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Abstract 
 
Social-communication (SC) and restricted repetitive behaviors (RRB) are autism diagnostic 
symptom domains. SC and RRB severity can markedly differ within and between individuals and 
is underpinned by different neural circuitry and genetic mechanisms. Modeling SC-RRB balance 
could help identify how neural circuitry and genetic mechanisms map onto such phenotypic 
heterogeneity. Here we developed a phenotypic stratification model that makes highly accurate 
(96-98%) out-of-sample SC=RRB, SC>RRB, and RRB>SC subtype predictions. Applying this 
model to resting state fMRI data from the EU-AIMS LEAP dataset (n=509), we find replicable 
somatomotor-perisylvian hypoconnectivity in the SC>RRB subtype versus a typically-developing 
(TD) comparison group. In contrast, replicable motor-anterior salience hyperconnectivity is 
apparent in the SC=RRB subtype versus TD. Autism-associated genes affecting astrocytes, 
excitatory, and inhibitory neurons are highly expressed specifically within SC>RRB 
hypoconnected networks, but not SC=RRB hyperconnected networks. SC-RRB balance subtypes 
may indicate different paths individuals take from genome, neural circuitry, to the clinical 
phenotype. 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.083758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.08.083758
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Autism spectrum disorder (ASD) is a clinical consensus label used to characterize 
individuals with a collection of early onset developmental difficulties in the domains of social-
communicative (SC) and restricted repetitive behaviors (RRB)1,2. The single diagnostic label of 
autism helps many individuals in a variety of ways by being incorporated into a sense of identity, 
explaining challenging aspects of life, and/or enabling access to services. However, the diagnosis 
also encapsulates a vast amount of multi-scale heterogeneity. In the face of such heterogeneity, 
future translational research must develop a deeper understanding of how biological mechanisms 
affect individuals and must develop more personalized approaches towards interventions to help 
facilitate positive outcomes3. An example of this multi-scale heterogeneity can be seen at the level 
of the phenotypic symptom dyad of SC and RRB domains. Prior work has suggested that SC and 
RRB domains are fractionable at behavioral4 and neural levels5–7 and are underpinned by different 
genetic mechanisms8–11. The multi-scale fractionation of these domains provides a strong starting 
point for understanding how multi-scale heterogeneity manifests in autism from genome to 
phenome. Examining the relative balance between severity of difficulties in SC and RRB within 
an individual (SC-RRB balance) could help highlight unique biological underpinnings affecting 
different types of autistic individuals. 
 

In this work, we test the hypothesis that subtyping individuals by the degree of SC-RRB 
balance can help identify differential biological mechanisms. Past research utilizing ‘gold 
standard’ diagnostic tools such as the Autism Diagnostic Observation Schedule (ADOS) and the 
Autism Diagnostic Interview-Revised (ADI-R) (e.g., 12–14) have suggested the presence of 3 SC-
RRB balance subtypes: 1) medium to high levels of both SC and RRB severity (SC=RRB); 2) 
medium to high SC severity and comparatively lower RRB severity (SC>RRB); and 3) medium 
to high RRB severity and comparatively lower SC severity (RRB>SC). These subtypes might be 
underpinned by a common pathway if they showed similar neural circuit and genomic mechanisms 
that differ from a typically-developing (TD) comparison group. However, based on the idea that 
SC and RRB domains are fractionable across multiple levels, it could be that these subtypes 
diverge onto multiple pathways from genome to phenome15 (Figure 1). This idea has not yet been 
tested with respect to macroscale neural circuitry and its link to functional genomic mechanisms. 
Here we evaluate how SC-RRB balance subtypes link up to differential macroscale connectome 
phenotypes, measured with resting state fMRI (rsfMRI) functional connectivity. Functional 
connectivity networks are known to be linked to underlying transcriptomic mechanisms, 
particularly with regards to the spatial patterning of gene expression across the brain (e.g., 16–18). 
Given that subtypes could exhibit different functional connectome phenotypes, we leverage the 
link between macroscale rsfMRI functional networks and transcriptomic mechanisms to better 
understand whether autism-relevant functional genomic mechanisms differentially affect such 
phenotypes.  

 
To test these ideas, we first utilize ADI-R data from thousands of individuals (n=2,628) 

within the National Database for Autism Research (NDAR) (https://nda.nih.gov). We develop a 
supervised subtyping approach that can estimate relative balance of SC versus RRB within an 
individual and make accurate out-of-sample subtype predictions. We then applied this supervised 
stratification approach to the deeply phenotyped EU-AIMS LEAP dataset19–21 to examine how SC-
RRB balance subtypes may replicably differ from typically-developing control (TD) groups in 
macroscale rsfMRI connectome phenotypes. Finally, in order to link functional connectome 
phenotypes to autism-associated genes, we utilize the Allen Institute Human Brain Atlas22,23 to 
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identify genes whose spatial expression pattern is highly similar to macroscale functional networks 
that differ between autism subtypes and controls. These functional network-relevant gene lists are 
then investigated for enrichment in a variety of autism-associated gene lists derived from evidence 
at genetic or transcriptomic levels. This will allow for tests of the hypothesis that subtype 
disruption of imaging-derived phenotypes preferentially occurs to macroscale networks with high 
levels of gene expression of autism-associated genes24. This approach will also allow us to test 
whether autism-associated genes affect networks similarly or differently across the SC-RRB 
balance subtypes. 

 

 
 
Figure 1: Approach towards testing common pathway versus multiple pathways explanations 
behind SC-RRB balance in autism. In this figure we depict two alternatives for how SC-RRB 
balance subtypes (phenome level; SC=RRB, green; RRB>SC, pink; SC>RRB, blue) could be 
explained at the level of macroscale functional connectome phenotypes measured with rsfMRI 
(connectome level) and autism-associated functional genomic mechanisms (e.g., transcriptome 
and genome levels). Columns in this figure depict the common pathway (middle) and multiple 
pathways (right) models. The common pathway model predicts that when each subtype is 
compared to a typically-developing (TD) comparison group, they converge and share a common 
difference from TD in affected macroscale rsfMRI functional connectome phenotype. 
Underpinning this shared connectome phenotype are a myriad of differing functional genomic 
mechanisms. At the level of the transcriptome, we identify genes linked to macroscale functional 
networks by identifying genes whose spatial expression pattern across the brain is similar to the 
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spatial topology of the macroscale functional network. This procedure generates a list of genes 
relevant for such macroscale networks and these lists are then tested for enrichment in autism-
association functional genomic mechanisms. The gene list at the genome level represents an 
example of possible autism-associated genes that may (bold) or may not (non-bold) be linked to 
macroscale functional networks. In contrast to the common pathway model, the multiple pathways 
model would highlight that differential connectome phenotypes when compared to TD are unique 
to each subtype, and that each of these subtype-specific connectome phenotypes is underpinned by 
a differing set of autism-associated functional genomic mechanisms. 
 
 
Results 
 
Highly accurate supervised prediction of SC-RRB balance subtypes 
 
 In our first set of analyses, we sought to develop a supervised model to predict ADI-R SC-
RRB balance subtypes from the NDAR datasets. Relatively equal Discovery (n=889) and 
Replication (n=890) datasets were partitioned from the total n=1,781 individuals in NDAR and 
this split into Discovery and Replication was balanced as a function of the originating datasets and 
sex. Using z-normalized difference scores, we cut individuals into SC=RRB, SC>RRB, and 
RRB>SC subtypes (Figure 2). Importantly, the subtype labels were defined separately in 
Discovery and Replication sets from the norms (mean and SD) estimated on each set. This ensures 
that the definition of the labels in each set is done independently. Irrespective of the z-threshold 
used for labeling the subtypes (e.g., z = 0.5 up to z =1 in steps of 0.1), we find that a multiclass 
SVM classifier trained on the NDAR Discovery set and tested on the NDAR Replication set is 
highly accurate in the range around 96-98.6% (p = 9.99e-5). Contrasting this z-score approach to 
subtyping with unsupervised clustering methods, we found that such SC-RRB balance subtypes 
are not easily identifiable in a consistent fashion across Discovery and Replication cohorts with 
such blind methods (see Supplementary Figures 2-3). Examination of sex across these subtypes 
did not yield any significant between subtype differences  (Discovery: χ2 = 1.91; p = 0.38; 
Replication: χ2 = 3.50; p = 0.17), with a 3:5 to 5:1 sex ratio of males to females. Subtypes did differ 
in age at the time of ADI-R interview, with the SC>RRB group being younger than the other 
subtypes (Discovery: F(2,886) = 10.61, p = 2.77e-5; Replication: F(2,887) = 10.80, p = 2.31e-5). 
See Table 1 for descriptive statistics. 
 
Subtype differences in adaptive behavior 
 
 Applying our subtyping method to the deeply phenotyped EU-AIMS LEAP dataset, we 
had the opportunity to investigate whether there are other phenotypic differences between the 
subtypes. No replicable differences were apparent between SC=RRB and SC>RRB across the 
ADOS-2, SRS-2, RBS-R, and SSP at any z-threshold. However, at a z-threshold of 1 we found 
replicable reductions in SC>RRB compared to SC=RRB on the Vineland Adaptive Behavior 
Scales-Second Edition (VABS-II; henceforth VABS) Daily Living Skills subscale and the overall 
Adaptive Behavior Composite (ABC) score (see Table 2 and Figure 2D-E). While these effects 
appear only at z=1, it is apparent that as the z-threshold for defining subtypes increases, the effect 
size for a subtype difference also increases (Supplementary Figure 4). This could imply that 
continuous variation on the z-normalized SC-RRB difference score would be associated with 
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Vineland scores. To test this, we ran a dimensional model but could not find statistically significant 
effects on both Discovery and Replication sets (Supplementary Figure 4). 
 

 
 
Figure 2: Supervised subtyping of autism by SC-RRB balance. Panel A shows the subtypes 
derived from a z-normalized difference score of SC-RRB, with a z-score threshold for cutting the 
subtypes at z = 1. Red shows the RRB>SC subtype, green shows the SC=RRB subtype, and blue 
shows the SC>RRB subtype. Panel B shows a confusion matrix with actual subtype labels for the 
NDAR Replication dataset along with columns and SVM predicted labels along the rows. The 
colors within the cells indicate the percentage of individuals relative to the actual labels with 
predicted labels in each cell. The high percentages are indicative of high classification accuracy 
(98.6% accuracy). Over a range of z-thresholds from 0.5 to 1, the accuracy ranged from 96-98.6% 
accuracy. Panel D shows boxplots and data points for each individual on the Vineland Daily 
Living Skills subscale for SC=RRB (green) and SC>RRB (green) subtypes along with the TD 
group (gray). Panel E shows the same plot as panel D for the Vineland Adaptive Behavior 
Composite scores. 
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To demonstrate how big of a difference the SC>RRB vs SC=RRB effect is with reference 
to the average autistic individual in the population, we calculated standardized effect sizes 
(Cohen’s d) using Vineland mean and standard deviation norms from Chatham et al.,25, which are 
computed on over 9,000 autistic individuals. The SC>RRB subtype shows reductions on both the 
VABS Daily Living Skills subscale and ABC of around half a standard deviation (Daily Living 
Skills, Discovery: Cohen’s d = -0.56; Replication: Cohen’s d = -0.50; ABC, Discovery: Cohen’s 
d = -0.52; Replication: Cohen’s d = -0.53). Thus, not only is this a statistically significant and 
replicable effect, it is also well above the minimally clinically-important difference suggested by 
Chatham and colleagues25. These results indicate that the SC>RRB subtype may also be a 
clinically significant subset of individuals with more pronounced difficulty in adaptive behaviors. 
 
