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Abstract.
Understanding how the structural connectivity of a network constrains the dynamics
it is able to support is a very active and open area of research. We simulated
the plausible dynamics resulting from the known C. elegans connectome using a
recent model and theoretical analysis that computes the dynamics of neurobiological
networks by focusing on how local interactions among connected neurons give
rise to the global dynamics in an emergent way, independent of the biophysical or
molecular details of the cells themselves. We studied the dynamics which resulted
from stimulating a chemosensory neuron (ASEL) in a known feeding circuit, both
in isolation and embedded in the full connectome. We show that contralateral
motor neuron activations in ventral (VB) and dorsal (DB) classes of motor neurons
emerged from the simulations, which are qualitatively similar to rhythmic motor
neuron firing pattern associated with locomotion of the worm. One interpretation
of these results is that there is an inherent - and we propose - purposeful structural
wiring to the C. elegans connectome that has evolved to serve specific behavioral
functions. To study network signaling pathways responsible for the dynamics we
developed an analytic framework that constructs Temporal Sequences (TSeq), time-
ordered walks of signals on graphs. We found that only 5% of TSeq are preserved
between the isolated feeding network relative to its embedded counterpart. The
remaining 95% of signaling pathways computed in the isolated network are not
present in the embedded network. This suggests a cautionary note for computational
studies of isolated neurobiological circuits and networks.

1 Introduction
A variety of network analyses methods are widely used to study complex systems [49, 64, 21,
7, 9, 10, 59]. But understanding how the structural connectivity of a network constrains the
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dynamics it is able to support is still an active and open area of research. This is particularly
the case for spatial-temporal networks, where much of the literature and methods are still in
early stages and mostly descriptive, providing few tools for predictive modeling. As a result,
the application of this emerging body of work towards the treatment and analyses of biological
neural networks that are inherently spatial-temporal remains quite limited. But the theoretical
and practical insights that such an approach would offer neurobiology are potentially very
significant. One such application is the analyses of the dynamics that is supported by a given
structural connectome. This remains at the forefront of neuroscience research [6, 14]. In this
work we introduce a novel set of methods and analyses for this task, and apply it to the dynamics
of the Caenorhabditis elegans worm connectome as an example.

We first simulated the plausible dynamics resulting from the known C. elegans connectome
[25, 31, 18] using a recent model and theoretical study we published that computes the dynamics
of neurobiological networks by focusing on how local interactions among connected neurons
give rise to the global dynamics in an emergent way, independent of the biophysical or molecular
details of the cells themselves [58]. This framework was derived from a theoretical abstraction of
the canonical principles of spatial and temporal summation in biological neurons. By analyzing
the arrival times of incident signals into nodes and how signals compete to activate downstream
nodes, we were able to prove a number of properties associated with the dynamics of the network.
Our model takes into account how the timing of the arrival of different signals on target neurons
influences how they interact to activate the nodes they connect into, given that the internal
(refractory) state of the target neuron they are competing for may or may not allow the cell
to be activated. Following a series of simulations, the main contribution of this work was the
development of a set of novel methods and tools that allowed us to extract the spatial-temporal
patterns and activation sequences of nodes that make up the dynamics of the network. In
essence, this allows us to understand how local rules drive global change in order to analyze the
casual interactions and patterns of node activations that produced the computed dynamics of the
network.

The C. elegans connectome consists of the anatomical edges (links) between its 302 neurons,
and was fully mapped in 1986 [67]. Although the organism’s connectome has been known for
decades, how neurons functionally interact in the context of the entire network and how the
resultant dynamics regulates participating neurons is not fully understood [6, 5, 39]. Recent
research efforts have moved past analyzing the network’s structure [64, 62], towards analyzing
its dynamics in various ways [35, 11, 55, 48, 61, 70, 36]. Here we asked how does the concurrent
activity of independent neuronal elements ultimately give rise to a rich behavioral repertoire of
the C. elegans connectome? At least in the constrained simulated examples we considered.

Using the available experimental data [67, 19, 33] we constructed a structural geometric
connectivity network model (Methods 4.1) in order to analyze the dynamics on the C. elegans
connectome using our dynamic signaling framework. This is in direct contrast to other attempts
to model C. elegans using biophysical models [61, 57, 36, 38]. Biophysical models are compu-
tationally expensive [27] and require parameter estimates and assumptions that are not typically
readily measurable or known in most cases. For example, ion-channel inactivation times and
synaptic weights, for which there is little experimental data [44, 37]. In contrast, the dynamic
simulations that underlie the analysis in our work here required only four considerations - an
estimate of the signal conduction velocity, an estimation of a node refractory period, node
type, that is, whether the node is either inhibitory or excitatory, and spatial node locations and
connectivity, which are known [58]. Each node (i.e. neuron) in the network was assigned a 2
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dimensional coordinate location, based on the known anatomical data, and we assumed edges
were straight line connections between nodes.

