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Abstract24

Anatomical brain templates are commonly used as references in neurological MRI studies, for25

bringing data into a common space for group level statistics and coordinate reporting. Having26

a group representative template increases the accuracy of alignment, improves statistics and27

decreases distortions (as well as potential biases) in final coordinate reports. Given the inherent28

variability in brain morphology across age and geography, it is important to have templates29

that are as representative as possible for both age and population. In this study, we developed30

and validated a new set of T1w Indian brain templates (IBT) from a large number of subjects31

(total n=466) across different Indian states and acquired at multiple 3T MRI sites. A new32

tool in AFNI, make_template_dask.py, which uses the Dask python parallelization library, was33

created to efficiently make a template from a group of subjects. A total of five age-specific34
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categories of IBTs [ages 6-11 yrs (C1), 12-18 yrs (C2), 19-25 yrs (C3), 26–40 yrs (C4), and35

41-60 yrs (C5)], as well as maximum probability map (MPM) atlases for each template were36

generated; for each age group’s template-atlas pair, there is both a “population average” and a37

“typical” version. Validation experiments on an independent Indian structural and functional38

MRI dataset show the appropriateness of IBTs for spatial normalization of Indian brains. The39

results indicate significant structural differences when comparing the IBTs and MNI template,40

with these differences being maximal along the Anterior-Posterior and Inferior-Superior axes,41

but minimal Left-Right. For each age group, the MPM brain atlases provide reasonably good42

representation of the native-space volumes in the IBT space, except in a few regions with high43

inter-subject variability as indicated by high mean deformation value. These findings provide44

evidence to support the use of age and population-specific templates in human brain mapping45

studies. These templates, with corresponding atlases and tools, are publicly available on the46

NIMHANS and AFNI websites.47

Keywords: MRI, brain template, brain atlases, maximum probability map48

1 Introduction49

The shape, size and volume of the human brain is highly variable across individuals, as well as across50

age, gender and geographical location or ethnicity. This fact is of prime importance in neuroimaging51

group studies, where the brains of all subjects are typically aligned to a single template space for52

data analysis and for the reporting of findings where analogous anatomical structures are mapped53

on to the same coordinate location across the subjects. A brain template provides a standard54

3D coordinate frame to combine and/or compare data from many subjects, across different imaging55

modalities, structural or functional and even different laboratories around the world. The properties56

of the template (size, shape, tissue contrast, etc.) directly affect the quality of alignment.57

An early brain atlas was constructed by Talairach and Tournoux [1988] from a post mortem brain58

of one 60-year-old French woman, introducing the concepts of coordinate system and spatial trans-59

formation to brain imaging. However, using a single subject brain as a template introduces several60

idiosyncrasies, as it does not account for groupwide anatomical variability, asymmetry, age-related61

differences, etc. In order to address some of these issues, a subsequent initiative from the Montreal62

Neurological Institute (MNI) resulted in a statistical brain template (MNI-305) using 305 young63

right-handed subjects [Evans et al., 1993]. While this composite template better accounted for64

anatomical variability, it also had relatively low tissue contrast and structural definition, which65

can affect the ability of alignment algorithms to provide high quality anatomical matching across a66

group study. In 2001, the international consortium for human brain mapping (ICBM) introduced67

the revised MNI-152 template [Mazziotta et al., 2001b] with better contrast and structure defini-68
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tion, where 152 individual brains were linearly registered to MNI305 to make an average template.69

The ICBM-452 template [Mazziotta et al., 2001a] included all three sites of ICBM and provided70

even better signal-to-noise ratio due to the nearly threefold increase in the number of subjects.71

These MNI templates were widely adopted by several image processing pipelines, with the asso-72

ciated set of coordinates known as “MNI space”. Furthermore, an unbiased non-linear average of73

the adult MNI152 and a pediatric template with 20-40 iterative non-linear averages has also been74

made available [Fonov et al., 2011]. These templates provide the advantages of retaining group75

representativeness of the MNI305 or MNI152 while still providing the details that are closer to76

those apparent in a single subject; however, their “representativeness” is limited to a fairly isolated77

geographic location and (typically, Western) population, even though neuroimaging studies draw78

from populations across the globe.79

More recently, several research groups around the world have developed and validated brain tem-80

plates that are representative of their (broadly) local population. Lee et al. [2005] created a set81

of Korean Brain templates with 78 subjects in an age range between 18 to 77 years (young tem-82

plate <55 years and elderly template >55 years). Additionally, Tang et al. [2010] generated a83

Chinese brain template of 56 subjects (mean age 24.4 years). In each case the groups demonstrated84

significantly reduced warp deformations and increased registration accuracy when applying these85

templates to studies of local populations. It should be noted that even though the templates draw86

from subjects within a population, there is still a large amount of inherent variability evident in the87

brain morphology, due to combinations of factors such as inherent structural variability, multi-ethnic88

composition and differences in genetic influences and environmental exposures.89

The benefit of utilizing a population-representative template in the Indian context has also been90

recognized, with the additional need for age-specific templates due to the increasingly wide range91

of ages enrolled in studies. Recent attempts at developing brain templates for Indian population92

have tended to focus on the young adult age group (21-30 years) with relatively small [Rao et al.,93