Replicable subtype-specific functional connectivity differences  
 

We next evaluated whether such SC-RRB balance subtypes are differentiated from TD 
comparison groups in rsfMRI functional connectivity. Because subtypes are defined based on 
thresholding the z-normalized SC-RRB difference score, we identified ‘consensus edges’ as 
functional connectivity differences between the autism subtype versus TD that consistently appear 
across every z-threshold examined. Figure 3 summarizes the consensus edges in each subtype for 
both the LEAP Discovery and Replication sets. The SC=RRB subtype is characterized by on-
average hyperconnectivity between the anterior salience network (IC07) and a medial motor 
network (IC13) (effect sizes at z=1 threshold: Discovery Cohen’s d = 0.36; Replication Cohen’s d 
= 0.53). In contrast, the SC>RRB subtype is characterized by on-average hypoconnectivity 
between a bilateral perisylvian temporal network (IC17) and a bilateral somatomotor network 
(IC12) (effect sizes at z=1 threshold: Discovery Cohen’s d = -0.38; Replication Cohen’s d = -0.37). 
Across each threshold we also counted the number of times that replicably different edges were 
common across the subtypes. Strikingly, edges were never shared in common across the subtypes, 
further indicating that when replicable functional connectivity differences appear, they are specific 
to one subtype and not the other. In contrast to comparing autism subtypes to TD, we also directly 
compared SC=RRB versus SC>RRB. This analysis did not yield any significant replicable 
differences, indicating that while these subtypes can differ from a TD comparison group in unique 
ways, the difference between each other may not be substantially large (effect sizes for z=1 
threshold: IC07-IC13, Discovery Cohen’s d = 0.12, Replication Cohen’s d = 0.08; IC12-IC17, 
Discovery Cohen’s d = 0.23, Replication Cohen’s d = 0.05). For the full set of statistical results at 
z=1 threshold across all comparisons see Supplementary Table 2.  

 
Because the subtyping approach uses the difference score between SC and RRB, this metric 

does not distinguish individuals by overall level of severity. For example, an individual with low 
SC and RRB severity is treated similarly to an individual with high SC and RRB severity. This 
leaves open the possibility that degree of severity on a continuum from high to low could also 
explain variability in functional connectivity. To test this hypothesis, we constructed a dimensional 
model to predict connectivity strength from SC or RRB severity as a continuous variable. 
However, there were no instances whereby SC or RRB severity as a continuous measure could 
replicably predict connectivity strength. Similarly, when using the z-normalized SC-RRB 
difference score as a continuous variable, we also found no replicable significant effects on 
connectivity. For the full set of statistics see Supplementary Table 2. These results provide a 
dimensional model contrast to the categorical subtyping approach and suggests that modeling 
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continuous SC or RRB variability may be less sensitive as a predictor of functional connectivity 
compared to SC-RRB balance subtypes. 

 

 
 
Figure 3: Replicable subtype differences in functional connectivity. This figure shows chord 
diagrams of replicable functional connectivity differences between SC=RRB vs TD (left) or 
SC>RRB vs TD (right), when subtypes are defined at a z-threshold of 1. Edges shown in these 
diagrams are consensus edges that appear in every analysis of connectivity differences 
irrespective of the z-threshold used to define the subtypes. Network nodes in the diagram 
highlighted in green or blue are networks that appear in only one of the autism subtypes. None of 
the edges in the diagram overlap or share directionality of difference (red edges indicate 
hyperconnectivity in autism while blue edges indicate hypoconnectivity in autism). Intensity of 
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edge color indicates standardized effect size (Cohen’s d). The cortical surface renderings of each 
component are unthresholded z-stat maps. Areas with higher z-stats (dark red) are of primary 
importance for the IC map. The top rows show effects in the EU-AIMS LEAP Discovery set, while 
bottom rows show effects in the EU-AIMS LEAP Replication set. 
 
Divergent functional genomic underpinnings of subtype-specific neural circuitry 
 
 In the next analysis, we asked if known autism-associated genes are enriched amongst 
genes known to be highly expressed in these subtype-associated rsfMRI networks. We first 
identified lists of genes whose spatial expression topology in the Allen Institute Human Brain 
Atlas22 is similar to rsfMRI connectivity networks23 that show replicable subtype differences. Once 
a set of genes are predicted to underpin such rsfMRI networks, we then asked whether those genes 
are highly overlapping with known sets of functional genomic mechanisms linked to autism (see 
Figure 4A for a visual representation of the analysis approach and Supplementary Table 3 for the 
full set of gene lists used in these analyses). Bilateral somatomotor (IC12) and perisylvian 
networks (IC17) linked to SC>RRB hypoconnectivity were enriched for gene lists such as highly 
penetrant de novo protein truncating variants associated with autism, a more broad list of genes 
associated with autism from the SFARI Gene database, as well as cortically downregulated genes26 
and gene co-expression modules27, and differentially expressed genes that specifically affect 
excitatory and inhibitory neurons and astrocytes28. We next assessed enrichment for genes that are 
unique to IC12 and IC17 but not IC07 or IC13, since this gene list is most specific to mechanisms 
within SC>RRB. The same effects remained significant under this more stringent enrichment test 
(see the SC>RRB column in Figure 4B). In contrast to these enrichments for SC>RRB, we also 
examined IC07 and IC13 networks. No enrichments were significant for IC07. However, IC13 
was enriched for cortically downregulated genes26 and co-expression modules27. Only the 
enrichment with cortically downregulated genes remained when selecting genes unique to only 
IC07 and IC13 but not IC12 or IC17 (see the SC=RRB column in Figure 4B). As an important 
contrast to autism-associated genes, we also tested for enrichment with genes differentially 
expressed in cortical tissue in schizophrenia (SCZ) and bipolar disorder (BD), since autism is 
known to be somewhat genetically correlated with these disorders26,29. However, we could not find 
any enrichments with these SCZ and BD differentially expressed gene sets. This indicates that the 
signatures we identify here are somewhat specific to autism and not more generalized to other 
genetically correlated psychiatric conditions. 
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Figure 4: Overlap between genes expressed in functional connectivity networks and genes 
linked to autism. In panel A we depict the analysis approach of identifying genes which are highly 
expressed in similar spatial patterns to the rsfMRI spatial IC maps (i.e. gene expression decoding). 
Once IC gene lists have been identified, we test these lists for enrichment with known lists of 
autism-associated functional genomic mechanisms (top left). In panel B we show enrichment odds 
ratios (numbers in each cell) along with the -log10 p-value (coloring of the cells) for enrichment 
tests of specific networks (columns) against known lists of autism-associated genomic mechanisms 
(rows). Cells with darkest red color survive FDR q<0.05. IC12 and IC17 are networks with 
SC>RRB hypoconnectivity compared to TD. IC07 and IC13 are networks with SC=RRB 
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hyperconnectivity compared to TD. The column labeled SC>RRB shows the enrichment results 
when the gene list under consideration are comprises genes unique to IC12 and IC17, but not IC07 
or IC13. The column labeled SC=RRB shows the enrichment results when the gene list under 
consideration consists of genes unique to IC07 and IC13, but not IC12 or IC17. ASD dnPTV, 
Autism de novo protein truncating variants; ASD SFARI, SFARI Gene autism associated genes; 
ASD DE Downreg, autism differentially expressed downregulated genes; ASD DE Upreg, autism 
differentially expressed upregulated genes; ASD CTX Downreg CoExpMods, autism 
downregulated cortical co-expression modules; ASD CTX Upreg CoExpMods, autism upregulated 
cortical co-expression modules; ASD Excitatory, autism differentially expressed genes in 
excitatory neurons; ASD Inhibitory, autism differentially expressed genes in inhibitory neurons; 
ASD Microglia, autism differentially expressed genes in microglia; ASD Oligodendrocyte, autism 
differentially expressed genes in oligodendrocytes; ASD Astrocyte, autism differentially expressed 
genes in astrocytes; ASD Endothelial, autism differentially expressed genes in endothelial cells; 
SCZ DE, schizophrenia differentially expressed genes; BD DE, bipolar disorder differentially 
expressed genes. 
 
 
Discussion 
 

In this work, we examined how autism SC-RRB balance subtypes are similar or different 
at the level of macroscale neural circuitry measured with rsfMRI. Prior work has suggested that 
the core dyad of SC and RRB is fractionable at behavior and neural levels and is underpinned by 
different genetic mechanisms4–14. However, it is unclear whether the road from genome to 
phenome (e.g., Figure 1) is one that converges on a common pathway or is one of multiple 
pathways15. Here we find evidence more in line with the multiple pathways model. All functional 
connectome edges (e.g., connections between IC networks) and nodes (e.g., IC networks) that 
show a consensus for replicable differences compared to TD across z-thresholds were those that 
were specific to only one subtype.  

 
Autistic individuals within the SC>RRB subtype show on-average hypoconnectivity 

compared to a matched TD comparison group in cortical circuitry mainly consisting of bilateral 
somatomotor and perisylvian temporal networks. The bilateral somatomotor network has been 
implicated in past work on autism. Somatosensory areas have been shown to be some of the most 
informative regions in prior case-control classifier studies using rsfMRI data30. Additionally, prior 
case-control analyses of the EU-AIMS LEAP dataset find that somatomotor areas show reduced 
degree centrality and autism-related hyperconnectivity with cerebellar networks21,31. However, the 
lack of identification of hypoconnectivity between somatomotor and perisylvian networks in prior 
case-control analyses highlights the potential importance and added value of subtyping for 
revealing more subtle effects that can be masked with case-control contrasts. The identified 
perisylvian network overlaps with a variety of areas implicated in early development of autism, 
particularly for auditory processing and language32–36. Integration of information processing 
between this network and others that play a role in embodied somatosensory and social cognitive 
processing37,38, such as the somatomotor network (IC12), could be important for explaining the 
more pronounced difficulties these individuals have within SC compared to RRB. This effect could 
also point to atypical multisensory integration that has been documented in autism39,40, particularly 
with regards to auditory-somatosensory integration41.  
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In contrast, the autism SC=RRB subtype was characterized by on-average 

hyperconnectivity between medial motor and anterior salience networks. This effect could be 
important given that a subset of individuals with autism show marked motor difficulties42–44 and 
because of evidence showing that visual-motor integration is atypical in autism45–49. The anterior 
salience network has also been identified in prior case-control studies. In younger cohorts, anterior 
salience areas are hyperconnected50,51, while in older cohorts, hypoconnectivity is observed52. 
While age could be a factor in explaining the discrepant findings from prior work, it likely cannot 
explain the SC=RRB hyperconnectivity finding. Here we age-matched the groups and additionally 
included age as a covariate in the statistical model. EU-AIMS LEAP also samples from a wide age 
range from 6 to 30 years of age, enabling the sample to cover younger and older ages covered by 
prior work. Thus, age may not be the only explanation for salience network hyperconnectivity. 
Rather, this work suggests that SC-RRB heterogeneity and the presence of this balanced subtype 
could also drive such effects in case-control comparisons, particularly if the sample is enriched 
with this particular subtype. 
 

