot package in R

was used to construct the gene expression heatmaps. The evaluation of the protein interactions and

gene ontology (GO) enrichment was conducted with the STRING database (Szklarczyk et al. 2016).

Cytoscape software has been used to visualize the structures of protein-protein networks (Shannon et
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al. 2003). The Circos software (Krzywinski et al. 2009) was used to represent gene expression and gene

ontology analysis of the host response to viral infections based on human genome data (GRCh38).. The

online tool Draw Venn Diagram (http:/bioinformatics.psb.ugent.be/webtools/Venn/) was used to sketch

a Venn diagram demonstrating some analysis information.

Results

We investigated the unique transcriptomic gene expression signature that was induced by

COVID-19 (GSE147507) compared to Ebola (GSE86539), H1N1 (GSE21802), MERS-CoV

(GSE100504), and SARS-CoV (GSE17400), using the DEGs in transcriptomic profiles. The

chromosome location of these DEGs sets are categorized according to the viral infection in Figure 1, in

addition to the significant involvement of these genes in the response of different viral infections, based

on pvalue (Figure 1A-1F and Table S2). We identified 358 DEGs with a significant associated p-value

< 0.01to COVID-19. Of these, SAA2, CCL20, IL8 were highly significant (Figure 1B and Table S2).

The analysis of gene enrichment of DEGs associated with the host response to COVID-19 highlighted

several GO terms (Figure 2), including leukocyte activation, humoral immunity, myeloid cell

activation, neutrophil activation, tuberculosis response, and miRNA involvement in the immune

response. Additionally, GO terms that are correlated with cell death are highly consistent (Figure 2C

and 2E). GO cytokine response terms, IL-17 signaling pathway, NF-kB ssignaling, TNF signaling

pathway, and NF-kappa B signaling are among the most significant pathways associated with COVID-

19 (Figure 2B).

We particularly focused on the DEGs signature during COVID-19 infection and its overlap to

other four viral infections. We found 173 DEGs are unique to COVID-19 (Figure 3 and Table S3). Of

these genes, SAA2 was the most significant (-10logp-value of 81) (Table S2). GO analysis

demonstrated that certain genes, such as CSF3, CSF2, IL1B, and PTGS2, are linked to the IL-17

signaling pathway, cytokine signaling in the Immune system, and have been reported in the host

response to Rhinovirus infection (Figure S1). Overall, the terms of the biologic process, such as

keratinocyte / epithelial cell differentiation, organ development, cell component movement and cell

death, are very significant among these genes (Table S4), whereas molecular function such as RAGE

receptor binding, cytokine activity, and metal ion binding are highly recognized (Table S4).
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Figure 1 : Significant DEGs across the five transcriptomic profiles , corresponding genes, chromosome locations, gene

expression and significance scores. The DEGs related genes and chromosomal location (A). The DEGs information

regarding host response to COVID-19 (B), Ebola (C), MERS-CoV (D) , H1N1 (E) and SARS-CoV (F) viral infections. The

pvalues were scaled were scaled across gene profiles according to maximum and minimum values (ppvalue). The circles

size and color is linked to DEGs significance and gene expression (LogFC) scores, respectively.
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Figure 2 : Analysis of the gene enrichment of DEGs correlated with the host response to COVID-19. Categories of GO

terms (A), significance scores (-10log-pvalue) (B), and number of associated DEGs (C). The COVID-19-associated DEGs

(D), status across the studied infectious diseases (E), and selected linked GO terms (F).
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Figure 3: The Venn diagram of viral associated genes. The number of uniquely shared genes associated with the host

response to COVID-19, Ebola, H1N1, MERS-CoV, and SARS-CoV viral infections.