2017] to modest sample sizes [Sivaswamy et al., 2019, Bhalerao et al., 2018, Pai et al., 2020], and94

have utilized data from a single site/scanner. Additionally, to date, whole-brain annotated reference95

atlases based on segmentation have not accompanied the generated templates. In this study, we96

present and validate a new set of brain templates that have been created from a large number97

of subjects from multi-site acquisitions across India, with five age ranges provided (between 6-6098

years), as well as brain atlases for each template. For each age group’s template-atlas pair, there is99

both a “population average” and “typical” version (the latter being the individual brain which most100

closely matches the population average, which potentially provides higher detail as an alignment101

target and atlas). We present several validation tests for the accuracy and representativeness of the102

templates, and we also use data from separately acquired subjects to demonstrate the benefits of103

these templates over the existing standard MNI templates for studies on Indian cohorts.104
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Table 1 Demographic Profiles.
Age
Category

Age
Description

Age in years,
Mean (Range)

Sample Size
N (% Female)

No.
States

No.
Scanners

C1 Late childhood 9.3 (6 to 11) 28 (46.43%) 5 4
C2 Adolescence 15.1 (12 to 18) 106 (47.17%) 9 5
C3 Young adulthood 21.3 (19 to 25) 181 (40.89%) 15 5
C4 Adulthood 31.1 (26 to 40) 89 (42.7%) 11 2
C5 Late adulthood 52.7 (41 to 60) 62 (43.55%) 6 2

2 Methods105

2.1 Participants106

The datasets used in the present study were selected from healthy control subjects from several107

imaging studies, across multiple centers and different populations across India. They included108

imaging data from the Indian multisite developmental cohort study, the Consortium on Vulnerability109

to Externalising Disorders and Addictions (cVEDA) [Sharma et al., 2020, Zhang et al., 2020] and110

from stored datasets contributed by researchers at the National Institute of Mental Health and111

Neurosciences (NIMHANS, Bengaluru, India). All of these studies were approved by the ethics112

review boards at the corresponding participating sites. Inclusion criteria included not having a113

personal history of prior brain injury, neurological disorder or psychiatric diagnosis. The sample114

was comprised of 466 subjects from a large number of states across India and acquired at multiple115

sites. Based on age and demographic distributions, subject datasets were divided into 5 groups:116

C1, late childhood (6-11 years); C2, adolescence (12-18 years); C3, young adulthood (19-25 years);117

C4, adulthood (26-40 years); C5, late adulthood (41-60 years). The sample size and demographic118

information of each cohort is summarized in Table 1.119

2.2 Image acquisition120

T1-weighted (T1w) three-dimensional high resolution structural brain MRI scans were acquired121

from five 3T MRI scanners located at three different locations across India: Bengaluru (site A, C122

and D), Mysuru (site B) and Chandigarh (site E). The subjects belonged to several neighboring123

states to these locations, with wide geographical representation throughout India. As with most124

multisite studies, the acquisition parameters varied slightly across sites and scanners, but were125

generally similar, with good grey/white matter contrast with a voxel size close to 1mm isotropic;126

details are listed in Table 2.127
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Table 2 Acquisition parameters.
Acq
Seq

Site
label

Scanner
model

dx
(mm)

dy
(mm)

dz
(mm)

TR†

(ms)
TE
(ms)

TI
(ms)

FA
(deg)

Matrix
size

No.
Sag

No.
Subj‡

1 A Achievaa 1 1 1 8.2 3.8 745 8 256× 256 165 50
2 A Achievaa 0.9 0.9 1 8.2 3.8 800 8 257× 256 160 38
3 B Ingeniaa 1.2 1 1 6.9 3.2 725 9 256× 256 170 29
4 C Ingeniaa 1 1 1 6.9 3.3 925 9 256× 256 211 10
5 D Skyrab 1.2 1 1 2300 3.0 900 9 256× 240 176 82
6 D Skyrab 1 1 1 1900 2.4 900 9 256× 256 192 56
7 D Skyrab 0.9 0.9 0.9 1600 2.1 900 9 256× 256 176 124
8 E Veriob 1.2 0.5 0.5 2300 3.0 900 9 512× 480 176 77

Acq Seq = acquisition sequence; dx, dy, dz are voxel dimensions; TR = repetition time; TE = echo
time; TI = inversion time; FA = flip angle; No. Sag = number of sagittal slices.
aPhilips, 3T. bSiemens, 3T. ‡This is the final number of subjects included in final templates (total
= 466), after all steps of QC and subject removal. †The TR for 3D scans such as these is defined
differently between Philips and Siemens scanners, with the relationship being TRPhilips ≈ (TRSiemens −
TI)/(No. Sag).