We also identified autism-relevant genomic underpinnings behind these subtype-specific 
rsfMRI networks. Genes specific to SC>RRB networks are enriched for a number of genomic 
mechanisms linked to autism such as genes differentially expressed in excitatory and inhibitory 
neurons and astrocytes, downregulated co-expression modules, and high-risk genetic mutations 
associated with autism. These genomic underpinnings suggest that specific neuronal cell types 
involved in cortical excitation-inhibition balance53,54 may be especially important for the SC>RRB 
subtype. This effect also partially corroborates evidence suggesting that excitatory neurons are 
affected in specific types of autistic individuals that differ in patterns of clinical severity28. In 
contrast, SC=RRB networks lacked similar kinds of enrichments, suggesting that differing 
functional genomic mechanisms may be linked to this subtype.  

 
This work shows that phenotypically-derived subtypes fractionated based on SC-RRB 

balance are robust and consistent across the population. While prior work has shown evidence for 
these subtypes12,14 derived from complex statistical models, it has been less clear as to how to 
objectively identify them with simpler models and in new datasets for a priori investigation. Our 
approach here provides a straightforward solution to this problem by deriving simple autism 
population norms (e.g., mean and standard deviation) for the difference between SC and RRB 
severity. These norms are relatively consistent across independent large datasets from NDAR, and 
this allows for a supervised classification approach to identify multiple subtypes with high levels 
of accuracy. A considerable strength of this work is that we built the classifier based on large 
datasets from the NDAR repository that allows for partitioning of datasets into Discovery and 
Replication sets while retaining sample size on the scale of many hundreds of individuals. The 
classifier also works well irrespective of the threshold used to define the subtypes. Future work on 
fractionable phenotypic subtypes could benefit from utilizing our classifier as an a-priori way to 
identify subtypes. To utilize our approach all that is needed are ADI-R DSM-5-based algorithm 
items which can be summarized into SC and RRB total scores. By computing z-scores with the 
population norms we have derived from NDAR, this will allow for designing studies a-priori with 
these subtypes in mind. As we saw from the EU-AIMS LEAP dataset, it is not always assured that 
smaller, newly ascertained samples of data will have equally distributed sample sizes across the 
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subtypes, and thus, the ability to a-priori identify these individuals will significantly help in 
prospective study designs. 

 
Finally, it is important to underscore that at higher thresholds for defining these SC-RRB 

subtypes, there are also more pronounced difficulties with adaptive behaviors in the SC>RRB 
subtype. This effect is consistent with prior work showing a similar reduction in adaptive behavior 
on the Vineland in an SC>RRB subtype12, and with prior work showing that more severe early 
childhood social-communicative severity on the ADI-R is predictive of worse trajectories for 
adaptive behaviors55. This effect is also in line with inferences from a recent paper on the EU-
AIMS LEAP dataset showing that higher social impairment, via increasing SRS-2 scores, was 
associated with lower scores on the Vineland56. These findings suggest that the SC>RRB subtype 
could be a relevant stratifier for clinical trials that are focused on change in real-world outcomes.  
 

There are certain limitations and caveats that need to be discussed. First, the threshold for 
the z-score cutoff to define subtypes could be viewed as arbitrary. However, to guard against this 
issue, we re-ran the analysis across a range of thresholds from z=0.5 to z=1 and showed effects 
that are robust to the threshold used to label the subtypes. Classification accuracy is also high 
regardless of the threshold. This effect occurs largely because the statistics used for the z-
normalization are highly similar across large NDAR Discovery and Replication sets. Thus, while 
the choice of a threshold may not be well defined, any choice within the range we have analyzed 
of z=0.5 to z=1, will yield highly consistent results that are not biased by the choice of a threshold. 
Furthermore, it could be argued that if one’s aim was to stratify to obtain clinically meaningful 
groups that differ on adaptive behavior, the results here would suggest that utilizing higher z-
thresholds would be pertinent. Second, the distinctions between these subtypes are not demarcated 
by large categorical separations. As such, when we applied other unsupervised clustering methods 
to the data, such methods were not able to consistently identify the same subtypes in independent 
datasets (Supplementary Figures 2-3). The lack of consistently identifiable subtypes with other 
complex unsupervised methods like clustering indicate that a simpler approach may be necessary 
and that large distinctions between the boundaries for different types of patients are not obvious 
and would thus necessitate a more nuanced and theory-driven approach. Third, direct comparisons 
of functional connectivity between SC=RRB and SC>RRB did not yield large differences. Thus, 
while there are unique consensus edges that appear when the autism subtypes are compared to TD, 
this result should not be taken to imply that the subtypes themselves are also highly different from 
each other. A likely reason for why these differences manifest when compared to TD but not when 
subtypes are compared directly may likely be due to effects driven by further subsets of individuals 
nested within the larger SC=RRB and SC>RRB subtypes. These individuals at the extremes of the 
functional connectivity distributions likely drive the on-average differences from TD. Future work 
that digs further into more granular divisions of the population may likely identify much larger 
differences when autism subtypes are compared directly. Fourth, we also discovered that 
dimensional models using continuous SC and RRB severity did not uncover any replicable 
associations with functional connectivity strength. This result could suggest that dimensional 
models that use continuous severity from the ADI-R are less effective than the subtyping approach. 
However, it could also be that dimensional models might be more sensitive with other measures 
of symptomatology (e.g., ADOS, SRS). Fifth, the subtyping here is based on the ADI-R. ADI-R 
is a commonly used gold standard diagnostic instrument used to help aid clinical judgment 
regarding diagnosis. However, other gold standard measures such as the ADOS could also have 
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been used. For our purposes in this study, we chose to utilize the ADI-R over the ADOS due to 
the fact that participants come from a wide age range, and the ADOS would assess current 
symptomatology of the individual. If age has an effect on symptomatology57–59, then this could 
potentially bias the subtyping approach depending on the composition of the sample. On the other 
hand, because the ADI-R is a snapshot of early developmental symptomatology, we cannot know 
how the individual might have changed from that time point to the current assessment. 
Additionally, it may be that current measures of symptomatology have a stronger association with 
current measures of functional connectivity than early childhood snapshots of severity provided 
by the ADI-R. Future work that looks at how these ADI-R subtypes might change over time would 
be important for future research. It would also be important to investigate how observational 
measures such as the ADOS might perform as measures of symptomatology, especially if 
conducted within a restricted age range in order to guard against biases due to large age ranges. 
 
 In conclusion, we have shown that SC-RRB balance can point to different macroscale 
functional connectivity phenotypes and potentially different genomic mechanisms that may 
underpin such phenotypes. While the divisions between these subtypes at the phenotypic level are 
not dramatically evident as categorical differences, at the level of macroscale neural circuitry, there 
is evidence to suggest that these SC-RRB subtypes are different when compared to the TD 
population. Future work that begins to study these fractionable subtypes in an a-priori fashion will 
benefit from the use of our simple and supervised subtyping model and will further facilitate our 
understanding of how heterogeneity in autism manifests in a multi-scale fashion from genome to 
phenome. 
 
 
Methods 
 
NDAR Datasets 
 

SC-RRB balance subtyping analyses were conducted on ADI-R data available through the 
National Database for Autism Research (NDAR). The ADI-R was chosen as the symptomatology 
measure for subtyping as it assesses early childhood symptoms around 4-5 years of age rather than 
current symptom severity. The rationale for assessing early childhood symptoms over current 
symptoms was to be able to sample/estimate symptomatology at similar developmental time points 
in life across individuals, rather than have those estimates vary depending on the age of the 
individual. Different experiences over the lifespan could potentially affect symptom presentation 
and to guard against this issue possibly biasing the subtyping, we opted for the ADI-R. 

 
On December 13, 2019 we conducted a search of NDAR to extract all datasets utilizing the 

ADI-R60. This resulted in 60 independent datasets totaling 2,628 unique individuals. From here, 
we filtered for all individuals who had data for the verbal items (e.g., acquisition of words, phrases, 
social verbalization, chit-chat, reciprocal conversation) leaving a total of 1,781 individuals across 
57 independent datasets. Within each of these 57 datasets, we randomly split the dataset in half to 
achieve independent Discovery and Replication sets that are balanced across the 57 datasets and 
by sex (Discovery n=889, mean age = 8.91 years, SD age = 5.26 years, 77% male; Replication 
n=890, mean age = 8.89 years, SD age = 5.37 years, 77% male). See Table 1 for characteristics of 
the NDAR Discovery and Replication sets. ADI-R item-level data was used to rescore algorithm 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.083758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.08.083758
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

totals according to the DSM-561 symptom dyad of social-communication (SC) and restricted 
repetitive behavior (RRB) domains. SC is comprised of 3 subscales (A1, A2, A3), while RRB is 
comprised of 4 subscales (B1, B2, B3, and B4). See Supplementary Table 1 for how items break 
down into each domain and subscale within a domain.  Only item scores of 0 to 3 (indicating 
increasing SC or RRB symptom severity) were utilized, while scores of 6 to 9 (dummy scores, not 
indicating symptom severity) were not used. Scores of 3 were kept as is (i.e. not  converted to 2 as 
would typically occur when scoring the ADI-R algorithm) in order to retain information about 
severity conveyed by the difference between a score of 2 versus 3. Because the number of items 
in each subscale can vary depending on a person’s age (see Supplementary Table 1) and by the 
number of items with possible scores of 0 to 3, we used percentage scores in order to ensure that 
the estimates of severity on each subscale are on a comparable scale across individuals. These 
percentage scores for each domain subscale were then summed and scaled by number of subscales 
to achieve the final domain total percentage severity.  