We specifically studied the dynamics which resulted from stimulating a chemosensory
neuron (ASEL) in a known feeding circuit. Experiments have shown that the activation of
ASEL ultimately results in forward locomotion [60, 65], which is produced by the activations of
mid-body motor neurons [32, 69]. First, we showed that the spatial embedding of the feeding
circuit within the entire C. elegans connectome increases the dynamical repertoire of the circuit.
We did this by quantifying the number of unique network states resulting from stimulation of
ASEL in spatially-aware, i.e. spatially defined connectome, and spatially-unaware networks.
Interestingly, the dynamics on the spatially-aware network that resulted from chemosensory
activation, resulted in contralateral motor neuron activations in ventral (VB) and dorsal (DB)
classes of motor neurons. This rhythmic alternating back and forth motor neuron firing pattern
is qualitatively indicative of that required for movement of the worm. This result is subtle
but critical in its interpretation. It is important to realize that we did not in any way model
or intentionally emulate such rhythmic oscillatory dynamics between these two motor neuron
populations. This dynamic behavior was in response to a single impulse input into the network
(via a single activation of ASEL), and reflects the inherent (and we propose) purposeful structural
wiring of the C. elegans connectome that has evolved over a very long time to serve purposeful
behavioral functions.

Next, we analyzed and identified the causal neuronal signaling paths beginning at ASEL to
VB and DB neurons. This reflects a unique part of the work and methods, enabled by the way our
dynamic framework and simulation model were constructed. Neuronal signaling paths encode
the causal chain of node activations over the course of the dynamics on the network. To describe
each signaling path we introduced the notion of a Temporal Sequence (TSeq). Each TSeq is
a temporally ordered sequence of nodes, formally a walk on a graph [22]. We determined the
efficacy of sub-networks derived from the full network, through a quantitative comparison of
TSeqs. More generally, TSeqs can be used to study the affects of network geometry (based on
spatial embedding of network elements) and connectivity on dynamics. This is a key challenge
in the analysis of complex geometric networks much more broadly than just an analysis of C.
elegans. And as such, the methods we develop here are universally applicable to any spatial-
temporal geometric network with signaling latencies. Furthermore, we decompose the complex
network activity into a basis set of TSeqs which in turn form all the observed network activity.
This basis set of TSeqs can be used as a signature of the dynamics on the network and they can
also be used to construct sub-networks which more closely resemble the dynamics of the larger
network. Finally, using TSeqs we show the interaction of classes of neurons from the motor
neuron circuit influencing VB and DB activity.

More generally, the computational workflow we develop here can be used to generate
experimentally testable hypothesis [23] regarding concurrent signaling paths supported by a
connectome. TSeqs can also be used to generate a set of candidate sub-networks that preserve
signaling paths, upon which more computationally expensive models can be implemented. Other
on-going work in our group using these methods includes the analysis of causal dynamics on
complex networks for machine learning. For example, in a general network setting where we
wish to encode images through the causal dynamics, we can analyze the statistics of the resultant
TSeqs, and other mathematical objects, such as, causal network motifs [47, 2, 68, 20]. Thus,
these methods extend beyond computational neurobiology to potential applications to new forms
of machine learning as well.
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2 Results

2.1 The contribution of network geometry on dynamics
Geometric information plays an important role in network dynamics [58, 12]. Endowing edges
with signaling delays that result from their physical geometry, i.e. convoluted paths in space,
adds significant richness to the resultant network dynamics due to the offset in signal arrival
times at nodes and the subsequent effects that has. Within the context of our model, we quantified
the affect of signal delays on network dynamics in C. elegans. Signal delays are directly related
to the spatial location of each of the neurons in the network. To do this comparison, we compared
the network activity of the spatially embedded C. elegans connectome (Figure 1A), henceforth
referred to as the Full network (Methods: 4.1), to the activity resulting from a latticed version
of the C. elegans network, which we refer to as the Lattice network (Methods: 4.3). While the
Lattice network’s edge connectivity and node types (inhibitory or excitatory) are identical to the
Full network, we set the Lattice network’s edge signal delays to be a constant value; this then
eliminates any affects of spatial embedding on the dynamics.

We compared the network activity between the Full and Lattice networks that resulted from a
single pulse stimulus of the ASEL neuron (Figure 1B,C). This effectively represents the simplest
stimulus and input into the network that is possible. In the Lattice network, we observed that
the network activity went through a transient period of node activations, but which eventually
results in almost all nodes firing at the same time in a periodic manner (Figure 1B). In contrast,
although the Full Network’s node activity also went through transient and periodic activity
phases, we observed a greater number and variability of patterns in its network state repertoire
(Figure 1C). To quantify the variability in network activity that resulted from the geometry, we
counted the number of unique network states. We describe the network’s state through a vector
of nodal states at each discrete simulation time point. Concretely, if the state of node i at time t
is given by yi(t) = {0, 1}, then the state of a network, with N nodes, at time t, can be written as
y(t) = {0, 1}N . In Figure 1D we show the cumulative count of unique network states over the
course of the simulation. The Lattice network assumed 12 unique states, while the C. elegans
network assumed 280 unique states across the sampling points (we did not consider permutations
of consecutive states). These results suggest that the geometry of a spatial-temporal network is
an critical consideration to the dynamical range of the system. Throughout the rest of this paper
we only make use of the spatial geometry of the C. elegans connectome, i.e the Full Network.