2.3 Data Preprocessing and Initial Quality Assurance128

This processing primarily used programs in the AFNI (v19.0.20) [Cox, 1996] and FreeSurfer (v6.0)129

[Fischl, 2012] neuroimaging toolboxes, as well as the “dask” scheduling tool in Python developed by130

the Dask Development Team [2016]. Unless otherwise noted, programs named here are contained131

within the AFNI distribution. The following processing steps are shown schematically in Figure 1,132

in the first column.133

Datasets were first processed using AFNI’s “fat_proc_convert_dcm_anat”. Using this, DICOMs134

were converted to NIFTI files using dcm2niix_afni (the AFNI-distributed version of dcm2niix [Li135

et al., 2016]). For uniformity and initialization, with this tool, they were also given the same136

orientation (RAI), and the physical coordinate origin was placed at the volume’s center of mass (to137

simplify later alignments).138

Next, “fat_proc_axialize_anat” was applied to reduce the variance in the spatial orientation of139

brains for later alignment and for practical considerations of further processing steps, as described140

here. Each volume was affinely registered to a reference anatomical template (MNI ICBM 152141

T1w) that had previously been AC-PC aligned; alignment included an additional weight mask142

to emphasize subcortical structure alignment (e.g., AC-PC structures), and only the solid-body143

parameters of the alignment were applied, so that no changes in shape were incurred. Because144

datasets had been acquired with varied spatial resolution and FOV (see Table 2), the datasets were145
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resampled (using a high-order sinc function, to minimize smoothing) to the grid of the reference146

base of 1mm isotropic voxels.147

All datasets were visually and systematically checked for quality of both data and registration using148

the QC image montages that were automatically generated by the previous program. T1w volumes149

with noticeable ringing or other artifact (e.g., due to subject motion or dicom reconstruction errors)150

were noted and removed from further analyses. T1w volumes with any incidental findings (for151

example, large ventricles, cavum septum pellucidum) were also removed.152

FreeSurfer’s “recon-all” [Fischl, 2012] was run on each T1w data set to estimate surfaces, parcel-153

lation and segmentation maps. AFNI’s “@SUMA_Make_Spec_FS” was then run to convert the154

FreeSurfer output to NIFTI files and to generate standard meshes of the surface in formats usable155

by AFNI and SUMA. Additionally, @SUMA_Make_Spec_FS subdivides the FreeSurfer parcella-156

tions into tissue types such as gray matter (GM), white matter (WM), cerebrospinal fluid (CSF),157

ventricle, etc. This was followed by visual inspection of parcellation maps overlaid on anatomical158

volumes.159

Next, a whole brain mask of each anatomical volume was created. In several cases, the skullstripped160

brain volumes output by recon-all (brain_mask.nii) included large amounts of non-brain material161

(skull, dura, face, etc.), and so an alternative mask was generated using only the ROIs comprising162

the parcellation and segmentation maps. For each subject, a whole brain mask was generated by:163

first making a preliminary mask from all of the ROIs identified by recon-all; then inflating that pre-164

mask by 3 voxels; and finally shrinking the result by two voxels (thus filling in any holes inside the165

brain mask and smoothing the outer edges). This produced whole brain masks that were uniformly166

specific to each subject’s intracranial volume.167

Finally, the intensity of tissues within each T1w volume was made uniform with AFNI’s 3dUnifize.168

This ensures that each subject’s brain, which had been acquired on different scanners with poten-169

tially different scalings, would have equal weight when averaging (e.g., WM is scaled to approxi-170

mately a value of 1000 in each brain, and similarly for other tissues), and also reduces the risk of a171

bright outlier region driving poor alignment.172

2.4 Mean template generation173

After the above pre-processing steps and QC, the following templatizing algorithm was applied174

for each cohort (C1-5) separately. The general procedure was to alternate between alignment to175

a reference base (with increasingly higher order of refinement) and averaging the aligned brains176

to generate a new reference base for the subsequent iteration. In this way one can generate a177

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 11, 2020. ; https://doi.org/10.1101/2020.05.08.077172doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.08.077172
http://creativecommons.org/licenses/by-nc-nd/4.0/


cohort mean template of successively greater specificity and detail; after several iterations, the178

alignment essentially converges (i.e., additional refinement becomes negligible) and is halted. Warps179

were generated and saved at each step. The final nonlinear warps and affine transformations were180

concatenated for each subject at the end in order to generate the final group average template.181

These steps are also included in the schematic Figure 1, in the first column (bottom) and second182

and third columns.183

The first level of alignment was made from each anatomical in the cohort to the MNI ICBM-152184

T1w template using a 6 degree of freedom (DF) rigid body equivalent registration, meaning a full185

affine transformation was computed, but only the rigid components were extracted and applied.186

The average of all subjects’ brains, rigidly aligned to the initial template, was used to create a187

single average volume “mean-rigid”; here and at each alignment stage, a cohort standard deviation188

map was also created, to highlight locations of relatively high and low variability. That stage’s189

average volume was then used as a base for the next stage of alignment for each subject, using a 12190

DF linear affine registration, and with the results averaged to create the next base “mean-affine”.191

For these alignments, AFNI’s “lpa” cost function (absolute value of local Pearson correlation) [Saad192

et al., 2009] was used for high quality alignment of features between volumes of similar contrast.193

