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Abstract 

Mild cognitive impairment (MCI) is often considered the precursor of Alzheimer’s disease. However, 

MCI is associated with substantially variable progression rates, which are not well understood. 

Attempts to identify the mechanisms that underlie MCI progression have often focused on the 

hippocampus, but have mostly overlooked its intricate structure and subdivisions. Here, we utilized 

deep learning to delineate the contribution of hippocampal subfields to MCI progression. We propose 

a dense convolutional neural network architecture that differentiates stable and progressive MCI 

based on hippocampal morphometry with an accuracy of 75.85%. A novel implementation of 

occlusion analysis revealed marked differences in the contribution of hippocampal subfields to the 

performance of the model, with presubiculum, CA1, and subiculum showing the most central role. 

Moreover, the analysis reveals that more than 20% of the hippocampal volume was redundant in the 

differentiation between stable and progressive MCI. 
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Introduction 

A certain degree of cognitive decline is common and considered a part of the normal aging process. 

Mild cognitive impairment (MCI) occurs when cognitive decline exceeds what is expected given an 

individual’s age and education level (1). MCI can be considered a transitional phase in between age-

related cognitive decline and Alzheimer’s disease (AD) or other dementias (1). However, MCI is 

associated with marked etiological heterogeneity (2) and variable progression rates (3). Namely, up to 

33% of individuals with MCI convert to AD over 5 years (4), with annual conversion rates of about 7% 

(5), but others may remain stable or even revert to normal or near-normal cognition levels (6). 

Identifying prognostic markers that can predict eventual conversion from MCI to AD is of profound 

clinical interest (7). However, such markers are not available to date. Fundamentally, despite 

increased interest in recent years (8–10), a mechanistic framework for understanding progression and 

stability in MCI remains missing. 

The neuropathological profile of MCI is complex and multifaceted (11). As MCI is commonly seen as 

a precursor to AD, many studies have focused on alterations in structures known to be affected by this 

disease. The most widely studied target in AD is the hippocampus (12, 13) , and indeed, multiple 

studies have reported hippocampal volume loss in MCI relative to controls (14).  Studies have also 

implicated the hippocampus in the progression of MCI (15). Of particular interest, a series of recent 

studies have utilized deep learning to differentiate progressive and stable MCI (16, 17) or predict 

individual subjects' progression from MCI to AD (18) based on whole hippocampus structural 

features. However, rather than being a homogeneous structure, the hippocampus is complex and 

heterogeneous (19). The hippocampus is composed of several histologically distinct subfields (19), 

which are characterized by differential connectivity profiles (20) and subserve different memory 

processes (21). Thus, a better understanding of MCI progression and stability necessitates a 

mechanistic framework that takes the structural complexity of the hippocampus into account (22). The 

literature, nevertheless, presents mixed and inconsistent findings in regards to the contribution of 

hippocampal subfields to MCI progression and stability (23, 24). 
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In the current study, we investigated the contribution of hippocampal subfields to the progression and 

stability of MCI utilizing a deep learning framework and a large neuroimaging dataset. We propose a 

deep convolutional neural network trained to classify stable and progressive MCI based on 

hippocampal structural features derived from magnetic resonance imaging (MRI). We then introduce 

a novel implementation of occlusion analysis to prospectively evaluate the relative contribution of 

each hippocampal subfield to the performance of the predictive model. Moreover, the same analysis 

allowed us to estimate the cumulative contribution of subfields to MCI stability and the possible 

existence of redundancy within the associated hippocampal features. 

 
Results 

To delineate the contribution of hippocampal subfields to MCI progression we analyzed 

neuroimaging data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Our analysis 

focused on individuals with MCI who exhibit progressive deterioration in cognitive performance in 

comparison to those who remain stable over time (Fig. 1A). We thus considered data from two groups 

(Fig 1B). First, subjects in the stable MCI (sMCI) group had a baseline diagnosis of MCI which was 

retained at follow-up, with at least 18 months between diagnoses. Secondly, subjects in the 

progressive MCI (pMCI) were subjects who over the course of a similar duration progressed from a 

diagnosis of MCI to AD. To train our deep learning model (see below) we additionally analyzed data 

from cognitively normal (CN) subjects along with subjects with a diagnosis of AD. Two independent 

cohorts were analyzed for the two latter groups (data from ADNI-1 and ADNI-2/GO). 