 
Subtyping Analyses 
 

To label subtypes by SC-RRB balance, we first computed difference scores between SC 
and RRB to estimate the level of SC-RRB balance, whereby values above 0 indicate an individual 
with higher SC versus RRB (SC>RRB), whereas values below 0 indicate the reverse (RRB>SC). 
These SC-RRB difference scores were then z-normalized using the mean and standard deviation 
estimated separately for Discovery and Replication sets. A z-score cutoff was used to derive 
subtype labels. Individuals falling above the z-cutoff (e.g., z>1) were labeled as SC>RRB, while 
individuals falling below the negative value of the z-cutoff (e.g., z<-1) were labeled as RRB>SC. 
All individuals between the z-cutoffs were considered SC=RRB. Because the choice of a z-cutoff 
is arbitrary, we ran all analyses across a range of z-thresholds from z=0.5 to z=1, in steps of 0.1. 
This approach allows us to report results across thresholds rather than using only one arbitrarily 
defined threshold. For the later functional connectivity analyses, this approach also allowed us to 
identify a consensus result which is consistent irrespective of the z-threshold used to label 
subtypes.  

 
Our subtyping approach was embedded within a supervised classification approach in order 

to evaluate how well this subtyping procedure generalizes to independent datasets. To achieve this 
aim, we used a multiclass Support Vector Machine (SVM) classifier to train on the SC>RBB, 
SC=RRB, and RRB>SC subtype distinctions in the NDAR Discovery set. The multiclass SVM 
was trained using 2 features - percent severity SC and RRB totals. This multiclass SVM model 
was then tested on the NDAR Replication set, where the subtype labels were determined separately 
based on the norms estimated from the Replication set. Out of sample classification accuracy on 
the held-out test set (NDAR Replication) were computed and confusion matrices were built to 
show how predictions from SVM were made on the test set. We also evaluated how well the 
classifier performs when the subtype labels were randomly shuffled and this permutation 
procedure was repeated 10,000 times in order to generate a null distribution of accuracy values. 
From this null distribution a p-value was computed as the proportion of times an accuracy value 
was as high or higher than the actual accuracy value with unpermuted labels. To make subtype 
predictions in the EU-AIMS LEAP dataset, we combined both NDAR Discovery and Replication 
datasets into one large dataset. From this dataset, norms for the mean and standard deviation were 
computed (mean = 0.01045243, SD = 0.19482749) and used for the z-scoring procedure. SC-RRB 
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difference z-scores were then computed and a z-threshold was applied to the EU-AIMS LEAP 
dataset to generate subtype labels. 

 
In addition to this SC-RRB difference z-score subtyping approach, we also used other 

unsupervised clustering methods for identifying subtypes. These methods utilize agglomerative 
hierarchical clustering with Euclidean distance and the ward.D2 method. The optimal number of 
clusters was determined by a majority vote of 23 different metrics for determining the optimal 
number of clusters (e.g., using the NbClust library in R)62. With another approach, we ran the same 
hierarchical clustering analyses, but cut dendrograms to define subtypes using a dynamic hybrid 
tree cut algorithm, as utilized in past work63,64.  
 
EU-AIMS LEAP Dataset  
 

The EU-AIMS LEAP data comes from a large multisite European initiative with the aim 
of identifying biomarkers for ASD20. In this study, EU-AIMS LEAP data is utilized to examine 
how SC-RRB balance subtypes may differ in intrinsic functional connectomic organization using 
rsfMRI data. rsfMRI data from EU-AIMS LEAP has been analyzed for case-control differences 
in prior work21,31. EU-AIMS LEAP recruited 437 individuals with ASD and 300 TD individuals, 
both male and female, aged between 6 and 30 years. Participants underwent comprehensive 
clinical, cognitive, and MRI assessment at one of the following five centers: Institute of Psychiatry, 
Psychology and Neuroscience, King’s College London, United Kingdom; Autism Research 
Centre, University of Cambridge, United Kingdom; Radboud University Nijmegen Medical 
Centre, the Netherlands; University Medical Centre Utrecht, the Netherlands; and Central Institute 
of Mental Health, Mannheim, Germany. The study was approved by the local ethical committees 
of participating centers, and written informed consent was obtained from all participants or their 
legal guardians (for participants <18 years). For further details about the study design, we refer to 
Loth et al.,19, and for a comprehensive clinical characterization of the LEAP cohort, we refer to 
Charman et al.,20. In the present study, we selected all participants for whom structural and rsfMRI 
data were available. However, n=120 participants had to be excluded from the analysis because of 
missing ADI-R item-level data (n=64), missing IQ data (n=3), or because preprocessing could not 
completed for a variety of reasons (e.g., registration/normalization errors because of poor quality 
MPRAGE data, poor anatomical coverage, or large anatomical deviance such as large ventricles 
(n=39), incomplete rsfMRI data (n=3), errors in convergence of the ME-ICA algorithm (n=11)). 
The final sample size was n=266 autistic and n=243 TD participants. This final sample was split 
into independent Discovery and Replication sets (balanced for sex and age) for the purpose of 
identifying functional connectivity differences that are replicable. As an example of sample sizes 
once split into autism subtypes at a z-threshold of 1, within the Discovery set there were n=80 
SC=RRB, n=47 SC>RRB, and n=121 TD individuals. Within the Replication set there were n=85 
SC=RRB, n=47 SC>RRB, and n=122 TD individuals. N=7 (n=6 Discovery, n=1 Replication) were 
classified as RRB>SC and because the sample sizes were too small, we did not analyze this subtype 
further for functional connectivity differences. We tested subtypes on a variety of different 
phenotypic measures including the ADOS-2, Social Responsiveness Scale (SRS-2), Repetitive 
Behavior Scale (RBS-R), Short Sensory Profile (SSP) and the Vineland Adaptive Behavior Scales 
(VABS). See Table 2 for participant characteristics. 
 
EU-AIMS LEAP fMRI Data Acquisition 
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MRI data were acquired on 3T scanners: General Electric MR750 (GE Medical Systems, 

Milwaukee, WI, USA) at Institute of Psychiatry, Psychology and Neuroscience, King’s College 
London, United Kingdom (KCL); Siemens Magnetom Skyra (Siemens, Erlangen, Germany) at 
Radboud University Nijmegen Medical Centre, the Netherlands (RUMC); Siemens Magnetom 
Verio (Siemens, Erlangen, Germany) at the University of Cambridge, United Kingdom (UCAM); 
Philips 3T Achieva (PhilipsHealthcare Systems, Best, The Netherlands) at University Medical 
Centre Utrecht, the Netherlands (UMCU); and Siemens Magnetom Trio (Siemens, Erlangen, 
Germany) at Central Institute of Mental Health, Mannheim, Germany (CIMH). Procedures were 
undertaken to optimize the MRI sequences for the best scanner-specific options, and phantoms 
and travelling heads were employed to assure standardization and quality assurance of the multi-
site image-acquisition20. Structural images were obtained using a 5.5 minute MPRAGE sequence 
(TR=2300ms, TE=2.93ms, T1=900ms, voxels size=1.1x1.1x1.2mm, flip angle=9°, matrix 
size=256x256, FOV=270mm, 176 slices). An eight-to-ten minute resting-state fMRI (rsfMRI) 
scan was acquired using a multi-echo planar imaging (ME-EPI) sequence 65,66; TR=2300ms, 
TE~12ms, 31ms, and 48ms (slight variations are present across centers), flip angle=80°, matrix 
size=64x64, in-plane resolution=3.8mm, FOV=240mm, 33 axial slices, slice 
thickness/gap=3.8mm/0.4mm, volumes=200 (UMCU), 215 (KCL, CIMH), or 265 (RUMC, 
UCAM). Participants were instructed to relax, with eyes open and fixate on a cross presented on 
the screen for the duration of the rsfMRI scan. 
 
EU-AIMS LEAP fMRI Preprocessing 
 

Multi-echo rsfMRI data were preprocessed with the multi-echo independent components 
analysis (ME-ICA) pipeline, implemented with the meica python library (v3.2) 
(https://github.com/ME-ICA/me-ica). ME-ICA implements both basic fMRI image preprocessing 
and decomposition-based denoising that is specifically tailored for multi-echo EPI data. For the 
processing of each subject, first the anatomical image was skull-stripped and then warped 
nonlinearly to the MNI anatomical template using AFNI 3dQWarp. The warp field was saved for 
later application to functional data. For each functional dataset, the first TE dataset was used to 
compute parameters of motion correction and anatomical-functional coregistration, and the first 
volume after equilibration was used as the base EPI image. Matrices for de-obliquing and six-
parameter rigid body motion correction were computed. Then, 12-parameter affine anatomical-
functional coregistration was computed using the local Pearson correlation (LPC) cost functional, 
using the gray matter segment of the EPI base image computed with AFNI 3dSeg as the LPC 
weight mask. Matrices for de-obliquing, motion correction, and anatomical-functional 
coregistration were combined with the standard space nonlinear warp field to create a single warp 
for functional data. The dataset of each TE was then slice-time corrected and spatially aligned 
through application of the alignment matrix, and the total nonlinear warp was applied to the dataset 
of each TE. No time series filtering was applied in the preprocessing phase. No spatial smoothing 
was applied during preprocessing. 

 
The preprocessed multi-echo time-series datasets were then used by the ME-ICA pipeline 

to leverage information in the multiple echoes to compute an optimal weighting of TE at each 
voxel67, producing an ‘optimally combined’ time-series dataset. This optimal combination 
procedure has been shown to double temporal signal-to-noise ratio (tSNR) over traditional single 
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echo EPI data68. This preprocessed optimally combined time-series dataset was then fed into a 
denoising procedure based on independent components analysis (ICA) and scoring components 
by ρ and κ pseudo-F statistics that indicate degree of TE-independence or TE-dependence. 
Components with high ρ and low κ are components high in non-BOLD related contrast (i.e. non-
BOLD artefact signal), while components with high κ and low ρ indicate components high in 
BOLD-related contrast. ME-ICA identifies in an automated fashion high ρ and low κ non-BOLD 
components and removes them from the optimally combined time-series dataset to produce the 
final multi-echo denoised dataset. This procedure has been shown to be very effective in removing 
various types of non-BOLD artefact from rsfMRI data, including head motion artefact, flattens 
DVARS traces induced by head motion, and increases tSNR by a factor of 4 over and above 
traditional single echo EPI data65,66,68,69. The final multi-echo denoised datasets were used in 
further connectivity analyses. Head motion estimates and DVARS were estimated in order to show 
the impact of denoising on reducing non-BOLD artefact due to head motion (see Supplementary 
Figure 1 for examples). In the EU-AIMS LEAP data, groups did not differ in mean FD (see Table 
2). 
 
EU-AIMS LEAP Functional Connectivity Analyses 
 

To assess large-scale intrinsic functional organization of the brain we input the multi-echo 
denoised data into a group-ICA analysis. Dual regression was then utilized to back-project spatial 
maps and individual time series for each component and subject. Both group-ICA and dual 
regression were implemented with FSL’s MELODIC and Dual Regression tools 
(www.fmrib.ox.ac.uk/fsl). For group-ICA, we constrained the dimensionality estimate to 30. Of 
the 30 final components, 11 were discarded after visual examination of spatial maps indicated that 
they did not correspond to well-known rsfMRI networks and instead resembled white matter or 
other artefacts70. 
 