The cost function computes the absolute value of the Pearson correlation between the volume and194

the current template in patches of the volume at a time.195

As a practical consideration, we note that lower level alignments such as these have a general196

property of producing a smoothed brain, which has the additional effect of increasing the apparent197

size of the base dataset (i.e., the edge is blurred outward). Therefore, in these initial levels we198

added a step to control the overall volume of the template. We calculated the mean intracranial199

volume (ICV) of all the subjects in the cohort Vcoh, and then calculated the volume of the initial200

mean-affine brain mask Vaff . The volume ratio rvol = Vcoh/Vaff was calculated, and each of the201

three dimensions of the mean-affine volume were scaled down by the appropriate length scaling202

factor r
1/3
vol . In this way, the final volume of the templating process retained a representative size203

for the cohort.204

The next alignment stages were comprised of nonlinear registration using AFNI’s 3dQwarp [Cox205

and Glen, 2013]. At each successive level the nonlinear alignment was performed to an increasingly206

higher refinement, resulting in mean volumes of greater detail. Specifically, nonlinear alignment at207

each stage was implemented to create mean templates as follows (A-E), using 3dQwarp’s default208

“pcl” (Pearson correlation, clipped) cost function to reduce the effects of any outlier values (and209

unless otherwise specified, applying a 3D Gaussian blur):210

A) mean-NL0: after registering to mean-affine with a minimum patch size of 101 mm and blurring211
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of 0 mm (base) and 9 mm (source);212

B) mean-NL1: after registering to mean-NL0 with a minimum patch size of 49 mm and blurring213

of 1 mm (base) and 6 mm (source);214

C) mean-NL2: after registering to mean-NL1 with a minimum patch size of 23 mm and blurring215

of 0 mm (base) and 4 mm (source);216

D) mean-NL3: after registering to mean-NL2 with a minimum patch size of 13 mm and blurring217

of 0 mm (base) and 2 mm median filter (source);218

E) mean-NL4: after registering to mean-NL3 with a minimum patch size of 9 mm and blurring219

of 0 mm (base) and 2 mm median filter (source).220

Each mean-NL* volume was resized in the same manner as the initial stages, although the correction221

factors were much smaller here. Additionally, each intermediate mean-NL* volume was anisotrop-222

ically smoothed (preserving edges within the volume, for detail) using 3danisosmooth, in order to223

sharpen its contrast for subsequent alignments.224

The mean-NL4 volume became the final group mean template for each cohort, as in all cases results225

appeared to have essentially converged after this number of step. The coordinate system of this226

mean volume defines the template space for that age group, and is labelled “IBT_C1”, “IBT_C2”,227

etc.228

Figure 1 – Schematic representation of the steps involved in the Dask pipeline (make_template_-
dask.py) for generating population-average brain templates.

2.5 “Typical” subject template generation229

We used the following approach to find the maximally representative individual brain for the mean230

template from the underlying cohort, in order to generate an additional “typical” template for that231

space, in complement to the mean template.232
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To find the most typical subject for the mean template quantitatively, the lpa cost function value233

from aligning each subject’s anatomical to the final mean-NL4 was compared across the group; that234

is, the degree of similarity of each subject’s aligned volume to the mean template base was compared235

across the cohort. The individual brain in that mean template space with the lowest cost function236

value was selected to be the “typical template” brain. Alignment results were also visually verified237

for each typical template. We note that the typical template volume uses the same coordinate238

system as the mean template, and thus no additional “coordinate space” is created in this process.239

2.6 Atlas generation for mean and typical templates240

For each cohort, atlases were generated for each of the mean and typical templates based on241

FreeSurfer parcellation and segmentation maps1. By default, recon-all produces two maps of242

ROIs (including both cortical and subcortical GM, WM, ventricles, etc.): the “2000” map, using243

the Desikan-Killiany Atlas [Desikan et al., 2006] and the “2009” map, using the Destrieux Atlas244

[Destrieux et al., 2010]. Each of these maps was used to create a “2000” and “2009” atlas for each245

template.246

For the mean template, maximum probability map (MPM) atlases were reconstructed as follows.247

The FreeSurfer parcellations for each subject were transformed to the IBT space using the warps248

created during the template creation process (and “nearest neighbor” interpolation, to preserve249

ROI identity). For a given parcellation, the fraction of overlap of a given ROI at each voxel in the250

template was computed. That overlap fraction is essentially the probability of a region to be mapped251

to that voxel. In this way, an MPM atlas was created for each of the 2000 and 2009 parcellations,252

labelled “IBT_C1_MPM_2000”, “IBT_C1_MPM_2009”, etc. The value of each voxel’s maximum253

probability was also kept and stored in a map, for reference and validation. Locations with max254

probability near 1 show greatest uniformity across group, and locations with lower values show255

greater variability.256

For each typical template volume, atlases based on the 2000 and 2009 FreeSurfer parcellation were257

also created. First, the parcellations from original subject space were mapped to the individual258

template space. Then, each parcellation was passed through a modal smoothing process using259

3dLocalstat: for each voxel in the atlas, its value was reassigned to the mode of its NN=1 neigh-260

borhood (i.e., among “facewise” neighbors, so within a 7 voxel neighborhood). In this way the261

final atlas parcellation was slightly regularized, in order to reduce the effects of resampling to the262

template space. A typical brain atlas was created from each of the 2000 and 2009 parcellations,263

labelled “IBT_C1_TYP_2000”, “IBT_C1_TYP_2009”, etc.264

1FreeSurfer distinguishes between cortical parcellations and subcortical segmentations; here, we use “parcellation”
generically to refer to final map of all ROIs.
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2.7 Validation and tests265