2.2 Qualitative comparison of network activity between the Full and Feed
Networks using temporal sequences.

The behavioral consequence of the activation of the ASEL neuron is the forward locomotion
of the worm [69]. This is achieved by the resultant synchronized contralateral periodic firing
of alternating populations of VB and DB motorneurons in the feeding circuit, which we will
refer to as the Feed network throughout the rest of the paper. Its construction is detailed in
the Methods: 4.2.Thus, we focused our analyses on the qualitative firing patterns of VB and
DB populations in our simulations following single impulse stimulations of ASEL by mapping
casual TSeqs. Additionally, because sub-networks are commonly used to study neighborhoods
of complex networks, not only were we interested in the patterns of activity produced by the
feeding circuit in isolation, identifying TSeqs from ASEL through interneurons to VB and DB
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motorneurons, but we also investigated whether sub-network patterns in the feeding circuit
were preserved when we mapped TSeqs resulting from ASEL activation for the feeding circuit
embedded in the complete C. elegans connectome, i.e. the Full Network.

We compared the network activity of the Feed and Full Networks to a set of respective null
model networks (Methods: 4.5). Null model networks preserve the total number of nodes, node
types, and node locations, but do not preserve the edge connectivity. The number of edges in the
null model networks were approximately the same, but the edge connectivity was randomized.
To do this, we computed TSeqs in order to identify the neuronal signaling paths which lead to
motor neuron activations in the Feed, Full, and their randomized Null network versions.

After stimulating ASEL in the Feed and Full Networks, and waiting for the network activity
to stabilize, we plotted a histogram of the resultant activity of VB and DB motor neuron classes
over that time interval of the simulations. We observed that the VB and DB motor neurons
activated in a staggered back and forth synchronized contralateral periodic manner (Figures
2A,C). This periodic activity pattern is qualitatively similar to the contralateral firing patterns
necessary for the locomotion of the worm [71, 32, 53]. We observed that both the Full and the
Feed network preserved the general patterns of ventral and dorsal neuronal activity.

Next, we studied what happened when we disrupted the edge connectivity in the Null
networks. We used a randomization procedure [28, 24] that preserved the spatial locations
of the nodes but replaced the original set of edges with a new set which was some subset
of the total number of allowed edges. Despite the randomization, the connectivity density
of the original networks were such that paths would eventually form and connect the ASEL
sensory neuron to the VB and DB motorneuron populations for Null networks derived from
both the Feed and Full Networks. Furthermore, the motorneuron populations always settled
into periodic activity patterns. However, unlike the Feed and Full Networks, coordinated and
synchronized contralateral alternating firing patterns were completely lost (Figures 2A,C). This
empirically emphasizes the putative intentional design of the underlying wiring of the C. elegans
connectome towards achieving an important behavioral function. The structural connectivity of
the connectome is not random, but has likely evolved in a purposeful way to subserve specific
purposes.

To understand how a single pulse stimulation of the ASEL neuron resulted in the firing
patterns of in the VB and DB classes, we decomposed the network activity into TSeqs (Methods:
4.7). A TSeq represents the causal nodal interactions between a set of start nodes and a set of
end nodes. Each TSeq is a walk, of an individual signal, on the graph from some start node
to some end node. TSeqs capture the signaling pathways of the network, as such, they enable
charting the course of a stimulus or any signal through the connectome. Only a subset of all
possible walks on a graph are realizable at any given time. This is due to network parameters
such as delays along edges, refractory periods of the nodes, and concurrent network activity.
We focused on the TSeqs which start at the ASEL neuron, and either terminate or traverse the
ventral, VB, or dorsal, DB, classes of motor neurons. We only computed TSeqs form ASEL to
the VB and DB neuronal classes to ascertain relevant neuronal signaling paths (NSPs).

To better visualize TSeqs, we created a TSeq plot (Methods: 4.8), that showed the traversal
of a set of TSeqs over time. On the TSeq plot the abscissa is time, and the ordinate is node
number, similar to a raster plot. Each curve in the TSeq plots traces the causal walk of a signal
on the structural connectome leading to the activation of a neuron of interest. The locations of
the motor neurons (end nodes) on the TSeq plot are indicated by the dark blue horizontal lines.
All the curves that are active in a time interval, trace the concurrent neuronal signaling pathways,
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which lead to subsequent activations of motor neurons from the neuronal classes of interest. To
reduce the visual clutter in the TSeq plot we do not explicitly mark the nodes on the walk. The
activated nodes are generally located at inflection points along the curve.

As anticipated based upon observing the histogram of node activity in the randomized net-
work (Figures 2B,D), the TSeqs plots of the randomized networks show a complete breakdown
of NSPs (Figures 3B,D) relative to TSeqs from the Full and Feed networks (Figures 3A,C). A
notable qualitative difference between the TSeqs of the edge randomized and original networks
was that the TSeqs of the Full and Feed networks enter a periodic regime of activity significantly
sooner. Additionally, the TSeqs in the randomized network displayed convoluted neuronal
signaling pathways relative to the orderliness of signaling pathways of the non-randomized
networks.

In Figures 3A,C we show the TSeq plots of the Feed and Full Network’s respectively.
Although the histograms of node activations showed a similar trend in class-wise VB and DB
motor neuron activations (Figures 2A,C), the TSeqs plots show that the NSPs in the Full Network
are markedly different (Figures 3A,C). We were motivated by this observation to develop a
quantitative approach to compare TSeqs.