Comparative gene expression analysis of the five viral infection (COVID-19, Ebola, H1N1,

MERS-CoV , and SARS-CoV) yielded the SERPINB1 as common response gene among the five

infection. COVID-19 and Ebola uniquely shared 58 DEGs, followed by 51 DEGs between COVID-19

and MERS-CoV (Figure 3 and Table S3). Among the Ebola-shared TNIP1, ICAM1, and CFB genes

were highly associated with COVID-19 (-10logpvalue > 40), while genes such as TLR2, FOXO1, and

MYC were highly associated with cytokine response and cell death (Figure S2 and Table S2). The GO

molecular terms of these genes highlighted the biological functions of phospholipase inhibitor activity

(including phospholipase A2), and heparin binding (including glycosaminoglycan). While biological

processes such as cell surface receptor signaling pathways and cell death are highly significant (Table

S4). The MERS-CoV-shared genes KRT6B and TNFAIP3 have a high p-value associated with COVID-

19, whereas genes such as OAS1-3, IRF9, IRF7, STAT1, PML and IFIH1 are highly associated with

host responses to viral infection and type I interferon (Figure S3). Biological processes related to virus

response, Type I interferon signaling and the cytokine-mediated signaling pathway are highly

redundant. While the biological functions of 2-5-oligoadenylate synthetase activity, double-stranded

RNA binding, adenyltransferase activity, metal ion binding and related to growth activity, such as

epidermal growth, are quite significant (Table S4). COVID-19, Ebola, and MERS-CoV share uniquely

31 genes, of which BIRC3, MX1, and IL8 are strongly linked to COVID-19 (-logpvalue 23, 37, and
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105, respectively) (Figure 3, Table S2 and Table S3). Among these genes, DDX58 and IFIT1 are

highly associated with cytokine response, NF-kappa B signaling pathway, and immune response to

virus infection (Figure S4).

The gene expression profile of COVID-19 signify genes such as MX1, BIRC3, IRAK2, CXCL5,

NRCAM, FGF1, MMP9, SAA1, LCN2, IFI27, TNFAIP3, OAS1, IL6, XAF1, IL8, and CXCL3 compared

to Ebola, H1N1, MERS-CoV, and SARS-CoV. The host gene expression of these genes has changed

exponentially relative to other infections studied (Figure 1, S5 and Table S5). This list of genes are

mostly related to IL-17 signaling pathway, TNF signaling pathway and host response against viral

infection (Figure S6).

Analysis of gene enrichment showed that only three GO terms that are shared between COVID-

19 and other viral infections (Figure 4 and Table S3), including cellular component, protein binding

and cytoplasm. COVID-19 was uniquely characterized by 535 GO terms, including stimulus response,

cell communication, and defense response to bacterial infection (Table S6). COVID-19 shared 96 GO

terms with Ebola, where GO terms related to the regulation of cell death are substantially shared. In

addition, COVID-19 and MERS-CoV have uniquely shared 32 GO terms, most of which are linked to

cell defense against viral infection and immunity, and metal ion response (Figure 4 , Table S3 and

S6).

Figure 4: The Venn diagram of viral associated GO terms. The number of uniquely shared GO terms of DEGs associated

with the host response across COVID-19, Ebola, H1N1, MERS-CoV, and SARS-CoV viral infections.
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We used the PPI association network analysis to identify the shared DEGs between COVID-19

and the other four viral infections (Figure 5). The PPI network signify genes such as IL6, TNF, IL8,

VEGFA, IL1B, MMP9, STAT1, TLR1, CXCL1, ICAM1, TLR2, and IRF7 with high interaction activity.

Some genes are associated with both COVID-19 and Ebola, and a few are shared with MERS-CoV

(Figure 5). The PPI analysis and gene enrichment analysis of these hyper-interactive genes showed

significant biological functions connected to rheumatoid arthritis, AGE-RAGE signaling pathway,

malaria, hepatitis B, and influenza A (Figure 6).

Figure 5: The PPIs network of DEGs associated with COVID-19. The PPI of host expressed DEGs under COVID-19

infection. DEGs shared between COVID-19 and Ebola, H1N1, MERS-CoV, and SARS-CoV are color-coded according to

kind of infection. The gene node size is relative to its interaction activity. DEGs are collected in different groups according

to their level of interaction activity.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.06.080960doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.080960
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

Figure 6: The PPIs network and gene enrichment analysis of highly interactive genes associated with

COVID-19.