 

-- Figure 1 Here-- 

 

Participant Characteristics 

The demographic characteristics of subjects in the AD, CN, pMCI and sMCI groups are shown in 

Table 1. Comparing the pMCI and sMCI groups, there were significant differences in age (t379 = 

2.449, p = 0.015) and MMSE score (Wilcoxon Rank-sum, Z = 4.938, p = 7.89 � 10-7). No significant 

difference was observed for gender distribution (χ2=0.072, p = 0.787) or education (t379 = 0.756, p = 
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0.450). In the comparisons between the AD and CN groups, in both cohorts there were significant 

differences in education (ADNI -1: t425 = 4.483, p = 9.47 � 10-6; ADNI-2/GO: t347 = 2.614, p = 0.009) 

and MMSE score (ADNI-1: Z = 17.900, p = 1.19 � 10-71; ADNI-2/GO: Z = 15.953, p = 2.70 � 10-57). 

Age significantly differed in the ADNI-2/GO (t347 = 1.901, p = 0.058) cohort, but not in ADNI-1(t425 = 

0.562, p = 0.575). Gender distributions were not significantly different in both cohorts (ADNI-1: 

χ2=0.022 p = 0.882; ADNI-2/GO: χ2=3.374, p = 0.066). 

Table 1 Demographics 

 
ADNI-1  ADNI-2 & GO 

 
AD CN  AD CN pMCI sMCI 

N 197 230  159 190 118 263 

Age 75.6 � 7.7  76.0 � 5.0  74.8 � 8.1 73.4 � 6.4 73.6 � 7.1 71.7 � 7.3 
Gender, 
female 95 (48.2%) 112 (48.7%)  68 (42.8%) 100 (52.6%) 52 (44.1%) 112 (42.6%) 

Education 14.7 � 3.1  16.0 � 2.8  15.8 � 2.7 16.5 � 2.6 16.0 � 2.7 16.2 � 2.7 

MMSE 23.3 � 2.0 29.1 � 1.0  23.1 � 2.1 29.0 � 1.3 27.3 � 1.8 28.3 � 1.7 

Continuous variables are presented as mean � SD and categorical variable is presented as %. Abbreviations: 

AD = Alzheimer’s Disease, CN = Cognitively normal, pMCI = progressive mild cognitive impairment, sMCI = 

stable mild cognitive impairment, N = number of subjects, MMSE = Mini-Mental State Examination. 

 
 
A deep learning model for classifying stable and progressive MCI 
 
We next developed a deep learning model (Fig. 1C) for classification of pMCI vs. sMCI, as an initial 

step prior to delineating the role of hippocampal subfields in MCI progression. The inputs of the 

proposed model were hippocampal intensity values derived from subjects’ structural MRI. Inputs 

were derived from a 3D bounding box obtained by cropping around the left and right hippocampus. 

The size of the 3D bounding box for each hippocampus was 44 x 52 x 52 voxels. As in previous 

studies (16, 18) the deep learning model was trained to first differentiate the AD and CN groups and 

then tested on the task of differentiating the pMCI and sMCI groups. Data augmentation was applied 

within the training data set to improve the performance of the model and its generalizability. We 

randomly divided the training data set into 10 folds and 10-fold cross-validation was used within the 

training set to optimize and fine-tune the model’s parameters. The model with the best performance 

achieved maximal accuracy of 94.07% in one of the folds, with an area under the curve (AUC) of the 
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receiver operating characteristic (ROC) of 0.993. The model was further validated with AD and CN 

data from ADNI-1, achieving an accuracy of 86.20%, with an AUC of 0.937 (Fig 2A). Thus, despite a 

decrease in accuracy, which may be expected given that ADNI-1 is based on lower MRI field strength 

(1.5T, relative to ADNI 2/GO’s 3T) the model was overall stable and robust. This model was thus 

used next for differentiating the pMCI and sMCI groups based on data from ADNI-2/GO. In this task, 

the model achieved an accuracy of 75.85% and an AUC of 0.777 (Fig. 2B). Repeating the analysis 

with an age-matched test cohort had minimal effects on the accuracy of the model (fig. S1). 