2.3 Quantitative comparison of temporal sequences
We developed a quantitative method called the Temporal Sequence-Similarity Measure (TSeq-
SM). Before discussing the results, in the following section we first introduce the TSeq-SM
algorithm. Next we describe a set of networks, all derived from the Full network, for which we
computed TSeqs and then compared them using the TSeq-SM algorithm. In the last subsection
we discuss the TSeq-SM results.

2.3.1 Similarity Measure

We used the TSeq-SM to quantitatively determine the similarity between any two sets of TSeqs.
Sets of TSeqs can be derived from the same network or from different networks. Of the two
sets of TSeqs being compared by the TSeq-SM, one of the sets must be a user defined reference
network. The TSeq-SM is calculated relative to the length of each TSeq from the reference
network. We then count the number of TSeqs meeting some matching criteria α, where α is the
percent of the length of one sequence from a set matching some sequence from another set. The
TSeq-SM is similar to graph edit distances [56], but is applied to an ensemble of walks.

We outline the Similarity Measure in Algorithm (1). The inputs to the algorithms are
(X, Y, α). The output of this algorithms is the TSeq-SM value. The TSeq-SM result can be
stated in words as follows: Given network X as the reference, nX TSeqs out of a total of mX
TSeqs from network X , found a α match to some subset of TSeqs of out a total of mY TSeqs
from network Y . Upon completion of this procedure, we can ascertain the percent of TSeqs
from X finding a cα match by normalization: cα/mX .

Concretely, lets say we wish to calculate TSeq-SM between network X and network Y ,
where X is the reference. The sets X and Y respectively contain the TSeqs from networks X
and Y . Let the ith TSeq of X be denoted xi, and the jth TSeq of Y be denoted yj , both xi and
yj contain some number of node labels, each sequence of node labels representing a sequence
of causal activations. Each comparison of the TSeq is relative to a threshold α which is a
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percentage of total elements in a particular xi which in-order match the sequence yj (Algorithm
1, getTSSimilarityMeasure). For each x ∈ X we evaluate (1) for every y ∈ Y :

getTSSimilarityMeasure(xi, yj) ≥ α (1)

The output of (1) is either True or False. When (1) is True, a counter, cα, is incremented,
and the next TSeq from X , xi+1 is checked against all y ∈ Y . The final value of the counter, cα,
is number of TSeqs from X which met the criteria α relative to the TSeqs from Y . For example,
if 4 out of 5 node activations in some xi found an in-order match to some yj , and 4 out of 5 was
the best match with respect to all y ∈ Y , then we say xi meets the α = 0.8 criteria, and the
counter c0.8 is incremented by 1.

2.3.2 Networks Considered For Similarity Measure

We will list the networks we had used as input to the TSeq-SM algorithm and briefly describe
how we generated each of them. There were 9 different networks in total. All networks that we
considered were derived from the Full Network (Sec. 4.1).

As discussed in a prior section, the Feed Network contains a subset of the vertices of the
Full Network. For the new set of vertices in the Feed Network, the edge connectivity their
edge connectivity is preserved (4.2). In addition to the previously described Feed and Full
Gilbert Randomized networks, we derived two more random networks using an Edge Swap
randomization scheme (4.4). The two edge randomization procedures resulted in varying degrees
of edge reorganization, while maintaining the number of nodes and node locations.

Of the two randomization procedures, the less drastic network reorganization is the Edge
Swap based randomization because the network generation scheme prescribes that each existing
edge swap their terminal node [22] according to some probability, therefore, not all edges need
actually be different. The Edge Swap Random Network preserves various network parameters,
such as, out-degree and network connectedness. Additionally, based on the number of iterations
one chooses to run the Edge Swap procedure the network will steadily structurally deviate
from the original. In contrast the Gilbert based randomization procedure’s only constraint is to
maintain approximately the same number of edges between the original and the randomized
networks. Therefore, the Gilbert based edge randomization [28] is a more drastic form of
network reorganization.

The last set of networks we will discuss are called the Embedded Random Feed Networks
(Methods: 4.6). These network preserves the edge connections of the Full Network outside of
the Feed subnetwork. The subnetwork within the Full Network uses the same randomized edge
connection profile as the standalone randomized Feed Networks. Two Embedded Random Feed
Networks are generated, one based on the Gilbert Random Feed Network, the other based on
the Edge Swap Random Feed Network.

2.3.3 Similarity Measure Results

The results of the TSeq-SM are presented in Table 1. First, We will describe the organization of
the Table of results, next the results themselves. The reference networks for each TSeq-SM are
the antecedents in each of the column heading in the table. The top-half of Table 1 contains the
TSeq-SM results of the Gilbert based randomization, and the bottom-half of the table contains
the TSeq-SM results of the Edge Swap based randomization. In each half of the table, we show
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the TSeq-SM results resulting from each of the network pairs in the column heading. Stimulus
was applied at the ASEL sensory neuron in all the networks, and the TSeqs of interest were all
those which traversed the VB and DB sets of motor neurons.

Most generally, as the α-criteria increased, the number of TSeqs meeting the α-criteria
decreased. This is expected as the variation in the structural network will cause variation in
TSeqs. Therefore, fewer TSeqs from more structurally different networks will meet a higher α
values.

