bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.083196; this version posted May 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

abPOA: an SIMD-based C library for fast partial
order alignment using adaptive band

Yan Gao'>T, Yongzhuang Liu", Yanmei Ma', Bo Liu!, Yadong
Wang'*, and Yi Xing??*

!Center for Bioinformatics, Harbin Institute of Technology, Harbin,
Heilongjiang 150001, China,
2Center for Computational and Genomic Medicine, Children’s Hospital
of Philadelphia, Philadelphia, PA 19104, USA
3Department of Pathology and Laboratory Medicine, University of
Pennsylvania, Philadelphia, PA 19104, USA
fCo-first author
*To whom correspondence should be addressed

Abstract

Summary: Partial order alignment, which aligns a sequence to a directed acyclic
graph, is now frequently used as a key component in long-read error correction and
assembly. We present abPOA (adaptive banded Partial Order Alignment), a Single In-
struction Multiple Data (SIMD) based C library for fast partial order alignment using
adaptive banded dynamic programming. It can work as a stand-alone multiple se-
quence alignment and consensus calling tool or be easily integrated into any long-read
error correction and assembly workflow. Compared to a state-of-the-art tool (SPOA),
abPOA is up to 15 times faster with a comparable alignment accuracy.

Availability and implementation: abPOA is implemented in C. A stand-alone tool
and a C/Python software interface are freely available at https://github.com/yangao07/abPOA.
Contact: ydwang @hit.edu.cn or XINGYI@email.chop.edu

1 Introduction

Partial order alignment (POA) was first introduced by |Lee et al.| (2002) to solve the
multiple sequence alignment (MSA) problem. In POA, MSA is represented as a di-
rected acyclic graph (DAG) and sequences are iteratively aligned to the DAG through
dynamic programming (DP). Multiple consensus sequences are then generated by ap-
plying the heaviest bundling algorithm to the alignment graph (Leel [2003)). Recently,

https://github.com/yangao07/abPOA
ydwang@hit.edu.cn
XINGYI@email.chop.edu
https://doi.org/10.1101/2020.05.07.083196

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.083196; this version posted May 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

with the advent and growing popularity of long-read sequencing technologies on the
Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) platforms,
there is a renewed appreciation and interest of POA, and this algorithm is now broadly
used for error correction and assembly of error-prone long reads (Loman et al.| [2015;
Vaser et al.l 2017;|Volden et al.,[2018;|Gao et al.l|2019;Ruan and Li,[2019).

Although POA is much faster than classical MSA algorithms (Lassmann and Sonnham-
mer}, [2002)), the large datasets generated by state-of-the-art long-read sequencing plat-
forms pose a major challenge. To address this challenge, Single Instruction Multiple
Data (SIMD) implementation was used to accelerate the original POA algorithm (Vaser
et al,2017). This SIMD version of POA, SPOA, takes advantage of the wider SIMD
registers in modern processors that process multiple elements in parallel. SIMD vec-
tors are used to store scores of multiple consecutive cells in each row of the DP matrix
and processed using SIMD instructions, with parallel updating for all scores stored in
each vector.

In addition to the SIMD parallelization, another acceleration strategy, ‘“banded
DP”, is also widely used in sequence-to-sequence alignment tools (Chao e al.l [1992).
Specifically, in each row or column of the DP matrix, only cells inside a specific
“band” need to be filled out. Recently, a graph version of this strategy was explored in
GraphAligner (Rautiainen and Marschalll |2019)), in which a band for each row of the
DP matrix is dynamically defined based on the minimum score cell in that row. Other
cells are considered to be inside the band only if the score is within a certain distance
of that minimum score. Although GraphAligner is faster than other graph alignment
tools, its strategy may not be suitable for MSA and consensus calling of long reads with
high error rates. This is due to GraphAligner’s using of edit distance instead of general
scoring function as the alignment metric, which may lead to incorrect alignments in
regions with a large number of insertion or deletion errors that are common in PacBio
and ONT sequencing data.