The fractional volumes of each ROI in the MPM atlases were checked for being representative of266

each cohort. For this we calculated the logarithm of the relative volume ratio of each ROI:267

ri = log

(
VMPM,i / VMPM,ICV

1
N

∑
j Vj,i / Vj,ICV

)
, (1)

where the numerator is the fractional volume of a given ith ROI in the MPM (i.e., volume of the268

ROI divided by that template’s ICV), and the denominator is the fractional volume of that ith269

ROI averaged across all N subjects (i.e., for each jth subject, volume of the ROI divided by the270

subject’s ICV, in native space). Thus, ri values close to 0 reflect high similarity of the MPM ROI271

to the cohort mean, and negative or positive values reflect a relative compression or expansion,272

respectively, of the MPM ROI relative to that for a particular cohort.273

In order to quantify the inter-subject brain morphological variability for participants in each age-274

band, we calculated a region-wise mean deformation value (mDV) from the deformation warp fields275

generated during non-linear registration to the age-specific IBT. For this, the absolute warp value276

was summed across all three axes (L1-norm) and averaged across all the voxels within each ROI277

in the age-specific MPM atlas. A larger mDV indicates greater inter-subject brain morphological278

variability.279

To examine the utility of the IBTs on a real, representative dataset, a separate sample of Indian280

population data was included for validation and testing purposes. For each cohort, the validation281

group (“V1”, matched with cohort C1; “V2”, matched with cohort C2; etc.) comprised 20 subjects282

within the corresponding age range. The T1w and resting state functional MRI (rs-fMRI) data283

acquisition information and demographics of these additional groups are provided in Supplementary284

Table ST1. For each IBT, in comparison to the MNI ICBM-152 template, the following validation285

tests were conducted using the T1w and resting functional data.286

We first used the deformation field to characterize the difference between the two templates (IBT vs287

MNI). For each subject in the validation cohort, we calculated the absolute amount of displacement288

needed to move a voxel location from native space to the target in the new age-specific IBT and289

the standard MNI ICBM-152 templates, for non-linear registration. A median absolute distance290

along each axis (LR = left-right; PA = posterior-anterior; IS = inferior-superior) was calculated291

from the dimensional deformation field in each voxel. The median absolute distances when warping292

to MNI and cohort-specific IBT along each axis were compared using a paired sample Wilcoxon’s293

signed-ranks test.294
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Finally, the practical benefits of using the IBT reference volumes were investigated by processing295

a validation cohort with resting state fMRI data using the same pipeline twice: once with the296

IBT mean template, and once with the standard MNI template. AFNI’s afni_proc.py command297

was used to generate the full fMRI processing pipeline and the exact command is provided in298

the supplementary text. The whole brain average of temporal signal-to-noise ratio (TSNR) of the299

preprocessed smoothed data was compared when using the IBT and MNI ICBM 152 templates300

as targets. We additionally demonstrate the differences in the regional brain connectivity when301

using the IBT and MNI ICBM 152 templates as targets. For this analysis, averaged time series302

were extracted from a sphere of 5mm radius centered on the age-specific IBT MPM and MNI303

atlas-based coordinates (the regions are labelled as per Desikan-Killiany Atlas). The time series304

were correlated region by region for each subject across the length of the time series. For each305

age-group, the average pairwise correlations (Fisher Z -transformed Pearson r value) from IBT and306

MNI space were plotted and compared against a line with intercept=0 and slope=1, indicating a307

1:1 relationship in the regional brain connectivity between IBT and MNI dataset.308

3 Results309

The first part of the output consists of both “population average” and “typical” Indian brain tem-310

plates for five specific age-ranges: late-childhood (C1), adolescence (C2), young adulthood (C3),311

adulthood (C4) and late adulthood (C5) [see Table 1 for the age-ranges]. The second part of the312

output is a set four IBT atlases (IBTAs) for each age range: both an MPM and a typical subject313

version of each of the Desikan-Killiany (FreeSurfer’s “2000”) and Destrieux (FreeSurfer’s “2009”)314

atlases.315

Figure 2 shows an example of the successive stages in the creation of the C1 IBT. Throughout316

the refinement, details become progressively clearer, with tissue contrast and feature identification317

increasing. Additionally, the variance decreases in the gray and white tissues with each stage.318

Figure 3 shows an example of the IBT and IBTA outputs for the C3 group, displaying multiple slices319

in sagittal, coronal and axial views; in all cases, the population average template is underlayed. The320

top row shows a size comparison with the overlaid MNI template (shows as edges). In the second row,321

the “typical” template version is overlaid translucently, showing the very high degree of structural322

similarity between the two template versions. The bottom two rows show the MPM 2000 and 2009323

IBTAs. Similar outputs for other age groups are provided in the Supplementary Information, in324

Figures S1-S5.325
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Figure 2 – Axial slices of mean (top row) and standard deviation (bottom row) maps through
successive stages of the templatizing algorithm (first stage at the left) for the C1 age-band. Note
that the mean and standard deviation maps have separate scales, to show details more clearly in
each.