The results indicate that as the structure of networks diverge the TSeq-SM values decrease.
The TSeq-SM between the reference Feed Network and the Full Network was greater than the
TSeq-SM between each of them and their edge randomized counterparts. This is because the
Feed Network was more directly derived from the Full Network. Because of the less drastic
network reorganization of the Edge Swap Networks, the TSeq-SM values of the reference
Full/Feed Networks and their Edge Swap Randomized networks were higher than the TSeq-SM
values of the Full/Feed Networks and their Gilbert Randomized counterparts.

Surprisingly, although the Feed Network was derived from the Full Network, the Feed
Network in isolation only completely preserved 6 out of 124 TSeqs, i.e. α = 100%, the
remaining 118 TSeqs followed different neuronal pathways. Ideally, the dynamics of a Feed
Network should a subset of the dynamics of the Full Network. A natural question which arises
is: Can we build a better subnetwork? Contained in the 697 TSeqs contain the necessary set of
nodes required to construct a subnetwork. The sufficient set of nodes are those additional nodes
involved in the neuronal signaling pathways of the concurrent network activity which ensures
the existence of the 697 patterns. Determining the sufficient set of nodes is out of the scope of
this paper because that requires iterative simulation and TSeq-SM measurement

Given the relatively poor TSeq-SM between the Feed and Full Networks, we were interested
in quantifying the neuronal signal paths traversing nodes outside the Feed Network but in the the
Full Network which link ASEL to the VB and DB classes of neurons. There are possible several
approaches to generate an intermediate network which bridges the dynamical regime between
the isolated Feed Network and the Full Network. One approach is to remove all the vertices
and edges of the Feed Network from the Full Network, except those vertices associated with
ASEL, VB, and DB. If we were to remove all the vertices of the Feed Network from the Full
network certainly we would find TSeqs which lie completely outside the Feed Network. But
removing all the vertices and edges associated with the Feed Network from the Full Network can
drastically affect the overall dynamics of the network due to the absence concurrent dynamics.
To workaround this issue, we used the Embedded Random Feed Network (4.6).

Relative to the TSeq-SM values resulting from the comparison of the isolated Feed Network
(vs. Full Network), we observed higher TSeq-SM values while comparing the reference Full
Network and the Embedded Random Feed Networks (Table 1, 5th column). Although we found
no TSeqs met the α = 100% criteria, across α values the Embedded Random Feed Networks
better preserved TSeqs than the reference isolated Feed Network relative to the Full Network.

Although these results paint a cautionary tale for the analysis of isolated subnetworks, the
quantitative approach of comparing network dynamics provides an indicator its efficacy. Further
analysis of TSeqs provides an avenue for generating subnetworks, as well as preserving specific
network interaction patterns. Coupling experimental observations and theoretical considerations
with the TSeq-SM can provide a basis for choosing the constituents of a subnetwork.
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Algorithm 1 Similarity Measure Algorithm
1: procedure GETSIMILARITYMEASURE(X, Y, α)
2: for xi ← 1, |X| do
3: maxPercentMatch← 0
4: percentMatch← 0
5: for yj ← 1, |Y | do
6: percentMatch← getTSSimilarityMeasure(xi, yj)
7: if maxPercentMatch < percentMatch then
8: maxPercentMatch← percentMatch
9: if maxPercentMatch ≥ α then

10: count← count+ 1
11: thresholdMet← 1
12: break
13: end if
14: end if
15: end for
16: end for
17: return count
18: end procedure

19: procedure GETTSSIMILARITYMEASURE(xi, yj) . Compares the similarity of Temporal
Sequences xi and yj

20: cardx← |xi| . Store the number of elements in xi
21: cardy ← |yj| . Store the number of elements in yj
22: lasty ← 1
23: count← 0
24: for u← 1, cardx do . We sweep through all the elements of the TSeq xi looking for

in-order matches of elements in xi
25: for w ← lasty, cardy do
26: if xi[u] = yj[w] then
27: count← count+ 1
28: lasty ← yj[w]
29: else
30: continue . Go to the next iteraction of w for-loop
31: end if
32: end for
33: end for
34: PercentMatch = count/cardx
35: return PercentMatch
36: end procedure
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2.4 Decomposing temporal Sequences into their basis sequences
We decomposed the complex patterns of network activity into a basis set of TSeqs (Methods 4.9).
In brief, a basis set of TSeqs is a set of composed of TSeqs which arise from signals performing
one-time walks and repeating walks on the graph. Repeated walk exist by virtue of signals
traversing cycles of the graph. Each of the repeated TSeqs contained a set of sub-sequences,
where each sub-sequence is repeated some number of times to compose other observed TSeqs.
We can recompose all TSeqs from the set of One-Time walks and Repeated walks (given the
repeating sub-sequence and their repetitions).

To ascertain the basis set of TSeqs, we categorized each TSeq into One-Time Temporal
Sequences, and Repeated Temporal Sequences (Methods: 4.9). We found that the basis set of
the 697 observed TSeqs from the Full Network contained 50 One-Time TSeqs, and 20 Repeated
TSeqs. In Figures 4A and 4B we show the TSeq plot of One-Time and Repeated Sequences
respectively. While the entirety of the One-Time Sequences are displayed in the figure, we only
show the Repeated Sequences with a minimum of their repeating sub-sequences.