Overall our proposed deep learning-based classification framework corroborates earlier results, by 

demonstrating comparable accuracy performance to those reported previously for the classification of 

pMCI vs. sMCI (16–18). It demonstrates that whole-hippocampus structural features can be used to 

differentiate pMCI from sMCI. 

-- Figure 2 Here-- 

Contribution of hippocampal subfields to MCI progression: occlusion analysis  
 
We next sought to test if differentiation of pMCI from sMCI can be achieved with data derived from 

single hippocampal subfields, assessing the relative contribution of each subfield to classification 

performance. We first segmented the hippocampal subfields in each of the subjects using a validated 

automated method (25) (Fig. 3A). The contribution of each subfield was then assessed using an 

adaption of occlusion analysis, a common approach in computer vision (e.g., (26)). Briefly, in this 

analysis we retested the deep learning model, each time occluding a binary mask of each of the 

hippocampal subfields from the model’s test data (i.e., from the 3D bounding box). The occlusion was 

achieved by setting the intensity values of each hippocampal subfield to zero in the input data. The 

performance (accuracy) of the models were then ranked and compared to each other as well as to the 

model based on an intact hippocampus (Fig. 3B). Accuracy levels for each of the models differed 

considerably (Fig. 3C). Except for the molecular layer, the occlusion of subfields led to a decrease in 

accuracy. In particular, occlusion of the subiculum, CA1, and presubiculum led to dramatic decreases 

in accuracy, relative to other subfields, including CA2/3 and CA4 for example. Thus, the 

presubiculum, subiculum, and CA1 had the largest impact on the performance of the model (Fig. 3D). 
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 -- Figure 3 Here-- 

The occlusion analysis revealed that many of the subfields had little to no contribution to the 

performance of the model.  Namely, occlusion of CA2/3 and parasubiculum, for example, resulted in 

an accuracy loss of less than 5%. This suggests that in the classification of pMCI and sMCI some of 

the subfields may be redundant. We evaluated this possibility by performing a sequential version of 

the occlusion analysis, where occlusion is accumulated from step to step (Fig.4A), in descending 

order with respect to each subfield’s contribution to the model’s performance (as reported in Fig. 3). 

Accuracy was evaluated as a function of the ratio of the total occluded volume to the volume of the 

entire hippocampus. In comparison to the model with no occlusion, the accuracy started decreasing 

when 20.1% of the volume of the hippocampus was removed (with occlusion of the molecular layer, 

fimbria, parasubiculum, CA2/3, and HATA). In other words, we found that more than 20 % of the 

volume of the hippocampus was redundant in classifying pMCI versus sMCI. Upon removal of more 

than 78.5% of the volume of the hippocampus accuracy levels started saturating. 

-- Figure 4 Here-- 

Discussion 

 
Individuals with MCI show strongly variable symptomatic trajectories, with some progressing 

eventually to a probable diagnosis of AD, while others showing a more stable pattern of cognitive 

performance over time. In this paper, we propose a novel framework for the analysis of the 

progression and stability in of MCI based on deep learning and occlusion analysis. First, we 

introduced a deep convolutional neural network model based on the DenseNet architecture (27) for 

classifying pMCI vs. sMCI. Second, we proposed a novel analytical framework based on occlusion 

analysis to evaluate the contribution of hippocampal subfields on the performance of the proposed 

deep learning model, thus assessing the role of the different subfields in the stability and progression 

of MCI. Finally, as a secondary step, we applied a gradually accumulating occlusion analysis which 

allowed us to assess the degree of redundancy in the hippocampal features in relation to the 

classification of pMCI and sMCI. 
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As an initial step prior to the evaluation of the role of hippocampal subfields, we trained a deep 

convolutional neural network to classify the pMCI and sMCI groups based on all structural 

hippocampus features. This model achieved an accuracy of 75.85% (and an AUC of 0.777). This 

classification performance in on par with earlier deep learning models developed to classify pMCI vs. 

sMCI based on whole hippocampus structural features or multi-model features (e.g., (28, 29)), which 

ranged from 72% to 76%.  For example, a 3D-convolutional neural network based on multi-modal 

data, integrating structural MRI and positron emission tomography classified pMCI vs. sMCI with an 

accuracy of 72.22% (16), while another recently described a hybrid convolutional and recurrent 

neural network based on internal and external hippocampal patches yielded classification accuracy of 

72.50% for the same task (17). Another recent study utilized deep learning and hippocampal features 

predicting progression time from MCI to AD with a concordance index of 0.762 (18). Our model 

corroborates these earlier reports by demonstrating that prediction of MCI stability and progression 

can be achieved with good accuracy rates based solely on hippocampal features. 