In this work, we have developed abPOA, an extended version of POA that performs
adaptive banded DP with an SIMD implementation. abPOA supports flexible scoring
schemes. It can work as a stand-alone MSA and consensus calling tool, or be easily
integrated into any long-read error correction and assembly workflow.

2 Methods

abPOA adopts the same SIMD parallelization strategy as in SPOA, where the SIMD
vectors are placed parallel to the linear sequence. In the DP matrix, each row corre-
sponds to one node in the alignment graph and each column corresponds to one base
of the linear sequence being aligned (Fig. and Supplementary Fig. 1). Instead of
filling out the entire DP matrix, abPOA adaptively defines a band for each row based
on the scores in predecessor rows and the lengths of potential outgoing paths in the
alignment graph, and only scores of cells inside this band are calculated.

In more detail, for each node in the alignment graph, abPOA first computes the
length of the outgoing path with the largest number of supporting reads that starts
from the current node to the end node. This length, R, is considered as the most
likely number of additional bases to be included in the alignment path starting from

https://doi.org/10.1101/2020.05.07.083196

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.083196; this version posted May 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

(A) Sequence (B)
ACGTAC G —m—
> R Mstam Mend
- 5000
3 5 0,0
a
4 4 1,1 2
S
4 e I-
H 5 3 23 37
3 . 6 2 4 4 & Sequencing depth
_— H3x N30
4| 711 5,5 500 Il 10x W 50x
al 7|1 s
0 35 10 15
_ . & Speed improvement
(abPOA over SPOA)

Figure 1: (A) Illustration of the SIMD parallelization and adaptive banded DP applied in abPOA.
In the alignment graph, ‘S’ is the start node and ‘E’ is the end node. The supporting read count
for each edge of the alignment graph is shown next to the edge. For each node, the heaviest
outgoing edge is marked in red. Inside the DP matrix, the two numbers in each row are the
base-level boundary of the band in that row. Grey blocks represent SIMD vectors that contain
bases inside the band. In this example, each SIMD vector is composed of four consecutive DP
scores in each row. The red block represents the maximum score cell of each row. The values
of R, Mstart, and Me,q are shown on the right side of the matrix. Besides, L is 7 and w is 1
in this example. (B) The speed improvement of abPOA with adaptive banding over SPOA on 12
sequence sets simulated by NanoSim.

the current node. abPOA iteratively calculates R for all nodes in a similar way to
the heaviest bundling algorithm (Lee| 2003) (Supplementary Note). Note that R is
calculated before each round of the sequence-to-graph alignment, based on the nodes
and edge weights of the current alignment graph. Then, during the DP process, all rows
of the DP matrix are sequentially processed following the partial order of the graph. As
such, for each row, abPOA can collect the horizontal coordinates of maximum score
cells in its predecessor rows, i.e. their positions in the linear sequence. The range
(start and end positions) of possible maximum score cells in the current row, [M,
Menql, can be derived as Myiqrt = Plege + 1 and Mepg = Prignt + 1, where Py
and P45 are the positions of the leftmost and the rightmost maximum score cells in
all predecessor rows. Mtqr+ and M4 of the first row are set as O since the start node
has no predecessor.

With the above numbers calculated for each row, abPOA defines the start and end
positions of the DP band in each row as Bgtqr = max{0, min{ M;4pt, L — R} — w}
and Bepg = min{L, max{M,,q4, L — R} + w}, where L is the length of the linear
sequence and w is the number of extra bases added on both sides of the band, which
is determined by two parameters b and f (default 10 and 0.01) as b + f x L (Fig. [TA
and Supplementary Note). By taking both the scores in predecessor rows and poten-
tial outgoing alignment paths into consideration, this adaptively defined DP band is
expected to fully cover the optimal alignment path, even for divergent sequences and

https://doi.org/10.1101/2020.05.07.083196

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.083196; this version posted May 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

graphs. Next, abPOA maps the base-level boundary of the adaptive band onto SIMD
vectors to only process vectors that contain bases inside the band. After iteratively
aligning sequences to the graph and updating the graph (Lee et al.,|2002)), abPOA gen-
erates a consensus sequence from the final alignment graph using the heaviest bundling
algorithm (Lee} 2003).