Each of the 50 One-Time TSeqs are unique because they did not match any of remaining 696
TSeqs (not counting the TSeq being compared). Since there were 50 unique TSeqs, out of 697
total TSeqs, the 20 Repeated TSeqs compose the remaining 647 observed TSeqs through some
sub-sequence repetition. Together the One-Time and Repeated Sequences form the minimal
description of the dynamics and can be used as for further analysis and network construction.

2.5 Interacting motor neuronal classes along neuronal signaling path-
ways

Forward and backward movement of C. elegans results from the synchronized activations of
banks of motor neurons [32] along its body. The cause of this synchronized activity involves the
interaction of several classes of neurons [17, 71]. We analyzed TSeqs to identify the interaction
between the various classes of mid-body motor neurons. We focused on TSeqs which started at
the ASEL neuron, and traversed the mid-body motor neurons from the DA, DD, DB, VA, VD,
and VB classes.

To determine the prevalence of various neuronal classes in neuronal signaling paths, we
counted the number of TSeqs which contained various motor-neuron classes. As a starting point,
in Figure 5A we show the number of TSeqs which contain neurons from individual classes. We
found that all of the classes implicated in movement were present in at least some of the TSeqs
(Figure 5A). Interestingly, the ventral side neuronal classes had significantly had more TSeqs
traverse their neurons than the dorsal side neuronal classes.

Although the order of classes along the signaling pathways are relevant, they were not
considered in this work because of the size of the permutation space. In Figures 5B,C,D we
show the results for the number of TSeqs with 2, 3, and 4, neuronal classes present. Generally,
as the number of classes present in a TSeq increased, the number of TSeqs decreased.

Our results on 3 and 4 class interactions, provides a future basis to experimentally test these
neuronal interactions. Interestingly, individual TSeqs contained at most 4 interacting neuronal
classes out of the possible 6 neuronal classes. Dynamics on the structural connectome limited
the neuronal signaling paths to 4 classes of neurons and no more.
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3 Discussion
A considerable body of work has approached the study of functional consequences from studying
the structure of networks such as C. elegans [64, 62, 63, 13]. Particularly with C. elegans,
detailed network analyses has focused on localized circuits [15, 29, 16, 71]. More recently, there
a number of papers have looked at analyzing the dynamics at the whole brain scale to inform C.
elegans research [35, 11, 70, 32, 1]. Our work here further contributes to this body.

We built a computational model of the dynamics of the C. elegans networks that uses
our recently published framework which focuses on how local interactions among connected
neurons give rise to the global dynamics in an emergent way to simulate the dynamics on C.
elegans connectome [58]. We then computed TSeqs to analyze the underlying neuronal signal
paths giving rise to the observed network activity. The analysis revealed that a single impulse
stimulation simulating a food stimulus to the ASEL neuron recruits relevant populations of
motor neurons with evoked neuronal activity patterns necessary for movement. Using TSs we
charted the causal neuronal signaling pathways implicated in the response to relevant stimuli.
Furthermore, our quantitative comparison of the network dynamics provided a quantitative
method to design sub-networks. We proposed the Basis Sequences as the minimal description
of the dynamics, which are not only compact signatures of the dynamics, but also provides
guidelines for building networks that preserve dynamic patterns of node activity. The repeating
set of basis sequences contain the pattern generators to sustain motor neuron activity. Finally, we
quantified the extent and prevalence of various classes of mid-body motor neurons in individual
neuronal signaling paths. These results suggest a number of interesting questions. For example,
how do structural features and connectivity regulate the number of interacting populations?
Why is there an imbalance between ventral and dorsal neuronal classes? And how well do the
theorized class interactions align with experiments?

We intentionally focused on the simplest neuronal model that preserved key parameters
significant in network signaling [58] in order to avoid getting bogged down by the biophysical
complexity of neuronal networks. Future studies could extend our analyses of C. elegans in a
number of ways. For example, by implementing a geometric framework with more complex
neuronal models, using detailed biophysical signaling parameters, or making incremental
modifications to the existing assumptions to uncover causal relationships supported by the
network’s structure.

TSeqs based approaches can be implemented in different scientific domains where a network
abstraction is possible and causal signaling dynamics can be discerned. Future work will
investigate how the contributions of various factors affecting signaling dynamics, such as,
edge/node models, network parameters and topology manifests itself in the causal relations
between nodes in the networks to uncover how the network behaves at different temporal and
spatial scales. Furthermore, we are interested in the stability and sensitivity of network dynamics
to small perturbations and to variation in initial conditions.

Other work can extend the mathematical analysis of TSeqs. To gain insights into the
structure of dynamics our approach for constructing TSeqs could be mapped to more complex
mathematical objects such as a graphs [66, 4] and other topological structures [20]. Although
we focused on the C. elegans connectome for this work, the analyses of TSeqs is agnostic to any
specific network model.
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4 Methods

4.1 Full Network Construction
Here, we will describe the computational model reconstruction of the C. elegans connectome
[67]. We will call the model of the entire structural connectome the Full Network. All other
networks in this work are derived from the Full Network. Mathematically, the network is a
directed geometric graph [22, 58]. A graph G is a pair G = (V,E). Where V is the set of
vertices/nodes/neurons, and E is the set of edges/link/axons such that E ⊆ V × V . A geometric
graph is a graph whose vertices are embedded in euclidean space. A network is an applied
instance of a graph, in our case a biological neuronal network. We consider directed networks
because a neuronal action potential propagation is unidirectional, that is, a signal travel in one
direction from one vertex to the next in one direction along an edge [34]. We used a simplified
version of the Geometric Dynamic Perceptron model to describe the dynamics of each vertex
[58]. In what follows we will discuss relevant network model parameters.