Our findings extend earlier reports by delineating the contribution of singe hippocampal subfields to 

the progression and stability of MCI. Our implementation of occlusion analysis revealed marked 

differences between the subfields in differentiating the pMCI and sMCI groups. In particular, the 

results suggest that the subiculum, presubiculum, and CA1 were more central to this classification 

task than any other subfield. The findings are consistent with earlier reports on the involvement of 

CA1 and the subiculum in the progression of MCI (30, 31). While several studies implicated CA2/3, 

fimbria, and GC-DG in MCI progression (23, 24), our model suggests that these subfields play a more 

minor role. Our findings may reflect the neuropathological cascade characteristic of AD. Namely, 

neurofibrillary tangles in AD neurodegeneration progress from CA1 to the subiculum, before reaching 

CA2/3 (32),  Neuronal loss in CA1 is prominent as AD neurodegeneration progresses, while being 

milder and slower in the subiculum (33). Although our findings highlight the contribution of 

subiculum, presubiculum, and CA1 in the progression of MCI further examination into the possible 

involvement of other subfields is warranted. 
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As a secondary step to the occlusion analysis, which helped us evaluate the contribution of single 

subfields to MCI progression and stability, we also evaluated how accumulated occlusion of 

hippocampal features affected the results. This analysis revealed that more than 20% of the volume of 

the hippocampus was redundant in the differentiation between pMCI and sMCI. These results may 

reflect the progressive nature of neurodegeneration in AD, wherein the redundant subfields have yet 

to have been affected, and thus do not yet differentiate among patients with stable and progressive 

progression trajectories. Another speculative possibility, which remains to be tested in future research 

is that the redundancy reflects neuroprotective mechanisms that allow individuals with MCI to 

compensate for the earlier phases of neurodegeneration. Compensatory and reserve mechanisms have 

been widely postulated to operate in response to aging and neurodegeneration (34, 35). Future 

research could test if redundancy at the level of hippocampal structure is functionally advantageous, 

offering patients with a coping mechanism for early-phase neurodegeneration.  

Several limitations should be noted. First, while our study considered longitudinal clinical evaluations 

we did not examine longitudinal changes in imaging metrics. Our focus here was on evaluations of 

prognostic markers of conversion from MCI to AD. Future research could use similar methods to 

examine longitudinal imaging data. Second, we considered a single imaging modality in our models 

(structural MRI). Studies have consistently revealed the superiority of multimodal features in 

diagnostic and prognostic models (e.g., (28)). Since our focus here was on hippocampal subfields, 

integration of data with lower spatial resolution like that obtained from PET Amyloid Imaging would 

have been challenging. Yet, we acknowledge that basing our models on a single modality may have 

reduced its performance in the classification task. Finally, it would be beneficial to replicate the 

results with data obtained with higher-resolution neuroimaging. 

In conclusion, the current study delineates the contribution of hippocampal subfields to the 

progression and stability of MCI, highlighting the central role of the subiculum, presubiculum, and 

CA1 in differentiation between pMCI and sMCI. The results further reveal that more than 20% of the 

volume of the hippocampus is redundant in the differentiation between these two groups. These 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.06.081034doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.06.081034


 10

results highlight the need to consider the intricate structure of the hippocampus in studies of AD 

neurodegeneration. 

Materials and Methods 

Experimental data 

Data used in the preparation of this article were obtained from the ADNI database (adni.loni.usc.edu). 

The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator 

Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic 

resonance imaging (MRI), other biological markers, and clinical and neuropsychological assessment 

can be combined to measure the progression of MCI and early AD. For up-to-date information, see 

www.adni-info.org. All subjects provided written informed consent and the study protocol was 

approved by the local Institutional Review Boards. We used data from 349 subjects from ADNI-2/GO 

to train the deep learning model and evaluated the model with an independent cohort of 427 subjects 

from ADNI-1. An additional sample of 381 subjects with MCI at baseline, obtained from ADNI-2/GO, 

was classified as either sMCI or pMCI based on longitudinal diagnostic evaluations. We excluded 

subjects who were diagnosed with MCI at baseline but reverted to CN during follow-up. The 

demographic characteristics of each cohort analyzed in this study are summarized in Table 1. 