Discussion

This study mainly aimed to determine the unique host gene expression signature response to

COVID-19 infection compared to SARS-CoV, MERS-CoV, Ebola, and H1N1, which will help us to

understand the differences and similarities in host responses to various respiratory viruses. To our

knowledge, this is the first study to perform such a transcriptomic comparison between these five viral

infections. We focused on mapping the potential biological pathways and GO enrichment that are more

specific to COVID-19.
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The analysis of the host DEGs through COVID-19 infection highlighted the role of SAA2,

CCL20, and IL8 genes (Figure 1B and Table S2). Recently, this link between the serum amyloid A 2

(SAA2) gene and the COVID-19 infection has been proposed as a biomarker to differentiate the

severity and prognosis of the COVID-19 infection. SAA2 is an inflammation factor that has

demonstrated its effectiveness as a sensitive indicator of clinical diagnosis (Li et al. 2020) ⁠ . In

addition, we have observed the uniqueness of the SAA2 gene expression in the COVID-19 infection

relative to SARS-CoV, MERS-CoV, Ebola, and H1N1 viral infections (Figure 3 and Table S3), which

indicates its role in host response. On the other hand, CCL20 gene has been related to lung carcinoma,

where it controls proliferation and cell migration via the PI3 K pathway (Wang et al. 2016) ⁠ . These

mechanisms are among the most important in host defense. Multiple genes belong to the interleukin

gene family were identified in this study, such as IL6, CXCL1, 3 and 5, and the IL-17 which have a

significant association with the host response of COVID-19 (Figure 1 and Table S2). In addition, IL8

gene, which has been related to immune stimulus and a recognized locus of susceptibility to a specific

respiratory virus (Hull et al. 2001). Such genes serve as key factors for controlling the growth of

endothelial cells (Martin et al., 2009) ⁠ .

GO-based gene enrichment analysis demonstrated that many biological processes are closely

related to the immune response (Figure 2A), including myeloid cell activation and neutrophil

activation (Figure 4C and 4E). Interestingly, miRNAs-related gene pathway was overexpressed as a

response to COVID-19 infection, which is known to play an important role against viral infection (Nur

et al. 2015). Activation of miRNAs as a defense mechanism during lung infection could be related to

its important role in physiological and pathological processes in the lung (Tomankova et al., 2010).

Studying such a process could open a new way for treatment of COVID-19.

We identified a strong association between COVID-19 infection and GO related to Nuclear

Factor Kappa-B (NF-kB) signaling and Tumor Necrosis Factor (TNF) signaling pathways (Figure 2B).

The NF-kB pathway is closely related to pro-inflammatory and pro-oxidant responses, and is involved

in the inflammatory responses in acute lung injuries. The regulation of NF-kB activation was proposed

as a potential adjuvant treatment for COVID-19 infection (Zhang et al. 2020). TNF receptors are

mainly involved in the inflammation and apoptosis; interestingly the interactions between viral proteins

and intracellular components downstream of the TNF receptors demonstrated viral mechanism to evade

the immune response (Herbein and O’brien 2000).

Among the genes that are unique in the host response to COVID-19 are CSF2/3, and PTGS2,
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which known to be involved in the immune responses against Rhinovirus infection (Figure S1). The

relation between prostaglandin-endoperoxide synthase 2 (PTGS2/COX‐2) gene and host response to

COVID-19 infection could be due its role to down-regulate NF-κB mediated transcription, which is a

critical element in some virus replication such as HIV-1 (Feistritzer and Wiedermann 2007). It was

proposed that this gene is incorporated in the host immune response system against viral infection

(Whitney et al., 2011). The colony-stimulating granulocyte factor (G-CSF) can alter the function of T-

cells and induces Th2 immune response (Franzke et al. 2003) ⁠ . There is also some evidence of a link

between elevated G-CSF expression level and the induction of the cellular immune response in H1N1

infected individuals (Sadeghi et al. 2020) ⁠ .

The GO-associated molecular function in COVID-19 host response yielded terms such as

receptor for advanced glycation endproducts (RAGE) and metal ion binding (Figure 2B and Table

S4). RAGE is highly expressed only in the lung, and is rapidly growing at inflammatory sites, primarily

in inflammatory and epithelial cells. The triggering and upregulation of RAGE by its ligands correlate

with increased survival rates (Sparvero et al. 2009). Additionally, RAGE has a secretory isoform that

can have an independent causative effect on community-acquired pneumonia, such as pandemic

influenza (H1N1) (Narvaez-Rivera et al. 2012). Although there is no evidence to link this to COVID-

19 infection, it is worth further investigation.