We constructed the directed adjacency matrix of the Full Network using publicly available
connectivity information [67, 33, 3]. Let A be the network adjacency matrix, if there is a
connection between neuron i and neuron j, then Aij = 1, otherwise Aij = 0. While neurons
communicate to each other through multiple channels, our model only considered chemical
connections between neurons, that is connections along axons. We did not consider electrical
connections through gap junctions. Combining the structural connectivity with the location of
neuronal cell bodies [19] we constructed the distance adjacency matrix. Out of the 302 neurons
which make up the hermaphrodite C. elegans connectome, only 207 neuron locations are known
[19]. Therefore, our final network consists of 277 vertices. We calculated the edge length using
the euclidean distance between somatic bodies.

Although, there is much debate as to whether C. elegans fires action potentials, for simplicity,
we assumed that some quanta of charge is transmitted between vertices through all-or-none
stereotyped nodal events [45, 41, 40, 46], i.e. action potentials. Once a vertex initiates an action
potential, the signal traverses all outgoing edges at a constant conduction velocity. We assumed
a conduction velocity of 80mm

s
which is within the theoretical range for this type of organism

[50]. We calculated the signaling time delays along edges through the geometrically derived
edge lengths and the conduction velocity.

All vertices in our network network model are either inhibitory or excitatory. Excitatory
vertices propagate excitatory signals through their edges. The response to an incoming excitatory
signal is either the activation of the vertex receiving that signal, or the addition of potential to the
receiving vertex’s membrane potential. If the receiving vertex’s membrane potential has exceeds
threshold, it in turn propagates signals along its edges, and the vertex becomes refractory for
the duration of its refractory period. The response to an incoming inhibitory signal is similar
except no outing signals are generated by the receiving vertex. Only the GABA expressing
neurons were considered inhibitory [26]. All other neurons types were considered excitatory
[51], including the unknown neuron types. While a receiving vertex is refractory, no incoming
signals will contribute its firing. The refractory period of all neurons are set to 4ms [8, 42].

Our network model uses a simplified version of the Geometric Dynamic Perceptron vertex
model. Let the state of vertex i at time t be given by yi(t) = {0, 1}. When the vertex is in the
active state y(t) = 1, when it is inactive y(t) = 0. While vertex i is initially in an inactive state
it can instantly transition to the active state; but when the vertex i is in the active state it will
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become refractory for the time interval of the refractory period. We set the threshold for vertex
activation to be one incoming signal. Therefore, when a signal arrives to the axon hillock of
vertex i and it is in the inactive state, instantaneously, an outgoing signal will be generated and
transmitted through all its outgoing edges.

We initialize network activity to quiescence. We initiate network activity by stimulating
the ASEL neuron with a single pulse stimulus, eliciting outgoing signals based on the network
connectivity. The simulation is run for approximately 1.5s of network activity, broken up into
6000 discrete time steps.

4.2 Feed Network Construction
The Feed Network [69] contains the neurons governing mid-body motorneuron response to feed
stimulus at the ASEL chemosensory neurons. The Feed Network is subset of the Full Network.
We reused the physical parameters from the Full Network for the Feed Network.

4.3 Lattice Network Construction
Our objective for constructing the Lattice Network was to study the affect of diminished influence
of variation in edge lengths. We derived the Lattice Network from the Full Network We used
the adjacency matrix of the Full Network in the Lattice Network. The difference between the
Full and Lattice Networks is in the signaling parameters. We accomplished this by setting the
edge signaling delays for all edges of the Lattice Network to 1tu (arbitrary time unit), and we
set the vertex refractory periods to 0.9tu. This ratio of refractory period to signaling delay is
considered to approach optimal from a local signaling perspective[58].

4.4 Edge-Swap Random Network Construction
We constructed a null model network called the Edge-Swap Random Network using the edge-
swapping algorithm[54]. The starting point for the randomization procedure is the original
network connectivity. The randomization procedure proceeds as follows: Two edges are
randomly selected. If the two edges have two distinct source nodes and two distinct destination
nodes, then the the two destination nodes are swapped, as long as the new edges from by the
swap do not already exist. If any of the nodes associated with the randomly selected edges are
the same, then two other edges are picked randomly, and the procedure is repeated. A network
connectedness check is performed to make sure a separate network component is not created
during the edge-swapping process. The number of times this process is repeated is approximately
to the number of edges in the network. Each cycle through all the edges is consider an iteration
of the algorithm. The code for the edge swapping algorithm can be found at [54].