3 Result

We evaluated abPOA using simulated long-read datasets along with SPOA (Vaser et al.|
2017), which to our knowledge is the only existing tool that uses SIMD to accelerate
POA. Three read lengths (300 bp, 1000 bp, and 5000 bp) and four sequencing depths
(3%, 10x, 30x, and 50x) were used to simulate 12 sets of sequences each with 100
clusters of sequences to be aligned, using NanoSim (Yang et al.,2017) or PBSIM (Ono
et al.,2012)) to incorporate error profiles of ONT or PacBio respectively (Supplemen-
tary Tables 1 and 2). Each cluster of sequences was aligned by abPOA or SPOA to
generate a consensus sequence, and abPOA was run twice with adaptive banded DP
enabled or disabled (see details of the evaluation procedure in Supplementary Note).

abPOA is 2.6-15.0 times faster than SPOA on NanoSim simulated sequence sets
when adaptive banded DP is enabled (Fig. [IB and Supplementary Table 1). As ex-
pected, the speed improvement of abPOA over SPOA becomes particularly pronounced
for longer sequences, as more SIMD vectors would be skipped outside of the adaptive
band leading to a more significant efficiency gain. A similar trend can be observed from
the PBSIM simulation (Supplementary Table 2). To evaluate alignment accuracy, we
calculated the error rate of the generated consensus sequence (Supplementary Note).
abPOA yields a comparably low error rate of consensus sequences when compared to
SPOA (Supplementary Tables 1 and 2). Moreover, compared to abPOA without adap-
tive banding, abPOA with adaptive banding significantly reduces the run time in all
simulation settings without sacrificing the alignment accuracy.

In summary, our results demonstrate that abPOA can generate high-quality con-
sensus sequences from error-prone long reads and offer significant speed improvement
over existing tools. With the significant impact of POA on third-generation long-read
sequencing data analysis, we expect that abPOA will be a useful and broadly applicable
tool in long-read bioinformatics workflows.

Acknowledgements

The authors would like to thank Dr. Yuan Gao and Yadong Liu for assistance with
testing abPOA and providing comments on the manuscript.

Funding

This work has been supported by the National Key Research and Development Pro-
gram of China (Nos: 2018 YFC0910504, 2017YFC1201201 and 2017YFC0907503).

Conflict of Interest: Y.X. is a scientific cofounder of Panorama Medicine.

https://doi.org/10.1101/2020.05.07.083196

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.083196; this version posted May 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

References

Chao, K.-M. et al. (1992). Aligning two sequences within a specified diagonal band. Bioinformatics, 8(5), 481-487.

Gao, Y. et al. (2019). TideHunter: efficient and sensitive tandem repeat detection from noisy long-reads using seed-and-
chain. Bioinformatics, 35(14), 1200-i207.

Lassmann, T. and Sonnhammer, E. L. (2002). Quality assessment of multiple alignment programs. FEBS Letters, 529(1),
126-130.

Lee, C. (2003). Generating consensus sequences from partial order multiple sequence alignment graphs. Bioinformatics,
19(8), 999-1008.

Lee, C. et al. (2002). Multiple sequence alignment using partial order graphs. Bioinformatics, 18(3), 452-464.

Loman, N. J. et al. (2015). A complete bacterial genome assembled de novo using only nanopore sequencing data. Nature
Methods, 12(8), 733-735.

Ono, Y. et al. (2012). PBSIM: PacBio reads simulatortoward accurate genome assembly. Bioinformatics, 29(1), 119-121.

Rautiainen, M. and Marschall, T. (2019). GraphAligner: Rapid and Versatile Sequence-to-Graph Alignment. bioRxiv, page
810812.

Ruan, J. and Li, H. (2019). Fast and accurate long-read assembly with wtdbg2. Nature Methods, 17(2), 1-4.

Vaser, R. et al. (2017). Fast and accurate de novo genome assembly from long uncorrected reads. Genome research, 27(5),
737-746.