The host response to the five viruses shared the plasminogen activator (SERPINB1) as a

common gene signature (Figure 3 and Table S3). This gene is highly correlated with lung chronic

airway inflammation such as asthma (Dijkstra et al. 2011) ⁠ . The SERPINB1 acts in host-pathogenic

interactions and possesses some antiviral activity across infections of rhabdovirus, hepatitis C, and

influenza A (Dittmann et al. 2015) ⁠ (Estepa and Coll 2015). ⁠

Among the five viral infections, we found that GO terms were mostly enriched between

COVID-19 and Ebola (Figure 4 and Table S3). Such overlap suggested certain genes and gene

families, which could explain the aggressiveness of COVID-19 infections. Within these GO enriched

pathways, the TNIP1, ICAM1, and CFB were most significantly associated with COVID-19

(logpvalue > 40) (Figure 1 and Table S2). The TNIP1 gene encodes the A20-binding protein that

plays a role in autoimmunity and tissue homeostasis by controlling the activation of the kappa-B

nuclear factor (Bowes et al. 2011). TNIP1 reduction sensitizes keratinocytes to post-receptor signaling

after interaction to TLR agonists and has the ability to activate immune cells and induce inflammation

(Kaczanowska et al. 2013). The correlation between TNP1 and COVID-19 (Figure 1 and Table S2)
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could be due to its role in suppressing NF-kB pathway and therefore regulating the overexpression of

viral proteins (Nimmerjahn et al. 2004) ⁠ (Ramirez, Gurevich, and Aneskievich 2012) ⁠ . The ICAM-1

intercellular adhesion molecule plays a major role in the infectivity and neutralization of the HIV-I and

controls the survival of the influenza virus in lung epithelial cells during the early stages of infection

(Othumpangat et al. 2016) ⁠ . Forkhead Box O1 (FOXO1) is a transcription factor that plays an

important role in the regulation of insulin signaling for gluconeogenesis and glycogenolysis. There has

been a strong relationship between FOXO1 and viral infections. The FOXO1 binds hepatitis B virus

DNA and activates its transcription (Shlomai and Shaul 2009) ⁠ . The FOXO1 reported to negatively

regulate cellular antiviral response by promoting degradation of interferon regulatory transcription

factor 3 (IRF3) (Lei et al. 2013) ⁠ . In addition, it was reported that differentiation of CD8 memory T

cells depends on FOXO1, where it plays an intrinsic role in the establishment of a post-effector

memory program which is important for the formation of long-lived memory cells capable of immune

reactivation (Michelini et al. 2013) ⁠ .

GO analysis of genes uniquely shared between COVID-19 and Ebola highlighted the activity of

the inhibitor of phospholipase, in particular phospholipase A2 (PLA2) (Figure 4 and Table S4).

Interestingly, synthetic and natural PLA2 inhibitors have been a viable treatment of oxidative stress and

neuroinflammation connected with neuropathogenic disorders (Ong et al. 2015). Such lipid mediators

are considered to play a major role in diseases associated with cancer and inflammation such as

arthritis, allergy and asthma (Greene et al. 2011). Some reports suggested a potential link between

PLA2-generated lipid mediators and viral infection, where these infection alters the lipid mediators of

this pathway to initiate infection and pathogenesis (Chandrasekharan and Sharma-Walia 2019) ⁠ .

Given the important association between heparin-binding GO and activation of T cells against virus

infections like influenza (Skidmore et al. 2015) ⁠ , their interaction with COVID-19 infection has not

been documented. In comparison, glycosaminoglycan-binding molecules are essential for the action of

certain in vivo chemokines. Some glycosaminoglycans are required for respiratory syncytial viral

infection and are important for the entry of a bacterial pathogen into the biological system (Chang et al.

2011). Some oncofetal antigens which target such proteins were used to control parasites of malaria

(Mette et al., 2019). This might support any of the recent suggestion of using pharmaceuticals derived

from glycosaminoglycan to control the infection with COVID-19 (Favaloro and Lippi 2020) ⁠ .