Time courses for each subject and each independent component (IC) were used to model 
between-component connectivity. This was achieved by constructing a partial correlation matrix 
amongst all 19 components using Tikhonov-regularization (i.e. ridge regression, rho=1) as 
implemented within the nets_netmats.m function in the FSLNets MATLAB toolbox  
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). The aim of utilizing partial correlations was to 
estimate direct connection strengths in a more accurate manner than can be achieved with full 
correlations, which allow more for indirect connections to influence connectivity strength71–73. 
Partial correlations were then converted into Z-statistics using Fisher’s transformation for further 
statistical analyses. The lower diagonal of each subject’s partial correlation matrix was extracted 
for a total of 171 separate component-pair comparisons.  

 
To identify replicable subtype effects on functional connectivity, we partitioned the EU-

AIMS LEAP dataset into Discovery and Replication sets. This was achieved via a random half 
split of the subtypes within each scanning site and balancing for sex. TD comparison groups for 
Discovery and Replication sets were also selected via a random split balancing sex and achieving 
an age-match (achieved using the MatchIt library in R with the default method of nearest neighbor 
matching). Models implementing the main hypothesis tests of subtype differences were computed 
as linear mixed effect models (lme function from the nlme library in R), whereby connectivity was 
the dependent variable, and subtype, sex, and age were used as fixed effect independent variables 
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and site was modeled with random intercepts as a random effect. These models were computed 
separately for the Discovery and Replication set. Connectivity pairs were deemed as showing 
replicable subtype differences if the Discovery set showed an effect at p<0.05 and the replication 
Bayes Factor statistic74 computed on t-statistics from Discovery and Replication sets was greater 
than 10 (repBF>10), indicating strong evidence in favor of replication.  

 
Because subtyping depends on the choice of a z-threshold, we ran the connectivity analyses 

across a range of z-thresholds from z=0.5 to z=1, moving up in steps of 0.1. Across all these z-
thresholds, we identified ‘consensus edges’, defined as replicable subtype connectivity differences 
that appear at all z-thresholds. These edges are focused since they are the robust subtype 
connectivity differences that are not dependent on a particular z-threshold for labeling the 
subtypes. For each threshold, we also counted up the number of edges that are common across 
subtypes and with similar directionality in order to estimate how often subtypes show similar 
functional connectivity differences. 

 
To contrast the subtyping approach to a more dimensional approach where z-normalized 

SC-RRB differences scores are left continuous, we also ran similar mixed effect models where 
these continuous scores are the primary independent variable of interest rather than the subtype 
variable. Because the z-normalized difference score does not capture overall severity level well 
(e.g., an individual with low SC and RBB has a difference near 0 just like an individual with high 
SC and RRB), we also ran models whereby continuous SC or RRB scores were used as 
independent variables rather than the z-normalized difference score. This allowed for another 
contrast to test if overall level of severity within each domain could explain connectivity strength. 
In each of these dimensional models, the same criteria for identifying replicable effects in the 
subtype models was used (e.g., p<0.05 in the Discovery set and a repBF > 10).   
 
Gene expression decoding analyses 
 
 To identify genes whose spatial expression pattern is similar to subtype-specific ICs, we 
used the Gene Expression Decoding feature embedded within Neurosynth23 to identify genes that 
are statistically similar in their expression profile in a consistent manner across all 6 donor brains 
within the Allen Institute Human Brain Atlas22. The analysis first utilizes a linear model to compute 
similarity between the observed rsfMRI IC map and spatial patterns of gene expression for each 
of the six brains in the Allen Institute dataset. The slopes of these subject-specific linear models 
encode how similar each gene’s spatial expression pattern is with our rsfMRI IC maps. These 
slopes were then subjected to a one-sample t-test to identify genes whose spatial expression 
patterns are consistently of high similarity across the donor brains to the rsfMRI IC maps we input. 
This analysis was restricted to cortical tissue since all of the networks being analyzed are primarily 
cortical. The resulting list of genes was then thresholded for multiple comparisons and only the 
genes surviving FDR q < 0.05 and also had a positive t-statistic value were considered. 
 
Enrichment analyses with autism-associated gene lists 
 
 To test if network-associated genes were enriched for different classes of autism-associated 
genes we first curated a list of genes known at genetic and transcriptomic levels to be associated 
with autism. At the genetic level, we utilized the list of 102 genes reported by Satterstrom et al.,75 
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that are rare de novo protein truncating variants that are associated with a diagnosis of autism 
(ASD dnPTV). A second list of autism-associated genes (ASD SFARI) at the genetic level was 
the list curated by SFARI Gene (https://gene.sfari.org/). We utilized the entire list of genes in 
categories S, 1, 2, and 3 for these analyses (downloaded on January 14, 2020). At the 
transcriptomic level we used several lists. First, we used a list of differentially expressed genes in 
autism post-mortem frontal and temporal cortex tissue from Gandal et al.,26 and this list was further 
split by genes that were downregulated (ASD DE Downreg) or upregulated (ASD DE Upreg) in 
autism. To contrast these enrichments with other psychiatric diagnoses that are genetically 
correlated with autism, we also use differentially expressed genes in schizophrenia (SCZ DE) and 
bipolar disorder (BD DE), identified from the same Gandal et al., study26. To go beyond 
differentially expressed genes in bulk tissue samples, we also examined autism differentially 
expressed genes identified in specific cell types - particularly, excitatory (ASD Excitatory) and 
inhibitory (ASD Inhibitory) neurons, microglia (ASD Microglia), astrocytes (ASD Astrocyte), 
oligodendrocytes (Oligodendrocyte), and endothelial (ASD Endothelial) cells28. Beyond 
differentially expressed genes, we utilized all genes identified in frontal and temporal cortical 
tissue that were members of co-expression modules identified to be downregulated (ASD CTX 
Downreg CoExpMods) or upregulated (ASD CTX Upreg CoExpMods) in autism27. All tests of 
enrichment were conducted with custom code written in R that computes enrichment odds ratios 
and p-values based on hypergeometric tests. The background total for these enrichment tests was 
set to 20,787, which is the total number of genes considered by the gene expression decoding 
analysis in Neurosynth. FDR was computed amongst all of the enrichment tests done and only 
tests that survived FDR q < 0.05 were interpreted further as statistically significant enrichments. 
 
Data and code availability 
 

Tidy data and reproducible analysis code for this study is available at 
https://github.com/landiit/adir_subtyping. 
 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.083758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.08.083758
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 Acknowledgments 
 

We thank all participants and their families for participating in this study. We also 
acknowledge the contributions of all members of the EU-AIMS LEAP group. Members of the EU-
AIMS LEAP group are as follows: Jumana Ahmad, Sara Ambrosino, Bonnie Auyeung, Tobias 
Banaschewski, Simon Baron-Cohen, Sarah Baumeister, Christian F. Beckmann, Sven Bölte, 
Thomas Bourgeron, Carsten Bours, Michael Brammer, Daniel Brandeis, Claudia Brogna, Yvette 
de Bruijn, Jan K. Buitelaar, Bhismadev Chakrabarti, Tony Charman, Ineke Cornelissen, Daisy 
Crawley, Flavio Dell’Acqua, Guillaume Dumas, Sarah Durston, Christine Ecker, Jessica Faulkner, 
Vincent Frouin, Pilar Garcés, David Goyard, Lindsay Ham, Hannah Hayward, Joerg Hipp, 
Rosemary Holt, Mark H. Johnson, Emily J. H. Jones, Prantik Kundu, Meng-Chuan Lai, Xavier 
Liogier D’ardhuy, Michael V. Lombardo, Eva Loth, David J. Lythgoe, René Mandl, Andre 
Marquand, Luke Mason, Maarten Mennes, Andreas Meyer-Lindenberg, Carolin Moessnang, Nico 
Mueller, Declan G. M. Murphy, Bethany Oakley, Laurence O’Dwyer, Marianne Oldehinkel, Bob 
Oranje, Gahan Pandina, Antonio M. Persico, Barbara Ruggeri, Amber N. V. Ruigrok, Jessica 
Sabet, Roberto Sacco, Antonia San José Cáceres, Emily Simonoff, Will Spooren, Julian Tillmann, 
Roberto Toro, Heike Tost, Jack Waldman, Steve C. R. Williams, Caroline Wooldridge, and Marcel 
P. Zwiers. 
 
 
Disclosures 
 

JKB has been a consultant to, advisory board member of, and a speaker for Janssen Cilag 
BV, Eli Lilly, Shire, Lundbeck, Roche, and Servier. He is not an employee of any of these 
companies and not a stock shareholder of any of these companies. He has no other financial or 
material support, including expert testimony, patents, or royalties. CFB is director and shareholder 
in SBGneuro Ltd. SB discloses that he has in the last 5 years acted as an author, consultant, or 
lecturer for Shire/Takeda, Medice, Roche, Eli Lilly, and Prima Psychiatry. He receives royalties 
for textbooks and diagnostic tools from Huber/Hogrefe, Kohlhammer, and UTB. TC has received 
consultancy from Roche and Servier and received book royalties from Guildford Press and Sage. 
DGMM has been a consultant to, and advisory board member, for Roche and Servier. He is not an 
employee of any of these companies, and not a stock shareholder of any of these companies. AML 
has received consultant fees from Boehringer Ingelheim, Elsevier, Brainsway, Lundbeck Int. 
Neuroscience Foundation, Lundbeck A/S, The Wolfson Foundation, Bloomfield Holding Ltd, 
Shanghai Research Center for Brain Science, Thieme Verlag, Sage Therapeutics, v Behring 
Röntgen Stiftung, Fondation FondaMental, Janssen-Cilag GmbH, MedinCell, Brain Mind 
Institute, Agence Nationale de la Recherche, CISSN (Catania Internat. Summer School of 
Neuroscience), Daimler und Benz Stiftung and American Association for the Advancement of 
Science. Additionally he has received speaker fees from Italian Society of Biological Psychiatry, 
Merz-Stiftung, Forum Werkstatt Karlsruhe, Lundbeck SAS France, BAG Psychiatrie Oberbayern, 
Klinik für Psychiatrie und Psychotherapie Ingolstadt, med Update GmbH, Society of Biological 
Psychiatry and Siemens Healthineers. He is not an employee of any of these companies, and not a 
stock shareholder of any of these companies. JT is a consultant to Roche. The other authors report 
no biomedical financial interests or potential conflicts of interest. 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.083758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.08.083758
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Funding 
 

This work was supported by an ERC Starting Grant (ERC-2017-STG; 755816) to MVL. 
This work was also supported by EU-AIMS and EU AIMS-2-TRIALS, which both received 
support from the Innovative Medicines Initiative Joint Undertaking under Grant Agreement No. 
115300 and the Innovative Medicines Initiative 2 Joint Undertaking under Grant Agreement No. 
777394, the resources of which are composed of financial contributions from the European 
Union’s Seventh Framework Programme (Grant No. FP7/2007-2013), from the European 
Federation of Pharmaceutical Industries and Associations companies’ in-kind contributions, and 
from Autism Speaks, Autistica and the Simons Foundation for Autism Research Initiative. This 
work was also supported by the Netherlands Organization for Scientific Research through Vidi 
grants (Grant No. 864.12.003 [to CFB]); from the FP7 (Grant Nos. 602805) (AGGRESSOTYPE) 
(to JKB), 603016 (MATRICS), and 278948 (TACTICS); and from the European Community’s 
Horizon 2020 Programme (H2020/2014-2020) (Grant Nos. 643051 [MiND] and 642996 
(BRAINVIEW). This work received funding from the Wellcome Trust UK Strategic Award 
(Award No. 098369/Z/12/Z) and from the National Institute for Health Research Maudsley 
Biomedical Research Centre (to DGMM). M-CL was supported by the Academic Scholars Award 
from the Department of Psychiatry, University of Toronto, the Slaight Family Child and Youth 
Mental Health Innovation Fund from the CAMH Foundation, the Ontario Brain Institute via the 
Province of Ontario Neurodevelopmental Disorders (POND) Network (IDS-I l-02), the Canadian 
Institutes of Health Research (PJT 159578), and the Innovation Fund of the Alternative Funding 
Plan for the Academic Health Sciences Centres of Ontario (CAM-20-004). R.A.I.B acknowledges 
research support by the Autism Research Trust and a British Academy Fellowship (PF2\180017). 
MHJ, TC, and EJHJ acknowledge support from a UK MRC Programme Grant. 
 