Figure 3 – Three sets of sagittal, coronal and axial views of the “population-average” C3 IBT,
displayed as underlay in grayscale in each row (A-D). Row A depicts the edge-filtered version of
the MNI 2009 nonlinear template as overlay for size comparison. Row B shows the “typical” IBT
C3 dataset as a translucent overlay; note the very high degree of structural similarity, as expected.
The Indian MPM version of the DK atlas (FreeSurfer’s 2000 atlas) is shown in row C as overlay
and Destrieux atlas (FreeSurfer’s 2009 atlas) as overlay in row D.
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Figure 4’s left panel displays the logarithm of the relative volume ratio of each ROI in the IBT MPM326

atlas (see Eq. (1)), showing how representative the atlas is of each cohort in a region-wise manner.327

As shown in the figure, most cortical regions have values close to zero, indicating that MPM ROIs328

in the IBT space provide representative volumes of the native space ROIs for each age group. The329

largest expansions were observed in the bilateral caudal and rostral middle frontal gyrus, bilateral330

rostral anterior cingulate, bilateral superior and inferior parietal cortices across the age groups.331

These are also the regions that show greater mDV (right-panel) indicating that greater inter-subject332

variability could be in part responsible for greater volumetric differences between native-space and333

MPM volumes. The scatter-plots in Supplementary Information (Figure S6) indicates that there334

were significant correlations between relative volume ratios and mDV for each age group (R-values:335

0.24-42 and p-values <0.05 ).

Figure 4 – Evaluation of the region-wise similarity of the MPM volumes as measured (left panel)
by the relative volume ratio for each ROI via Eq. (1), and (right panel) by mean deformation value
(mDV) of each ROI; rows A-E show results for each age-specific group C1-C5, respectively. In the
left-panel ROIs with notably different volume fractions are highlighted in purple (increases) and
green (decreases), and in the right-panel ROIs with greater inter-subject variability are shown as
increasingly yellow.

336
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Figure 5 – Validation cohort test results: (A-E) T1w-anatomical warping and (F) fMRI results,
TSNR. IBT-based results are in orange, and MNI-based results in blue. Wilcoxon’s signed-ranks
test was used to compare the distributions; p-values are shown at the top of each panel. For each
validation group (V1-5), boxplots of the median warp magnitude along each major axis (LR, PA, IS)
to a given template are shown in panel A-E. The warp distributions to MNI space are significantly
larger along the AP and IS axes in all cases. While the differences tend to be smallest along the
LR axis (particularly for C4), warps to MNI are nevertheless significantly larger for 4/5 of the
cohorts along this axis, as well. Whole brain average TSNR (temporal signal-to-noise ratio) values
from the processed output are displayed as boxplots in panel F. The average TSNR for the MNI
normalization is significantly lower (p < 0.05, adjusted for N = 5 multiple comparisons) in each
case.

Figure 6 – Validation cohort test results: fMRI results, FC. Comparisons of the average pairwise
FC values in the IBT vs MNI space for each validation group. The blue line shows where a 1:1
relationship in the regional brain connectivity would be, and the red line represents the observed
slope between IBT and MNI datasets. The correlations are similar, albeit slightly higher in the case
of using the IBT template; this may be the result of slightly improved alignments on average, so
that more similar time series are grouped together per ROI.

Figure 5A-E shows the comparison of warp distances from the anatomical (T1w) volumes of the337

validation cohorts (V1-5) to each of the age-matched IBT “population mean" templates (orange),338

vs the V1-5 warp distances to the standard MNI template (blue); for more detailed comparison,339

average warp distances along each of the main volumetric axes are shown separately. In all cases,340

alignment to an IBT dataset required much less overall displacement on average. Warps to MNI341

were highly significantly greater (p < 0.05, corrected for N = 3× 5 multiple comparisons) along the342

PA and IS axes in all cases. Along the LR axes, differences were smaller but still significant at the343

same level for 4/5 cohorts (again, warps to MNI being larger); the C4 cohort showed no significant344

difference along the LR axis, but overall differences for this group were still large, due to the warps345

along the other axes.346
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The results of using the IBT C1-5 datasets when processing fMRI data are shown for the validation347

cohorts in two comparisons. First, the average TSNR within the whole brain mask was higher348

for each cohort when warping to appropriate IBT as compared to using the MNI template (see349

Figure 5F). Second, Figure 6 displays scatterplots of functional connectivity (FC) values between350

corresponding ROI pairs when using either IBT or MNI space as a final template. The correlation351

of FC values is quite high in each case (r > 0.9). However, the slopes were uniformly & 1, indicating352

a small overall shift towards higher regional brain connectivity in the IBT space on average. This353

may reflect a better overall alignment to template space so that voxels are more appropriately354

grouped together (e.g., functional localization better matches anatomical parcellation, likely focused355

on boundaries between regions).356

4 Discussion357

We have introduced five new India brain template (IBTs) spaces, spanning an age range from 6-60358

years. Additionally, corresponding atlases (IBTAs) from widely used segmentations were also created359

for each space. These should form useful reference templates and region maps for brain imaging360

studies involving predominantly Indian populations. Both the creation of age-specific templates and361

the inclusion of associated atlases make the present study distinct from previous Indian population362

brain template projects [Rao et al., 2017, Bhalerao et al., 2018, Sivaswamy et al., 2019, Pai et al.,363

2020]; additionally, we have generated both “population mean” and high-contrast “typical” templates364

for each age band. The IBT volumes and corresponding atlases are publicly available for download,365

in standard NIFTI format, and freely usable by the wider neuroimaging community2.366