Imaging data 

Input data for the deep learning model were acquired at ADNI sites using 1.5T (ADNI1) and 3T 

(ADNI-2/GO) scanners and were based on either an inversion recovery-fast spoiled gradient recalled 

(IR-SPGR) or a magnetization-prepared rapid gradient-echo (MP-RAGE) sequences (36). Full details 

of the image acquisition parameters are listed on the ADNI website 

(http://adni.loni.usc.edu/methods/documents/mri-protocols/). 

Image Processing 

Input data from the left and right hippocampus were extracted from the T1-weighted MRI images. We 

first defined a 3D bounding box of size 44 � 52 � 52 voxels around the hippocampal region. The size 

of the bounding box ensured coverage of the entire hippocampus across the entire sample of subjects. 
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Intensity values from each voxel within the bounding box were then extracted and used as inputs in 

the deep learning model described below. 

Data Augmentation: To artificially increase the size of the model’s training dataset, and improve its 

performance and generalizability, we used an image data augmentation technique with Scikit-learn 

0.22.1 (37). The augmented image data were generated through the addition of noise with mean 0 and 

standard deviation 1, contrast enhancement by effectively spreading out the most frequent intensity 

values (stretching out the intensity range) and flipping left and right. In total, 954 AD images, and 

1140 CN images were generated through augmentation and used in the training dataset to improve the 

performance of the model. 

Hippocampal subfield segmentation: Subfields in the hippocampus were segmented with an 

automated segmentation tool available in FreeSurfer v6.0 (38), which is based on a new statistical 

atlas built primarily upon ultra-high resolution (~0.1mm isotropic), ex vivo MRI data. This approach 

uses Bayesian inference that relied on image intensities and a tetrahedral mesh-based probabilistic 

atlas of the hippocampal formation, constructed from a library of in vivo data and ex vivo labeled data 

(38, 39). The left and right hippocampus were segmented into twelve subfields: CA1, CA2/3, CA4, 

hippocamps-amygdala transition area (HATA), granule cell layer of the dentate gyrus (GC-DG), 

fimbria, molecular layer, hippocampal fissure, hippocampal tail, subiculum, parasubiculum and 

subiculum. 

Deep learning model architecture 

A deep learning model based on the DenseNet architecture (27) was trained to learn relevant maps for 

classifying pMCI vs. sMCI. The deep learning model (See Fig. 1C) was comprised of two streams for 

the left and right hippocampus. Each stream consisted of a convolutional layer, 4 dense blocks, 3 

transition layers, and a global average pooling layer. The outputs of the two streams were then 

concatenated as input to a fully connected layer. First, the image was passed through a stack of 

convolutional layers, where the filters were of size 5�5�5. The convolution stride was fixed to 1 

voxel; The max-pooling layer had a stride of size 2�2�2 and a kernel size of 2�2�2. The dense 

block consisted of multiple convolution units, which were equipped with batch normalization layer, 
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leaky rectified linear unit, a 1�1�1 convolutional layer, a 3�3�3 convolutional layer and a dropout 

layer. Every convolutional unit was connected to all previous layers by shortcut connections. A 

transition layer allowed for dimensionality reduction of feature maps in between dense blocks. It was 

composed of a batch normalization layer, leaky rectified linear unit, a 1�1�1 convolutional layer, a 

3�3�3 convolutional layer, a dropout layer and an averaging pooling layer. The stacks of global 

averaging pooling layers were concatenated and connected by a fully-connected layer. The output 

value is processed by the fully-connected layer with a sigmoid activation function. 

Implementation 

The deep learning model was built with the Keras application programming interface in Tensorflow 

2.0. Training and testing of the model were carried out with an Ubuntu 18.04.3 operating system and 

two Nvidia Tesla V100 graphic cards with 16GB memory each. The model was parallelized across 

graphic cards. We trained the model with a mini-batch size of 64 and 200 epochs. The deep learning 

model was optimized using stochastic gradient descent (40) with momentums and an exponentially 

decaying learning rate. The initial learning rate was 0.0001 and it was decayed by 0.9 after every 

10000 steps. We added a dropout layer in the dense block and set the dropout rate to 0.2. In the batch 

normalization, beta and gamma weight were initialized with L2 regularization set at 1�10-4 and 

epsilon set to 1.1�10-5. The L2 regularization penalty coefficient was set at 0.01 for the fully 

connected layer. 