 
 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.083758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.08.083758
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
References 

 
1. Lai, M.-C., Lombardo, M. V. & Baron-Cohen, S. Autism. Lancet 383, 896–910 (2014). 
2. Lord, C. et al. Autism spectrum disorder. Nat Rev Dis Primers 6, 5 (2020). 
3. Lombardo, M. V., Lai, M.-C. & Baron-Cohen, S. Big data approaches to decomposing 

heterogeneity across the autism spectrum. Mol. Psychiatry 24, 1435–1450 (2019). 
4. Happé, F. & Ronald, A. The ‘fractionable autism triad’: a review of evidence from 

behavioural, genetic, cognitive and neural research. Neuropsychol Rev 18, 287–304 (2008). 
5. Graybiel, A. M. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31, 359–387 

(2008). 
6. Langen, M., Durston, S., Kas, M. J. H., van Engeland, H. & Staal, W. G. The neurobiology of 

repetitive behavior: …and men. Neurosci Biobehav Rev 35, 356–365 (2011). 
7. Kennedy, D. P. & Adolphs, R. The social brain in psychiatric and neurological disorders. 

Trends Cogn. Sci. (Regul. Ed.) 16, 559–572 (2012). 
8. Ronald, A., Happe, F. & Plomin, R. The genetic relationship between individual differences 

in social and nonsocial behaviours characteristic of autism. Developmental Sci 8, 444–458 
(2005). 

9. Ronald, A., Happé, F., Price, T. S., Baron-Cohen, S. & Plomin, R. Phenotypic and Genetic 
Overlap Between Autistic Traits at the Extremes of the General Population. Journal of the 
American Academy of Child & Adolescent Psychiatry 45, 1206–1214 (2006). 

10. Ronald, A. et al. Genetic Heterogeneity Between the Three Components of the Autism 
Spectrum: A Twin Study. Journal of the American Academy of Child & Adolescent Psychiatry 
45, 691–699 (2006). 

11. Warrier, V. et al. Social and non-social autism symptoms and trait domains are genetically 
dissociable. Commun Biol 2, 328 (2019). 

12. Georgiades, S. et al. Investigating phenotypic heterogeneity in children with autism spectrum 
disorder: a factor mixture modeling approach. J Child Psychol Psychiatry 54, 206–215 (2013). 

13. Hu, V. W. & Steinberg, M. E. Novel clustering of items from the Autism Diagnostic Interview-
Revised to define phenotypes within autism spectrum disorders. Autism Res 2, 67–77 (2009). 

14. Cholemkery, H., Medda, J., Lempp, T. & Freitag, C. M. Classifying Autism Spectrum 
Disorders by ADI-R: Subtypes or Severity Gradient? J Autism Dev Disord 46, 2327–2339 
(2016). 

15. Happé, F. & Frith, U. Annual Research Review: Looking back to look forward - changes in 
the concept of autism and implications for future research. J Child Psychol Psychiatry 61, 
218–232 (2020). 

16. Richiardi, J. et al. BRAIN NETWORKS. Correlated gene expression supports synchronous 
activity in brain networks. Science 348, 1241–1244 (2015). 

17. Hawrylycz, M. et al. Canonical genetic signatures of the adult human brain. Nat. Neurosci. 18, 
1832–1844 (2015). 

18. Fornito, A., Arnatkevičiūtė, A. & Fulcher, B. D. Bridging the Gap between Connectome and 
Transcriptome. Trends Cogn. Sci. (Regul. Ed.) 23, 34–50 (2019). 

19. Loth, E. et al. The EU-AIMS Longitudinal European Autism Project (LEAP): design and 
methodologies to identify and validate stratification biomarkers for autism spectrum disorders. 
Mol Autism 8, 24 (2017). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.083758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.08.083758
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

20. Charman, T. et al. The EU-AIMS Longitudinal European Autism Project (LEAP): clinical 
characterisation. Mol Autism 8, 27 (2017). 

21. Oldehinkel, M. et al. Altered Connectivity Between Cerebellum, Visual, and Sensory-Motor 
Networks in Autism Spectrum Disorder: Results from the EU-AIMS Longitudinal European 
Autism Project. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 4, 260–
270 (2019). 

22. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain 
transcriptome. Nature 489, 391–399 (2012). 

23. Gorgolewski, K. J. et al. Tight fitting genes: finding relations between statistical maps and 
gene expression patterns. F1000 Posters 5, 1607 (2014). 

24. Romero-Garcia, R., Warrier, V., Bullmore, E. T., Baron-Cohen, S. & Bethlehem, R. A. I. 
Synaptic and transcriptionally downregulated genes are associated with cortical thickness 
differences in autism. Mol. Psychiatry 24, 1053–1064 (2019). 

25. Chatham, C. H. et al. Adaptive behavior in autism: Minimal clinically important differences 
on the Vineland-II. Autism Res 11, 270–283 (2018). 

26. Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, 
and bipolar disorder. Science 362, eaat8127 (2018). 

27. Parikshak, N. N. et al. Genome-wide changes in lncRNA, splicing, and regional gene 
expression patterns in autism. Nature 540, 423–427 (2016). 

28. Velmeshev, D. et al. Single-cell genomics identifies cell type–specific molecular changes in 
autism. Science 364, 685–689 (2019). 

29. Gandal, M. J. et al. Shared molecular neuropathology across major psychiatric disorders 
parallels polygenic overlap. Science 359, 693–697 (2018). 

30. Chen, C. P. et al. Diagnostic classification of intrinsic functional connectivity highlights 
somatosensory, default mode, and visual regions in autism. NeuroImage: Clinical 8, 238–245 
(2015). 

31. Holiga, Š. et al. Patients with autism spectrum disorders display reproducible functional 
connectivity alterations. Sci. Transl. Med. 11, eaat9223 (2019). 

32. Lombardo, M. V. et al. Different functional neural substrates for good and poor language 
outcome in autism. Neuron 86, 567–577 (2015). 

33. Lombardo, M. V. et al. Large-scale associations between the leukocyte transcriptome and 
BOLD responses to speech differ in autism early language outcome subtypes. Nat. Neurosci. 
21, 1680–1688 (2018). 

34. Redcay, E. & Courchesne, E. Deviant Functional Magnetic Resonance Imaging Patterns of 
Brain Activity to Speech in 2–3-Year-Old Children with Autism Spectrum Disorder. 
Biological Psychiatry 64, 589–598 (2008). 

35. Eyler, L. T., Pierce, K. & Courchesne, E. A failure of left temporal cortex to specialize for 
language is an early emerging and fundamental property of autism. Brain 135, 949–960 
(2012). 

36. Dinstein, I. et al. Disrupted Neural Synchronization in Toddlers with Autism. Neuron 70, 
1218–1225 (2011). 

37. Adolphs, R., Damasio, H., Tranel, D., Cooper, G. & Damasio, A. R. A Role for Somatosensory 
Cortices in the Visual Recognition of Emotion as Revealed by Three-Dimensional Lesion 
Mapping. J. Neurosci. 20, 2683–2690 (2000). 

38. Keysers, C., Kaas, J. H. & Gazzola, V. Somatosensation in social perception. Nat Rev Neurosci 
11, 417–428 (2010). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.083758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.08.083758
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

39. Stevenson, R. A. et al. Multisensory Temporal Integration in Autism Spectrum Disorders. J. 
Neurosci. 34, 691–697 (2014). 

40. Foss-Feig, J. H. et al. An extended multisensory temporal binding window in autism spectrum 
disorders. Exp Brain Res 203, 381–389 (2010). 

41. Russo, N. et al. Multisensory processing in children with autism: high-density electrical 
mapping of auditory-somatosensory integration. Autism Res 3, 253–267 (2010). 

42. Bhat, A. N., Landa, R. J. & Galloway, J. C. Current perspectives on motor functioning in 
infants, children, and adults with autism spectrum disorders. Phys Ther 91, 1116–1129 (2011). 

43. Fournier, K. A., Hass, C. J., Naik, S. K., Lodha, N. & Cauraugh, J. H. Motor coordination in 
autism spectrum disorders: a synthesis and meta-analysis. J Autism Dev Disord 40, 1227–1240 
(2010). 

44. Green, D. et al. Impairment in movement skills of children with autistic spectrum disorders. 
Dev Med Child Neurol 51, 311–316 (2009). 

45. Nebel, M. B. et al. Intrinsic Visual-Motor Synchrony Correlates With Social Deficits in 
Autism. Biol. Psychiatry 79, 633–641 (2016). 

46. Glazebrook, C., Gonzalez, D., Hansen, S. & Elliott, D. The role of vision for online control of 
manual aiming movements in persons with autism spectrum disorders. Autism 13, 411–433 
(2009). 

47. Dowd, A. M., McGinley, J. L., Taffe, J. R. & Rinehart, N. J. Do planning and visual integration 
difficulties underpin motor dysfunction in autism? A kinematic study of young children with 
autism. J Autism Dev Disord 42, 1539–1548 (2012). 

48. Crippa, A., Forti, S., Perego, P. & Molteni, M. Eye-hand coordination in children with high 
functioning autism and Asperger’s disorder using a gap-overlap paradigm. J Autism Dev 
Disord 43, 841–850 (2013). 

49. Marko, M. K. et al. Behavioural and neural basis of anomalous motor learning in children with 
autism. Brain 138, 784–797 (2015). 

50. Uddin, L. Q. et al. Salience Network–Based Classification and Prediction of Symptom 
Severity in Children With Autism. JAMA Psychiatry 70, 869 (2013). 