MERS-CoV uniquely shared 51 DEGs with COVID-19 (Figure 3 and Table S3). Among the

most significant shared genes that are associated with COVID-19 are KRT6B and TNFAIP3. Keratin
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6B (KRT6B) is a type II cytokeratin, which is an important biomarker for lung adenocarcinoma (Xiao

et al. 2017). These genes are known as a virus-induced host factors that control the recruitment of T-

cells and correlates to chronic virus infections (Wang et al. 2020). In addition, the tumor necrosis

factor, alpha-induced protein 3 (TNFAIP3), is a central regulator of immunopathology and associated

with the maintenance of immune homeostasis and severe viral infections (Mérour et al. 2019; Li et al.

2017).

We identified many DEGs that are classified as “antiviral genes” that are shared between

MERS-CoV and COVID-19 (Figure 3). Most of these DEGs are associated with host response to virus

infection, and type I interferons (Figure S3). This high number of DEGs could indicate their potential

role in host defense against COVID-19 infection. For instance, the regulation of OAS1-3 is highly

correlated with host response to viral infections (Melchjorsen et al. 2009) ⁠ . While genes such as

IRF9, PML, IRF7, STAT1 and IFIH1 are related to interferon signaling (Ramana et al. 2002) ⁠ .

COVID-19, Ebola, and MERS-CoV shared uniquely 31 genes, of which , BIRC3 and MX1 are

highly linked to COVID-19 (Figure 3 and Table S3) . The Baculoviral IAP Repeat Containing 3

(BIRC3) is associated Marginal Zone B-Cell Lymphoma, Lymphoma, and was suggested as a novel

NK cell immune checkpoint in cancer (Ivagnès et al. 2018) ⁠ . While MX Dynamin Like GTPase 1

(MX1) is an interferon-inducible protein that associated with viral infections of Influenza and Viral

Encephalitis (Ciancanelli et al. 2016) ⁠ . The link between the gene expression of BIRC3 and MX1 have

been hypothesized as a part of small group of genes controlling host response against viral infections,

including Human Herpes Virus type 6Α (HHV-6Α) infection (Rouka 2018) ⁠ . Additionally, Mx1

protein contributes to the novel antiviral activity against classical swine fever virus (Chen et al.

2020) ⁠ . Among genes that are uniquely shared between COVID-19, Ebola, and MERS-CoV,

interferon Induced Protein With Tetratricopeptide Repeats 1 (IFIT1) and DExD/H-Box Helicase 58

(DDX58) which high a significant potentiality (Figure S4). Recently, the uniqueness of DDX58 gene

expression under COVID-19 viral infection has been reported (Blanco-Melo et al. 2020) ⁠ . IFIT1

plays a crucial role in some viral infections, where Hepatitis E virus polymerase binds to IFIT1 to

shield the viral RNA from translation inhibition mediated by IFIT1 and enhances the interferon

response in murine macrophage-like cells (Mears et al. 2019) (Pingale, Kanade, and Karpe 2019) ⁠ .

The COVID-19 gene expression profile demonstrated multiple genes in conjunction with Ebola,

H1N1, MERS-CoV, and SARS-CoV (Figure 3, S6 Table S5). Most of these genes are linked to the
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viral infection immune response of the host, except for genes such as FGF1 and NRCAM. The

Neuronal Cell Adhesion Molecule (NRCAM) is related to neurological diseases such as Alzheimer

(Brummer et al. 2019). Significant NRCAM gene expression has been observed under specific

circumstances, such as neuroinflammation triggered by influenza A long-term viral infection (Hosseini

et al. 2018). FGF1, also known as acidic fibroblast growth factor (aFGF), is a cellular growth factor

and signaling protein encoded by the FGF1 gene. FGF1 is a strong angiogenic factor controls the

development of new blood vessels (Marwa et al. 2016) and has been detected through studying

endothelial cells infected with influenza virus (Zeng et al. 2012).