Validation framework 

We evaluated the performance of the proposed deep learning model using k-fold cross-validation, 

which allowed for the optimization of hyperparameters in the train set. We thus split the entire ADNI-

2/GO data into k folds, selecting the parameters with the best performance and then applied the 

selected parameter to test data to validate the performance of the proposed model. 

 

Implementation of occlusion analysis 

Occlusion analysis was used for investigating the contribution of each hippocampal subfield to the 

performance of the prediction model. Masks for each hippocampal subfield were generated based on 
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the subfield segmentation procedure described above (See Image Processing). We then masked out 

each hippocampal subfield (set voxels of each hippocampal subfield to zero) from the input data of 

the test phase and retested the trained deep learning model as described before. Each occluded 

hippocampal subfield was thus ranked based on the performance (accuracy) of the model, relative to 

the original model, where input data from the entire hippocampus was used. 

In a second implementation of occlusion analysis, we evaluated the performance of the prediction 

model under gradually accumulating occlusion of hippocampal subfields. This was achieved by 

retesting the prediction model, each time masking out an additional subfield (i.e., starting from one 

masked out subfield, then two etc.). Subfields were masked out sequentially, in descending order, 

according to their contribution to accuracy (as identified in the initial occlusion analysis). This step 

also allowed us to evaluate the stability of the occlusion analysis, ensuring that did not result in abrupt 

changes in classification performance.  
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Figures: 

 
Fig. 1. Study design and methods. (A) Hypothetical models of MCI progression. In pMCI gradual 

cognitive decline continues until individuals meet the diagnostic criteria of AD. In sMCI cognitive 

performance remains relatively stable over time. (B) Group allocation criteria. Cognitive evaluations at 

baseline and follow-up visits were used to classify subjects in the pMCI and sMCI groups. (C) 

Illustration of proposed deep learning model. Abbreviations: AD=Alzheimer’s disease, MCI=mild 

cognitive impairment, pMCI=progressive mild cognitive impairment, sMCI=stable mild cognitive 

impairment. 
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Fig. 2. ROC curves showing the performance of the proposed deep learning model. (A) For the 

AD versus CN task. (B) For the pMCI vs sMCI task. Abbreviations: AD=Alzheimer’s disease, 

CN=cognitively normal, pMCI=progressive mild cognitive impairment, sMCI=stable mild cognitive 

impairment, ROC=receiver operating characteristic, AUC=area under the curve. 
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Fig. 3. Illustration of the occlusion analysis of hippocampal subfields. (A) Hippocampal subfield 

segmentation. The segmentation results of hippocampal subfields are illustrated on the single 

representative subject. (B) Schematic framework of the occlusion analysis. In each model, one of the 

hippocampal subfields was occluded (masked out) in the testing data and the performance of the 

model (its accuracy) was ranked relative to the occlusion of other subfields and to the performance of 

the original intact model. (C) The results of the occlusion analysis are shown for each model, along 

with the results of the original intact model (D) Accuracy performance of each model, superimposed 

on top of an illustration of the major hippocampal subfields (note: not all subfields are shown). 

Abbreviations: CA=cornu ammonis, HATA=hippocampus-amygdala-transition-area, GC-DG=granule 

cell layer of the dentate gyrus. 
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Fig. 4. Illustration of the accumulated occlusion analysis of hippocampal subfields. (A) An 

illustration of gradually accumulating occlusion. On each step, additional hippocampal volume is 

masked out of the analysis. (B) The model’s accuracy is shown as a function of accumulated 

occlusion, with subfields masked out in descending order according to their contribution to the 

model’s accuracy (as shown in Fig. 3C). The accuracy started decreasing (i.e., relative to the 

accuracy of the full model) upon removal of 20.1% of the volume of the hippocampus. Abbreviations: 

CA=cornu ammonis, HATA=hippocampus-amygdala-transition-area, GC-DG=granule cell layer of the 

dentate gyrus. 
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