Volden, R. ef al. (2018). Improving nanopore read accuracy with the R2C2 method enables the sequencing of highly
multiplexed full-length single-cell cDNA. Proceedings of the National Academy of Sciences of the United States of
America, 115(39), 9726-9731.

Yang, C. et al. (2017). NanoSim: nanopore sequence read simulator based on statistical characterization. GigaScience, 6(4),
1-6.

https://doi.org/10.1101/2020.05.07.083196

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.083196; this version posted May 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Sequence
A C G T A C G
>

J | “\ Match
Delete

g'p —> Insert

Supplementary Fig. 1. Illustration of the SIMD parallelization applied in abPOA and three types
of DP operations to be processed. In the alignment graph, ‘S’ is the start node and ‘E’ is the end
node. Inside the DP matrix, each row corresponds to one node in the alignment graph and each
column corresponds to one base of the linear sequence being aligned to the graph. Grey blocks
represent SIMD vectors each composed of four consecutive DP scores in each row. Note that
abPOA can adaptively determine the number of elements to be stored in each vector based on the
size of the register available in the computer processors and the lengths of the aligned sequences.
abPOA processes all the vectors in a row-by-row manner following the partial order of the graph.
During the DP process, for “match” and “delete” operations (diagonal and vertical moves in the
DP matrix), all scores stored in each SIMD vector can be updated in parallel as they only rely on
scores in the predecessor rows. For “insert” operations (horizontal moves in the DP matrix),
sequential non-parallel updating of scores in the same SIMD vector is needed, as the score of each

cell depends on the score of the cell on the left.

https://doi.org/10.1101/2020.05.07.083196

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.083196; this version posted May 10, 2020. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Supplementary Table 1. Run time* (CPU sec) and consensus sequence’s error rate® (%) of
abPOA and SPOA on 12 sequence sets simulated by NanoSim.

Length x depth SPOA abPOA without abPOA with adaptive
(error rate %) adaptive banding banding
500 x 3 (11.69) 0.14% (4.68) 0.11 (4.60) 0.04 (4.61)
500 x 10 (11.75) 0.65 (0.24) 0.66 (0.27) 0.24 (0.27)
500 x 30 (11.67) 3.41 (0.05) 3.18 (0.05) 1.23 (0.05)
500 x 50 (11.56) 7.18 (0.09) 6.59 (0.07) 2.76 (0.07)
1000 x 3 (12.05) 0.48 (4.55) 0.45 (4.54) 0.11 (4.54)
1000 x 10 (12.23) 2.41(0.24) 2.50(0.27) 0.68 (0.27)
1000 x 30 (12.12) 11.82 (0.05) 12.13 (0.04) 4.34 (0.04)
1000 x 50 (12.18) 23.17 (0.09) 29.69 (0.07) 7.10 (0.07)
5000 x 3 (12.86) 16.35 (4.94) 10.48 (4.89) 1.09 (4.89)
5000 x 10 (12.93) 98.50 (0.31) 60.01 (0.30) 6.65 (0.30)
5000 x 30 (12.94) 472.29 (0.07) 286.51 (0.07) 32.52 (0.07)
5000 x 50 (12.92) 1,013.08 (0.08) 766.38 (0.06) 71.30 (0.06)

Notes: Run time is summed up for each sequence set over the 100 clusters of sequences to be
aligned. Error rates of simulated long-read sequences and generated consensus sequences are
shown inside the parentheses, as calculated based on the alignments to the original sequences

using minimap2 (Li, 2018) (Supplementary Note) and averaged across each sequence set.

https://doi.org/10.1101/2020.05.07.083196

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.083196; this version posted May 10, 2020. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Supplementary Table 2. Run time* (CPU sec) and consensus sequence’s error rate® (%) of
abPOA and SPOA on 12 sequence sets simulated by PBSIM.