The need for age-specific templates in particular has been recognized across different populations367

[Fonov et al., 2011, Wilke et al., 2002, Yoon et al., 2009]; however, Indian versions of age-specific368

brain templates have not been available to date. While adult brain templates may still provide369

reasonably accurate anatomical priors for normalizing lower resolution smoothed functional data,370

they may not be appropriate for high resolution structural and functional data [Wilke et al., 2002].371

For example, Yoon et al. [2009] examined the “template effect” in a pediatric population and noted372

significantly greater amount of deformation required for nonlinear normalization to the MNI152373

adult template than compared to an age-appropriate template (2.2 vs. 1.7 mm). Further, the374

authors also noted significant differences in both volume-based and surface-based morphological375

features between data warped to pediatric and adult brain templates. Such discrepancies are also376

reported in aging studies, where use of young-adult template (such as the MNI) for older adults can377

result in biases such as regional distortion and systematic over-expansion of older brains [Buckner378

2https://doi.org/10.5281/zenodo.3817045
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et al., 2004]. Age-appropriate template for older adults have also been shown to provide more accu-379

rate tissue segmentation for structural imaging [Fillmore et al., 2015] and more focused activation380

patterns with improvement in sensitivity for fMRI group analyses [Huang et al., 2010].381

In addition to age, consideration should also be given to the ethnic or population-specific differences382

[Lee et al., 2005, Tang et al., 2010, Rao et al., 2017], when choosing the appropriate brain template.383

As expected, there are noticeable structural differences when comparing the new IBTs with existing,384

popular standard templates (such as the MNI), which have been made from very different subject385

populations. Overall, registration to the IBTs from the Indian population validation groups required386

much less deformation of the input datasets and resulted in more accurate stereotactic standard-387

ization and anatomical localization. The relative differences in warping along the major axes of388

the brain were shown here using validation groups from the local population. The differences in389

warping magnitudes varied both by axis and by the age of subjects. Thus, the structural differences390

in templates are not trivial, i.e., just scaling, but instead reflect shape variations that are likely to391

significantly affect the overall goodness-of-fit and anatomical alignment across a group study.392

Such aspects were highlighted in the differences of outcomes in fMRI processing when using IBT vs393

MNI templates: the IBT-based output tended to have higher SNR, and slightly higher FC values394

among ROI pairs. The latter fact in particular suggests that the IBTs provided better function-to-395

anatomical alignment across groups, so that voxel with functionally similar time series tended to be396

grouped together more preferentially. One might expect this to be a relatively small effect, because397

alignment to the MNI templates still appears generally reasonable; one would expect the overlap398

pattern differences to be occurring fractionally within ROIs and predominantly at boundaries. In-399

deed, the FC differences were relatively small, but with a noticeable trend toward higher values in400

the IBT-based datasets.401

It is important to emphasize that these structural differences are only with regards to morphology;402

they do not relate to functional or behavioral outcomes, nor to intelligence, etc. The purpose and403

goal of population-specific templates is for the practical consideration of maximizing the matching404

of structures across a group during an alignment step of processing, as well as to better match405

functional regions to structures. These are geometric and signal-to-noise considerations, which are406

important in brain studies (as demonstrated here), but which are unrelated to the brain behavior407

itself.408

The wide variety of brain structural patterns in any group, even in an apparently homogeneous409

one, is also worth commenting on. This inherent variability affects both the creation and utilization410

of brain templates [Yang et al., 2020]. In any population brain structures can vary to the degree411

of having different numbers of sulci in the same region (e.g., [Thompson et al., 1996] and op cit);412

this is true even in a group of controls who are highly localized, genetically related, similar age and413
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background, etc. Thus, there is a minimum and nontrivial degree of variability in alignment that414

one can reasonably expect both when combining multiple subjects to generate a template, as well as415

in the overlap of anatomical structures when applying the template. Indeed, the Indian population416

(currently over 1.3 billion people) is spread across a wide range of geographies with diversity in417

linguistic-ethnic compositions as well as extensive genetic admixtures [Basu et al., 2016]. In this418

study, the final mean template for each cohort contained variability. However, this was relatively419

low compared to the mean dataset values, and the final mean template contained a large amount of420

clearly defined structure. Moreover, the fractional overlap of ROIs when generating the maximum421

probability map atlases showed a high degree of agreement across the group through most of the422

brain.423

The variability present in the template generation is also observable in the atlases. The inter-424

subject variability (as measured by the mean deformation values for various regions during non-linear425

registration to age and population-specific template) also correlated positively with the expansion426

of MPM volumes, in all age groups (see Supplementary Figure S6). While the final MPM atlases427

indicate the most frequent positions of each brain region in a given cohort, we also provide the428

probability density maps for each ROI in the atlas (see supplementary Figure S7 for example),429

which can be of additional use in ROI-based analyses.430

While spatial normalization to IBT offers distinct advantages in terms of spatial accuracy and431

detection power, it may still be desirable to have the results from any particular analysis also432

reported in another space. For example, for comparisons with previously published studies, one433

might want to compare the locations of a finding with those reported in MNI, Talairach or Korean434

template coordinate spaces. Therefore, a nonlinear coordinate transformation mapping between435