51. Green, S. A., Hernandez, L., Bookheimer, S. Y. & Dapretto, M. Salience Network 
Connectivity in Autism Is Related to Brain and Behavioral Markers of Sensory 
Overresponsivity. Journal of the American Academy of Child & Adolescent Psychiatry 55, 
618-626.e1 (2016). 

52. Di Martino, A. et al. The autism brain imaging data exchange: towards a large-scale evaluation 
of the intrinsic brain architecture in autism. Mol Psychiatry 19, 659–667 (2014). 

53. Rubenstein, J. L. R. & Merzenich, M. M. Model of autism: increased ratio of 
excitation/inhibition in key neural systems. Genes Brain Behav. 2, 255–267 (2003). 

54. Sohal, V. S. & Rubenstein, J. L. R. Excitation-inhibition balance as a framework for 
investigating mechanisms in neuropsychiatric disorders. Mol. Psychiatry 24, 1248–1257 
(2019). 

55. Bal, V. H., Kim, S.-H., Cheong, D. & Lord, C. Daily living skills in individuals with autism 
spectrum disorder from 2 to 21 years of age. Autism 19, 774–784 (2015). 

56. Tillmann, J. et al. Investigating the factors underlying adaptive functioning in autism in the 
EU-AIMS Longitudinal European Autism Project. Autism Res 12, 645–657 (2019). 

57. Lord, C., Bishop, S. & Anderson, D. Developmental trajectories as autism phenotypes. Am J 
Med Genet C Semin Med Genet 169, 198–208 (2015). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.083758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.08.083758
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

58. Georgiades, S., Bishop, S. L. & Frazier, T. Editorial Perspective: Longitudinal research in 
autism - introducing the concept of ‘chronogeneity’. J Child Psychol Psychiatry 58, 634–636 
(2017). 

59. Kim, S. H. et al. Variability in Autism Symptom Trajectories Using Repeated Observations 
From 14 to 36 Months of Age. J Am Acad Child Adolesc Psychiatry 57, 837-848.e2 (2018). 

60. Lord, C., Rutter, M. & Le Couteur, A. Autism Diagnostic Interview-Revised: a revised version 
of a diagnostic interview for caregivers of individuals with possible pervasive developmental 
disorders. J Autism Dev Disord 24, 659–685 (1994). 

61. Huerta, M., Bishop, S. L., Duncan, A., Hus, V. & Lord, C. Application of DSM-5 criteria for 
autism spectrum disorder to three samples of children with DSM-IV diagnoses of pervasive 
developmental disorders. Am J Psychiatry 169, 1056–1064 (2012). 

62. Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. NbClust : An R Package for Determining 
the Relevant Number of Clusters in a Data Set. J. Stat. Soft. 61, (2014). 

63. Langfelder, P., Zhang, B. & Horvath, S. Defining clusters from a hierarchical cluster tree: the 
Dynamic Tree Cut package for R. Bioinformatics 24, 719–720 (2008). 

64. Lombardo, M. V. et al. Unsupervised data-driven stratification of mentalizing heterogeneity 
in autism. Sci Rep 6, 35333 (2016). 

65. Kundu, P., Inati, S. J., Evans, J. W., Luh, W.-M. & Bandettini, P. A. Differentiating BOLD 
and non-BOLD signals in fMRI time series using multi-echo EPI. Neuroimage 60, 1759–1770 
(2012). 

66. Kundu, P. et al. Multi-echo fMRI: A review of applications in fMRI denoising and analysis of 
BOLD signals. Neuroimage 154, 59–80 (2017). 

67. Posse, S. et al. Enhancement of BOLD-contrast sensitivity by single-shot multi-echo 
functional MR imaging. Magn Reson Med 42, 87–97 (1999). 

68. Kundu, P. et al. Integrated strategy for improving functional connectivity mapping using 
multiecho fMRI. Proc. Natl. Acad. Sci. U.S.A. 110, 16187–16192 (2013). 

69. Lombardo, M. V. et al. Improving effect size estimation and statistical power with multi-echo 
fMRI and its impact on understanding the neural systems supporting mentalizing. Neuroimage 
142, 55–66 (2016). 

70. Griffanti, L. et al. Hand classification of fMRI ICA noise components. Neuroimage 154, 188–
205 (2017). 

71. Smith, S. M. et al. Functional connectomics from resting-state fMRI. Trends Cogn. Sci. 
(Regul. Ed.) 17, 666–682 (2013). 

72. Smith, S. M. et al. Network modelling methods for FMRI. Neuroimage 54, 875–891 (2011). 
73. Marrelec, G. et al. Partial correlation for functional brain interactivity investigation in 

functional MRI. Neuroimage 32, 228–237 (2006). 
74. Verhagen, J. & Wagenmakers, E.-J. Bayesian tests to quantify the result of a replication 

attempt. J Exp Psychol Gen 143, 1457–1475 (2014). 
75. Satterstrom, F. K. et al. Large-Scale Exome Sequencing Study Implicates Both Developmental 

and Functional Changes in the Neurobiology of Autism. Cell (2020) 
doi:10.1016/j.cell.2019.12.036. 

 
 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 10, 2020. ; https://doi.org/10.1101/2020.05.08.083758doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.08.083758
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Tables 
 

 Discovery Replication 
 SC>RRB SC=RRB RRB>SC F (p-val) SC>RRB SC=RRB RRB>SC F (p-val) 

N 
(male) 

137  
(109) 

611  
(468) 

141  
(115) 

- 124  
(97) 

629  
(482) 

137  
(115) 

- 

Age in 
years 

7.24  
(5.50) 

9.03  
(5.38) 

10.05 
(4.02) 

10.61  
(2.77e-5) 

6.92  
(5.14) 

9.10  
(5.54) 

9.76  
(4.35) 

10.80  
(2.31e-5) 

ADI-R 
SC 

0.51  
(0.13) 

0.31  
(0.14) 

0.21 
(0.10) 

212.57 
(2.2e-16) 

   191.67  
(2.2e-16) 

ADI-R 
RRB 

0.21 
(0.10) 

0.32  
(0.14) 

0.49 
(0.12) 

174.19  
(2.2e-16) 

   184.74  
(2.2e-16) 

ADOS 
SA 

CSSi 

7.46  
(1.60) 

6.92  
(2.01) 

6.11  
(2.49) 

2.85 
(0.06) 

6.96  
(1.73) 

6.93  
(2.04) 

6.62  
(2.39) 

1.83  
(0.16) 

ADOS 
RRB 
CSSi 

8.37  
(1.31) 

7.68  
(2.30) 

7.37  
(2.29) 

0.09 
(0.91) 

7.42  
(2.55) 

7.40  
(2.30) 

6.62  
(1.06) 

0.43  
(0.64) 

FIQi 106.83 
(17.10) 

103.89 
(18.97) 

102.69 
(14.59) 

0.32 
(0.72) 

117.27 
(13.76) 

105.44 
(17.96) 

106.92 
(15.88) 

2.38  
(0.09) 

 
Table 1: Participant characteristics from the NDAR datasets. At a z-threshold of 1, this table shows sample sizes and 
descriptive statistics (mean and standard deviation) for age and ADOS social affect (SA) and restricted repetitive 
behaviors (RRB) calibrated severity scores. The final column on the right shows the F-statistic and p-value from an 
ANOVA testing for an effect of group. i Sample sizes: ADOS (Discovery, RRB>SC n=19, SC=RRB n=99, SC>RRB 
n=35; Replication RRB>SC n=8, SC=RRB n=119, SC>RRB n=26); FIQ (Discovery, RRB>SC n=39, SC=RRB 
n=142, SC>RRB n=18; Replication RRB>SC n=40, SC=RRB n=135, SC>RRB n=11). Abbreviations: FIQ = full-
scale IQ; ADI-R = Autism Diagnostic Interview Revised; ADOS = Autism Diagnostic Observation Schedule; SC = 
social-communication; RRB = restricted repetitive behaviors; SA = social affect; CSS = calibrated severity score. 
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 Discovery Replication 
 SC>RRB SC=RRB RRB>SC TD F (p-val) SC>RRB SC=RRB RRB>SC TD F (p-val) 

N 
(male) 

47 (34) 80 (61) 6 (3) 121 
(80) 

- 47 (34) 85 (62) 1 (1) 122 
(75) 

- 

Age in 
years 

15.69 
(4.50) 

16.62 
(5.91) 

18.08 
(7.13) 

16.83 
(5.23) 

0.78 
 (0.50) 

16.00 
(5.06) 

16.68 
(5.73) 

11.45 
(N/A) 

16.86 
(6.07) 

0.77  
(0.50) 

FIQ 97.27 
(18.34) 

99.50 
(18.80) 

102.67 
(14.63) 

105.72 
(18.33) 

2.45 
(0.06) 

94.46 
(20.00) 

103.62 
(16.50) 

148.00 
(N/A) 

104.94 
(17.14) 

4.78 
(0.002) 

Mean 
FD 

0.24 
(0.25) 

0.28 
(0.45) 

0.29 
(0.42) 

105.72 
(18.33) 

2.03 
(0.10) 

0.24 
(0.22) 

0.25 
(0.27) 

0.38 
(N/A) 

0.23 
(0.46) 

0.09 
(0.96) 

ADI-R 
Soc 

19.32 
 (5.75) 

16.43 
(7.01) 

15.83 
 (8.33) 

- 6.20 
(0.01) 

19.68 
 (5.77) 

14.91 
 (5.88) 

16.00 
 (N/A) 

- 21.48  
(8.72e-6) 

ADI-R 
Comm 

15.02 
 (4.73) 

13.74 
 (5.94) 

14.67 
 (6.31) 

- 2.05  
(0.14) 

15.83 
 (4.41) 

11.81 
 (5.39) 

7.00 
(N/A) 

- 20.49 
(1.35e-5) 

ADI-R 
RRB 

3.15 
(1.93) 

4.89 
(2.68) 

9.00 
(1.26) 

 18.07 
(4.17e-5) 

3.98 
(2.54) 

3.88 
(2.30) 

6.00 
(N/A) 

 0.04 
(0.84) 

ADOS 
SA 

CSSi 

6.44 
(2.55) 

6.15 
(2.58) 

3.83 
(3.37) 

- 0.44 
(0.50) 

6.27 
(3.01) 

5.65 
(2.50) 

5.00 
(N/A) 

- 2.14 
(0.14) 

ADOS 
RRB 
CSSi 

4.73 
(2.82) 

4.84 
(2.81) 

4.83 
(4.22) 

- 0.16 
(0.68) 

4.66 
(2.79) 

4.82 
(2.56) 

1.00 
(N/A) 

- 0.70 
(0.40) 

SRSi 74.57 
(9.25) 

71.26 
(13.00) 

71.33 
(16.65) 

47.84 
(9.40) 

0.005 
(0.25) 

77.67 
(9.68) 

66.85 
(11.63) 

60.00 
(N/A) 