Length x depth SPOA abPOA without abPOA with adaptive
(error rate %) adaptive banding banding

500 x 3 (10.93) 0.12% (8.19") 0.11 (8.15) 0.04 (8.15)
500 x 10 (12.55) 0.64 (2.36) 0.67 (2.62) 0.25 (2.62)
500 x 30 (12.59) 3.01 (1.71) 3.55 (1.76) 1.37 (1.76)
500 x 50 (12.56) 6.91 (1.77) 6.91 (1.61) 2.96 (1.61)
1000 x 3 (12.08) 0.44 (8.33) 0.42 (8.28) 0.10 (8.28)
1000 x 10 (12.99) 2.38 (2.46) 2.57 (2.73) 0.66 (2.73)
1000 x 30 (13.08) 11.91 (1.94) 12.95 (1.92) 3.60 (1.93)
1000 x 50 (12.86) 26.41 (1.69) 30.82 (1.60) 7.27 (1.60)
5000 x 3 (13.33) 20.88 (9.67) 10.37 (9.64) 1.13 (9.64)
5000 x 10 (13.49) 107.73 (3.26) 68.39 (3.36) 6.63 (3.36)
5000 x 30 (12.88) 508.65 (1.50) 308.72 (1.51) 34.90 (1.51)
5000 x 50 (12.84) 1,096.99 (1.45) 770.95 (1.42) 75.91 (1.42)

Notes: Run time is summed up for each sequence set over the 100 clusters of sequences to be
aligned. Error rates of simulated long-read sequences and generated consensus sequences are
shown inside the parentheses, as calculated based on the alignments to the original sequences

using minimap?2 (Li, 2018) (Supplementary Note) and averaged across each sequence set.

https://doi.org/10.1101/2020.05.07.083196

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.083196; this version posted May 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Supplementary Note.
1. Calculation of R

Before each round of the sequence-to-graph alignment, abPOA computes R, the length of the
outgoing path with the largest number of supporting reads that starts from the current node to the
end node. Note that neither the current node nor the end node is counted in the path. abPOA
iteratively calculates R for all nodes in a similar way to the heaviest bundling algorithm in POA
(Lee, 2003). Algorithm 1 gives the pseudo-code to calculate R through a graph traversal starting
from the end node (line 5-6) to the start node (line 19-20). Here, the start node has no predecessor
and the end node has no successor, and they both are auxiliary nodes that have no sequence bases
(Fig. 1A and Supplementary Fig. 1). For each node, the outgoing edge with the heaviest weight
and its corresponding successor node are picked out (line 15-17). Then, R of the current node is
set as R of the chosen successor node increased by one (line 18). abPOA maintains a
first-in-first-out queue and an array of all nodes’ out degrees to make sure every node is visited

only after all of its successor nodes have been visited (line 23-24).

Algorithm 1: Calculate R

Input: Graph, start node S and end node E
Output: R for all nodes in Graph

1 D + empty array

2 foreach i € all nodes in Graph do

3 R[i] + 0 b initialization
4 DIi] < out degree of i > out degrees of all nodes
5 Q + empty queue > first-in-first-out queue
6 Q.push(FE)

7 while @ is not empty do

8 cur + @Q.pop()
9 if cur = F then
10 | R[E] + -1
11 else
12 Winae < —1
13 SUC e — —1
14 foreach suc € all successors of cur do
15 if W{suc] > W0, then
16 Winax — Wsuc] > heaviest weight of outgoing edges
17 L SUCar < SUC > corresponding successor
18 Rcur] = R[sutmaz] + 1 > set R for cur
19 if cur = S then
20 | return R
21 foreach pre € all predecessors of cur do
22 Dipre| < Dlpre] — 1
23 if D[pre] =0 then > all successors of pre have been visited
24 L Q.push(pre)

https://doi.org/10.1101/2020.05.07.083196

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.083196; this version posted May 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

2. The number of extra bases added on both sides of the adaptive band

To further improve the alignment accuracy, abPOA allows the DP band in each row to be extended
on both sides by w. Before each round of the sequence-to-graph alignment, w, the number of extra
bases added on each side of the band is determined as b + f x L, where b and f are two parameters
(default: 10 and 0.01), L is the length of the linear sequence being aligned to the graph. w is

always rounded down to the nearest integer number.