The PPI analysis highlighted the genes COVID-19 shared with other viral infections that have

high interaction activity (Figure 5). By selecting high interactive genes, we used an analysis of gene

enrichment and PPI to identify more information about the function of these genes. It was clear from

the results that the genetic pathways associated with Rheumatoid arthritis, AGE-RAGE signaling

pathway, Malaria, Hepatitis B, and Influenza A were of high significance (Figure 6). The correlation

between host response to Rheumatoid arthritis, Malaria and COVID-19 has been mysterious to date.

Despite the fact that several Rheumatoid arthritis and malaria drugs are available, with some efficacy

against COVID-19 infection (Favalli et al. 2020) ⁠ (Gao, Tian, and Yang 2020). Our results suggest

that the link between these diseases and the infection with COVID-19 is more related to PPI

interactions. In addition, the PPI network has shown that these genes are highly significant across other

infectious diseases such as Ebola, MERS-CoV and SARS-CoV.

Conclusion

We compared five transcriptomic profiles for cell host infection with COVID-19, Ebola, H1N1,

MERS-CoV and SARS-CoV. Our analysis identified several key aspects of host response to COVID-

19 infection where essential immunity genes and biological pathways could be used for understanding

the pathogenesis of COVID-19 infection. Common and specific genetic factors and pathways have

been identified that characterize the immune pathology of COVID-19 infection. Our research outlined

the relationship between Ebola's cellular host response and COVID-19, where many genes and GO

words are enriched. Genes related to immune regulation, including FGF1 and FOXO1, and those

associated with extreme inflammation, such as NRCAM and SAA2, have been closely associated with

cellular response to COVID-19 infection. In addition, common interleukin family members, in

particular IL-8, IL-6, demonstrated a special relationship with COVID-19 infection, indicating their

key importance. The GO evaluation highlighted pathways for RAGE, miRNA and PLA2 inhibitors,
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which were first identified in this study as possible pathways highly associated with the host response

to COVID-19 infection. Some of these pathways, such as PLA2 inhibitors, may hold the key for

potential drugs to manage COVID-19 infections. The PPI study sheds light on genes with high

interaction activity that COVID-19 shares with other viral infections, where the findings showed that

the genetic pathways associated with Rheumatoid arthritis, AGE-RAGE signaling system, Malaria,

Hepatitis B, and Influenza A were of high significance. Our work also shows that the combination of

different types of experimental methods and parameters have been effective in studying the etiology of

COVID-19 immunopathology compared to similar viral infections. In this regard, further research in

this direction will be promising for characterizing new diagnostic biomarkers in the future or as

surrogates for assessing the effectiveness of potential innovative therapies.

Data availability: All data are freely available at https://doi.org/10.5281/zenodo.3783510
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Supplemented Tables

Table S1 : The data information used in this study.

Table S2: The information of DEGs associated the host response of COVID-19, Ebola, H1N1,
MERS-CoV, and SARS-CoV viral infections.

Table S3: The Venn analysis results of DEGs and GO terms uniquely shared across of COVID-
19, Ebola, H1N1, MERS-CoV, and SARS-CoV viral infections.

Table S4: Selected gene enrichment analysis of uniquely shared group of genes across the host
response of COVID-19, Ebola, H1N1, MERS-CoV, and SARS-CoV viral infections.

Table S5: The gene expression information of DEGs that COVID-19 share with the studied
infectious diseases.

Table S6: Selected gene enrichment analysis of uniquely shared group of GO terms across the
host response of COVID-19 and studied viral infections.
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Supplemented figures

Figure S1 : The PPI network and gene enrichment analysis of the 173 genes that characterized

the host response of COVID-19.
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Figure S2: The PPI network and gene enrichment analysis of the 58 genes that are uniquely

shared between COVID -19 and Ebola viral infections .
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Figure S3 : The PPI network and gene enrichment analysis of the 51 genes that are uniquely

shared between COVID-19 and MERS-CoV viral infections.
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Figure S4 : The PPI network and gene enrichment analysis of the 31 genes that are uniquely

shared between COVID-19, Ebola, and MERS-CoV viral infections.
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Figure S5 : The gene expression heatmap of genes COVID-19 shares with different viral

infections.
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Figure S6 : The PPI network and gene enrichment analysis of genes that are differentially

expressed across studied viral infections and shared with COVID-19.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.06.080960doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.080960
http://creativecommons.org/licenses/by-nc-nd/4.0/