47.23 
(9.34) 

0.48 
(0.48) 

RBSi 15.37 
(13.26) 

18.30 
(16.42) 

17.33 
(10.69) 

2.15 
(4.74) 

1.23 
(0.52) 

22.56 
(15.58) 

13.08 
(11.28) 

13.00 
(N/A) 

3.08 
(11.54) 

15.14 
(1.72e-4) 

SSPi 137.66 
(28.21) 

136.62 
(31.32) 

143.00 
(33.94) 

177.86 
(12.71) 

0.38 
(0.69) 

133.19 
(23.72) 

143.16 
(26.38) 

153.00 
(N/A) 

174.93 
(19.38) 

3.47 
(0.06) 

VABS 
Commi 

69.09 
(16.07) 

73.64 
(17.57) 

86.50 
(20.68) 

91.97 
(25.44) 

1.95 
(0.16) 

68.95 
(14.28) 

82.16 
(13.77) 

99.00 
(N/A) 

92.74 
(25.45) 

24.68 
(2.37e-6) 

VABS 
DLSi 

66.86 
(14.78) 

74.39 
(17.03) 

71.00 
(9.63) 

90.74 
(20.28) 

6.07 
(0.01) 

67.84 
(15.74) 

78.36 
(15.20) 

74.00 
(N/A) 

91.10 
(22.65) 

13.14 
(4.33e-4) 

VABS 
Soci 

65.63 
(16.06) 

71.01 
(15.55) 

70.75 
(10.34) 

96.21 
(23.67) 

3.34 
(0.07) 

62.98 
(15.78) 

76.00 
(15.14) 

76.00 
(N/A) 

98.90 
(27.04) 

19.83 
(1.96e-5) 

VABS 
ABCi 

64.93 
(15.25) 

71.57 
(13.22) 

74.00 
(12.03) 

92.06 
(23.04) 

6.12 
(0.01) 

64.81 
(13.67) 

77.18 
(12.77) 

81.00 
(N/A) 

93.00 
(25.39) 

25.55 
(1.65e-6) 

 
Table 2: Participant characteristics from the EU-AIMS LEAP dataset. At a z-threshold of 1, this table shows sample 
sizes and descriptive statistics alongside F-statistic and p-value from an ANOVA testing for an effect of group. For 
ADI-R, ADOS, SRS, RBS, SSP, and VABS, the F-statistic and p-value refer to a group difference between SC=RRB vs 
SC>RRB, while for age, mean FD, and FIQ, the F-statistic and p-value refer to a model that takes into account all 
groups. i Sample sizes: ADOS (Discovery, RRB>SC n=6, SC=RRB n=79, SC>RRB n=45; Replication RRB>SC n=1, 
SC=RRB n=83, SC>RRB n=44); SRS (Discovery, RRB>SC n=3, SC=RRB n=69, SC>RRB n=42, TD n=68; 
Replication RRB>SC n=1, SC=RRB n=78, SC>RRB n=39, TD n=65); RBS (Discovery, RRB>SC n=3, SC=RRB 
n=66, SC>RRB n=41, TD n=68; Replication RRB>SC n=1, SC=RRB n=75, SC>RRB n=39, TD n=63); SSP 
(Discovery, RRB>SC n=2, SC=RRB n=45, SC>RRB n=32, TD n=59; Replication RRB>SC n=1, SC=RRB n=51, 
SC>RRB n=31, TD n=54); Vineland (Discovery, RRB>SC n=4, SC=RRB n=75, SC>RRB n=43, TD n=34; 
Replication RRB>SC n=1, SC=RRB n=76, SC>RRB n=43, TD n=39). Abbreviations: FD = framewise displacement; 
FIQ = full-scale IQ; ADI-R = Autism Diagnostic Interview Revised; ADOS = Autism Diagnostic Observation 
Schedule; SC = social-communication; RRB = restricted repetitive behaviors; SA = social affect; CSS = calibrated 
severity score; SRS = Social Responsiveness Scale; RBS = Repetitive Behavior Scale; SSP = Short Sensory Profile; 
VABS = Vineland Adaptive Behavior Scales; Comm = Communication; DLS = Daily Living Skills; Soc = 
Socialization; ABC = Adaptive Behavior Composite. 
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Supplementary Figures 
 

 
Supplementary Figure 1: Examples of head-motion derived artefact that the effect of ME-ICA 
at flattening DVARS. This figure shows 9 example subjects, each with two plots. The top plot 
always shows framewise displacement (in mm) as an indicator of how much head motion is 
exhibited at each successive volume. The bottom plot shows DVARS traces from the optimally 
combined time-series before ME-ICA denoising (green) and after ME-ICA denoising (blue). 
DVARS traces before ME-ICA (green) closely follow the same pattern of framewise displacement 
and showcases how head motion can induce non-BOLD artefact. However, after ME-ICA 
denoising these DVARS traces are heavily flattened out, as a large proportion of this non-BOLD 
head motion artefact is isolated and removed as part of the denoising process.  
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Supplementary Figure 2: Unsupervised stratification with agglomerative hierarchical 
clustering approaches. Supplementary Figure 1 shows clustering results from NDAR Discovery 
and Replication datasets when the optimal number of clusters is selected by majority vote with 
NbClust.  
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Supplementary Figure 3: Unsupervised stratification with agglomerative hierarchical 
clustering approaches. Supplementary Figure 2 shows subtypes that emerge from clustering when 
the number of clusters is automatically selected with a dynamic hybrid tree cutting algorithm.  
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Supplementary Figure 4: Effect sizes for SC>RRB vs SC=RRB subtype differences or 
dimensional association of z-normalized SC-RRB difference scores with Vineland Daily Living 
Skills and Adapative Behavior Composite. In the upper left panel we show standardized effect 
size (Cohen’s d) for a SC>RRB vs SC=RRB subtype difference on the Vineland Daily Living Skills 
subscale as a function of the z-threshold used to define the subtypes. These effect sizes are shown 
separately for Discovery (blue) and Replication (orange) sets. The bottom left panel shows the 
same plot, except for the Vineland Adaptive Behavior Composite score. The upper right panel 
shows scatterplots of the z-normalized SC-RRB difference score (x-axis) against the Vineland 
Daily Living Skills subscale (y-axis). Pearson’s r correlations and p-values are shown for 
Discovery (blue) and Replication (orange) sets. The bottom right panel shows the same plot, except 
for the Vineland Adaptive Behavior Composite score. 
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Supplementary Figure 5: Visual depiction of the 19 components identified with group-ICA. Z-
statistics are indicated with the blue-to-red color scale. Increasingly dark red regions are the 
regions of primary importance for the component. For components with mostly subcortical or 
cerebellar regions of importance (i.e. IC14 and IC20), these regions are highlighted in bright 
orange in axial, sagittal, and coronal planes.   
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Supplementary Table 1:  ADI-R items to use in DSM-5 scoring. This scoring scheme is identical 
to that reported by Huerta et al., 61. Subscales A1-A3 are within the social-communication (SC) 
domain while subscales B1-B4 are within the restricted repetitive behavior (RRB) domain. All 
items in A1-A3 utilize the Current scores, while all items in B1-B4 utilize the Ever scores. 
 

 < 4 years 4 - 10 years > 10 years Description 

A1 COM34,  
COM35,  
COM31,  
SOCIAL61, 
SOCIAL52, 
SOCIAL54, 
SOCIAL55, 
COM46,  
SOCIAL51 

COM34,  
COM35,  
COM31,  
SOCIAL61, 
SOCIAL52, 
SOCIAL54, 
SOCIAL55,   
 
SOCIAL51 

COM34,  
COM35,  
COM31,  
 
SOCIAL52, 
SOCIAL54, 
SOCIAL55, 
 
SOCIAL51 

Social verbalization and chat, 
Reciprocal conversation, 
Use of other's body to communicate, 
Imitative social play, 
Showing and directing attention, 
Seeking to share his/her enjoyment with others, 
Offering comfort, 
Attention to voice, 
Social smiling 

A2 SOCIAL50, 
COM42, 
COM43, 
COM44, 
COM45, 
SOCIAL57, 
SOCIAL56 

 
COM42, 
COM43, 
COM44, 
COM45, 
SOCIAL57, 
SOCIAL56 

 
COM42, 
COM43, 
COM44, 
COM45, 
SOCIAL57, 
SOCIAL56 

Direct gaze, 
Pointing to express interest, 
Nodding, 
Head shaking, 
Conventional/instrumental gestures, 
Range of facial expressions to communicate, 
Quality of social overtures 

A3 COM36, 
SOCIAL58, 
SOCIAL53, 
SOCIAL59, 
SOCIAL62, 
SOCIAL63, 
 
 

COM36, 
SOCIAL58, 
SOCIAL53, 
SOCIAL59, 
SOCIAL62, 
SOCIAL63, 
COM49, 
SOCIAL64, 
SOCIAL65, 
SOCIAL66 

COM36, 
SOCIAL58, 
SOCIAL53, 
SOCIAL59, 
 
 
 
 
SOCIAL65, 
SOCIAL66 

Inappropriate questions or statements, 
Inappropriate facial expressions, 
Offering to share, 
Appropriateness of social responses, 
Interest in children, 
Responses to approaches of other children, 
Imaginative play with peers, 
Group play with peers, 
Friendships, 
Social disinhibition 

B1 COM33, 
COM37, 
COM38, 
RRB69, 
RRB77, 
RRB78 

COM33, 
COM37, 
COM38, 
RRB69, 
RRB77, 
RRB78 

COM33, 
COM37, 
COM38, 
RRB69, 
RRB77, 
RRB78 

Stereotyped utterances and delayed echolalia, 
Pronominal reversal, 
Neologisms/idiosyncratic language, 
Repetitive use of objects or interest in parts of objects, 
Hand and finger mannerisms, 
Other complex mannerisms or stereotyped body movements 

B2 COM39, 
RRB70, 
RRB74, 
 
RRB75 

COM39, 
RRB70, 
RRB74, 
 
RRB75 

COM39, 
RRB70, 
RRB74, 
 
RRB75 

Verbal rituals, 
Compulsions/rituals, 
Difficulties w/ minor changes in routines or personal 
environment 
Resistance to trivial changes in the environment (not directly 
affecting the subject) 

B3 RRB67, 
RRB68, 
RRB76 

RRB67, 
RRB68, 
RRB76 

RRB67, 
RRB68, 
RRB76 

Unusual preoccupations, 
Circumscribed interests, 
Unusual attachment to objects 
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B4 RRB72, 
RRB73, 
 
RRB71 

RRB72, 
RRB73, 
 
RRB71 

RRB72, 
RRB73, 
 
RRB71 

Undue general sensitivity to noise, 
Abnormal idiosyncratic negative response to specific sensory 
stimuli, 
Unusual sensory interests 

 
 
Supplementary Table 2:  Statistics from all functional connectivity comparisons.  
 
Supplementary Table 3:  Gene lists used for enrichment analyses. 
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