3. Simulation procedure

To simulate long-read datasets with varying read lengths and sequencing depths, we first randomly
extracted a sequence with a specific length from the GRCh38 human reference genome. Then
NanoSim (Yang et al., 2017) or PBSIM (Ono et al., 2013) were used to simulate a specific number
of reads from the extracted sequence. With three lengths (500 bp, 1000 bp, and 5000 bp) and four
depths (3%, 10x, 30%, and 50x%), a combination of 12 sequence sets were generated by each
simulator. Within each simulation setting, the simulation was repeatedly run 100 times to generate
100 clusters of sequences and each cluster was aligned by abPOA or SPOA to generate a

consensus sequence.
The run settings of NanoSim:
simulator.py genome -rg input seq.fa -n depth \
-max length -min length \
-c human NA12878 DNA FAB49712 guppy/training \
-b guppy -s 0-o output
The run settings of PBSIM:
pbsim input seq.fa --data-type CLR --model gc model gc clr \

--length-min length --length-mean length \

--length-max length --depth depth \
-—accuracy-min 0.80 --accuracy-mean 0.85 \
-—accuracy-max 0.90 --prefix output

4. Evaluation procedure

Evaluation of abPOA and SPOA on the simulated long-read datasets was performed on a Linux
system with Intel Core i5-6200U at 2.3 GHz and AVX2 instructions available. Two wrap-up
programs (available at https://github.com/yangao07/abPOA) were written to make the two

libraries allow each dataset that consists of 100 clusters of sequences as the input.

https://doi.org/10.1101/2020.05.07.083196

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.07.083196; this version posted May 10, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Both abPOA and SPOA were run in global alignment mode using a convex gap penalty
scheme, i.e. two-piece gap penalty scheme. The convex penalty of a gap with length g is
min{O;+gxE;, O:+gxE>}, where Oy, E;, Oz and E; are the two pairs of gap opening and gap
extension penalties. They were set as O;/=4, E;=2, 0,=24, and E>=1 in the evaluation runs for both
abPOA and SPOA.

The run settings of SPOA:

SPOA input seqg.fa -11 -m 2 -n -4 -g -6 -e -2 -q -25 -¢ -1 -o cons.out
The run settings of abPOA without adaptive banding:

abPOA input seq.fa -m 0 -M 2 -X 4 -0 4,24 -E 2,1 -b -1 -o cons.fa
The run settings of abPOA with adaptive banding:

abPOA input seq.fa -m0-M2-X4-04,24-E2,1-b10-£0.01 -o cons.fa

To evaluate the alignment accuracy of abPOA and SPOA, we calculated the error rate of the
generated consensus sequence. We aligned each consensus sequence to the original sequence
using minimap2 (Li, 2018) with default settings. The error rate is calculated as the total number of
mismatches, insertions, and deletions in the alignment divided by the length of the consensus
sequence. We also computed the error rate of raw simulated sequences in the same way. The
averaged error rates of raw simulated sequences and generated consensus sequences across each

sequence set are shown in Supplementary Tables 1 and 2.

Reference

Lee, C. (2003). Generating consensus sequences from partial order multiple sequence alignment
graphs. Bioinformatics, 19(8), 999—1008.

Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18),
3094-3100.

Ono, Y. et al. (2012). PBSIM: Pacbio reads simulator—toward accurate genome assembly.
Bioinformatics, 29(1), 119-121.

Yang, C. et al. (2017). NanoSim: nanopore sequence read simulator based on statistical

characterization. GigaScience, 6(4), 1-6.

https://doi.org/10.1101/2020.05.07.083196

	abPOA: an SIMD-based C library for fast partialorder alignment using adaptive band
	Abstract
	Introduction
	Methods
	Result
	Acknowledgements
	References
	Supplementary Fig. 1
	Supplementary Table 1
	Supplementary Table 2
	Supplementary Note
	1. Calculation of R
	2. The number of extra bases added on both sides of the adaptive band
	3. Simulation procedure
	4. Evaluation procedure