IBT and the common MNI space has also been calculated, and a similar coordinate warp between436

any coordinate frames can be calculated easily.437

There are several methodological strengths and limitations related to the current study that should438

be noted. We used combined state-of-the-art linear and non-linear averaging techniques using439

AFNI’s completely automated pipeline “make_template_dask.py”, which uses the Dask python440

parallelization to efficiently make a template from a large group of subjects. We addressed several441

specific challenges involved in the template creation, such as intensity normalization from different442

scanners, scaling, resizing of the overall brain size to be representative of the cohort at each iteration,443

and anisotropic smoothing with preservation of edges. While the overall sample size of the study444

was relatively large, the late childhood and the late adulthood templates had relative modest sample445

sizes. Therefore, it will be of benefit for the constructed templates to continue to be updated with446

larger sample sizes as we collect more MRI datasets. Future work should also expand the templates447

for ages < 6 yr and > 60 yr. We will also expand this work to include development of a cortical448
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surface atlas, which may allow for a registration procedure involving alignment of highly variable449

cortical folding patterns.450

5 Conclusions451

In conclusion, the present work demonstrates the appropriateness of using age and population-452

specific templates as reference targets for spatial normalization of structural and functional neu-453

roimaging data. This database of age-specific IBTs and IBTAs is made freely available to the wider454

neuroimaging community of researchers and clinicians worldwide. We hope that these tools will fa-455

cilitate research into neurological understand in general and into the functional and morphometric456

changes that occur over life-course in Indian population in particular.457

Highlights458

1. A new set of age-specific T1w Indian brain templates for ages 6-60 yr are developed and459

validated.460

2. A new AFNI tool, make_template_dask.py, was developed for the creation of group-based461

templates462

3. Maximum probability map atlases are also provided for each template.463

4. Validation results indicate the appropriateness of Indian templates for spatial normalization464

of Indian brains465
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Supplementary Information617

This section provides supplementary figures and codes to the material in the main text.618

Figure S1 – The five IBTs (C1-5) with three sets of sagittal, coronal and axial view displayed as
underlay in grayscale and edge-filtered version of the MNI 2009 non-linear template mask as overlay
for size comparison. High tissue contrast and detail are evident in each case.
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Figure S2 – The five population-average IBTs (C1-5) with three sets of sagittal, coronal and
axial view displayed as underlay in grayscale and the respective typical subject for each IBT version
as the overlay. Arrow points to example regions in C1 age-band regions where the typical version
provides greater details than the underlying population-average version.
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Figure S3 – The five IBTs (C1-5) with three sets of sagittal, coronal and axial view displayed as
underlay in grayscale and the respective Indian maximum probability map version of the DK atlas
(FreeSurfer’s 2000 Atlas) as overlay in AFNI’s “ROI_i256” color scale.
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Figure S4 – The five IBTs (C1-5) with three sets of sagittal, coronal and axial view displayed as
underlay in grayscale and the respective Indian maximum probability map version of the Destrieux
atlas (FreeSurfer’s 2009 Atlas) as overlay in AFNI’s “ROI_i256” color scale.
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Figure S5 – 3D surface view of the brain atlases for the C1-IBT age band. The top row shows
the maximum probability map (MPM) version of the DK atlas (FreeSurfer’s 2000 Atlas) and the
bottom row shows MPM version of the Destrieux atlas (FreeSurfer’s 2009 Atlas) for the C1 age
band.

Figure S6 – Scatterplot with marginal densigram for pairwise correlations between absolute values
of logarithm of the relative volume ratios and mean absolute deformation value across all the regions
in the maximum probability map (MPM) version of the DK atlas (FreeSurfer’s 2000 Atlas) at each
age-group C1-C5.
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Figure S7 – Axial views for three example region of interest from MPM-2000 IBT atlas for all
the age groups. The top row shows probability map for right superior temporal gyrus, middle row
shows left medial orbital frontal gyrus and the bottom row shows left posterior cingulate gyrus. The
color intensity reflects probability density estimates (ranging from 0 to 1)
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Supplementary Information: Example afni_proc.py command for comparing validation tests.619

#!/bin/bash620

621

sub=$1 # subject ID;622

dir=$2 # output directory623

624

afni_proc.py \625

-subj_id ${sub} \626

-out_dir ${dir} \627

-blocks despike tshift align tlrc volreg blur mask regress \628

-copy_anat anatSS.${sub}.nii \629

-anat_has_skull no \630

-dsets ${sub}_rest.nii.gz \631

-tcat_remove_first_trs 10 \632

-align_opts_aea -ginormous_move -deoblique on -cost lpc+ZZ \633

-volreg_align_to MIN_OUTLIER \634

-volreg_align_e2a \635

-volreg_tlrc_warp \636

-tlrc_base C1_IBT_SSW.nii.gz \637

-tlrc_NL_warp \638

-tlrc_NL_warped_dsets \639

anatQQ.${sub}.nii \640

anatQQ.${sub}.aff12.1D \641

anatQQ.${sub}_WARP.nii \642

-volreg_warp_dxyz 3 \643

-mask_segment_anat yes \644

-regress_censor_outliers 0.2 \645

-regress_apply_mot_types demean deriv \646

-regress_est_blur_errts \647

-regress_bandpass 0.01 0.2 \648

-html_review_style pythonic \649

-execute650
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