We ran the algorithm for 10 iterations on both the Full Network and the Feed Network,
to generate their randomized versions. This randomization scheme preserves the node degree
distribution, by extension the number of edges in the network, and network connectedness. A
new distance adjacency matrix is computed from the final adjacency matrix.
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4.5 Gilbert Randomized Network Construction
Here we describe the randomization procedure we had used to generate the Gilbert Randomized
Network. The primary difference between between the Full Network and their Gilbert random-
ized [28, 52, 24] counterparts is in the edge connectivity pattern and the new resulting edge
lengths. The Gilbert random network was constructed based on the total number of edges in
the Full Network. We calculated the probability of edge connection as follows: Let N be the
number of nodes in the Full Network, and let e be the number of edges in the Full Network.

p =
e

N(N − 1)
(2)

To create the random adjacency matrix, we create a matrix of random number between 0 and 1,
then using p as the threshold value, we set the values of the matrix to 0 if the previous value was
greater than p and 1 if the previous value was less than p. This results in an adjacency matrix of
0s and 1s with approximately the same number of edges in the Gilbert Randomized Network
as in the Full Network. Using the positional data for the neurons, we calculated a distance
adjacency matrix based on the resulting network connectivity. The signaling parameters of the
Gilbert Randomized Networks were the same as the Full Network.

4.6 Embedded Random Feed Network Construction
We embedded the (Gilbert or Edge-Swap) edge randomized Feed Network into the Full Network
to generate the Embedded Random Feed Network. We constructed this network by replacing the
rows and columns of Full Network’s distance adjacency matrix with the values from the distance
adjacency matrix of the edge randomized Feed Networks (see Sec. 4.4 and Sec. 4.5). All the
signaling parameters of the Full Network were reused for the Edge Randomized Feed Network.

4.7 Temporal Sequence Construction
A Temporal Sequence (TS) is a specific type of walk on a graph [22]. The walk follows the
trajectory of a quanta of signal between vertices along edges on a graph. In our network
setting, TSs describe the trajectories of action potentials (discrete signals), along axons (edges),
connecting neurons (vertices). The trajectory consists of a set of vertices traversed by the action
potential emanating from the initial vertex activation.

Let us say we have a graph G = (V,E), which is a pair of sets formed by vertices, V and
edges, E. Their elements are v ∈ V and e ∈ V × V . At time t = 0 lets say that node v0, some
element in V , activates. Assume that v0 has an outgoing edge to v1, once the action potential
from v0 reaches v1, v1 activates, which in turn generates an action potential. Lets say that
this process continues until at some time t = tf node vtf activates. The sequence of vertices
Xtf = (v0, v1 · · · vtf ) is the TS starting at v0(start node) traversing vtf (end node). Generally, a
set of TSs results between start node and end node in a time interval.

Since we were interested in TSs which traverse specific nodes in the network, we specified
some start vertex (or set of vertices) for a TS and some end/traversed vertex (or set of vertices).
In this work the set of start nodes contains only one element, ASEL, and the set of end nodes
(more specifically traversed nodes) contain the neurons from the VB and DB classes. The
resulting set of TSs represent the parallel paths through the graph traversed by signals beginning
at the start node and traversing the end node over a time interval of interest.
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4.8 Temporal Sequence Plot Description
We construct a plot similar to the raster plot to visualize the evolution of Temporal Sequences.
We call this new plot a Temporal Sequence plot (TS plot). It has time steps on the x-axis,
and node number on the y-axis. Each curve represents the causal trajectory of node activity,
represented by a TS, over time. We separate each TS curve by color.

The activation of different parts of a network can result from shared neuronal pathways.
Those TSs contain shared sub-sequences which are represented by overlapping curves on the TS
plot. For example, in Fig. 4A we observe that all the Repeated TSs go through the same set of
nodes at stimulus onset, before splitting into various Basis TSs.

In order to better visualize the paths through the nodes of interest, we drew blue horizontal
lines on the TS plots. Each horizontal line is at the height of a neuron from to the VB and DB
sets of neurons. In the Feed Network the DB neurons are located on the y-axis in the range
from 17 to 23, while the VB neurons are located on the y-axis in the range from 31 to 41. In the
Full Network the DB neurons are located on the y-axis in the range from 94 to 100, while VB
neurons are located on the y-axis in the range from 248 to 258.

4.9 Basis Sequence Construction
The Basis Temporal Sequences (Basis TSs) are derived from the original set of TSs captured
over the course of the dynamics of interest. Basis TSs consist of two sets of sequences, the set of
One-Time Temporal Sequences (One-Time TSs) and the set of Repeating Temporal Sequences
(Repeating TSs). First, we will give the intuition behind each of the constituent sets of sequences,
then we will define them in more detail. Repeating sub-sequences result from signals traversing
cycles on a graph. The vertices and edges involved in the closed walk can give rise to repeating
network activity are candidate pattern generators of the network. Of the TSs captured over the
course of the network dynamics, some result from graph cycles differ from one another only in
the number of repeating sub-sequences. For each TS which differ in repeating sub-sequences, we
create a compressed TS. We compose a set consisting of all the compressed TSs, and we name it
the set of Repeating TSs. Given the description of the set of Repeating Temporal Sequences, we
can readily describe the set of One-Time TSs as the remaining TSs which are not Repeating TSs.

Let X be the set of all TSs. Next, let R be the set of Repeating TSs in X , where R ⊆ X ,
and finally let U be the set of One-Time TSs, where U ⊆ X . We constrain the sets R and U
such that R ∩ U = ∅, that is, no TSs can be both a member of the Repeating TSs, as well as, the
One-Time TSs.

Next, we will show how to ascertain whether some xi ∈ X should be a member of R. The
elements of R are such that for some ri ∈ R and rj ∈ R, the only difference between ri and
rj is in the repetition of some sub-sequences between ri and rj . Let us assume that xi contains
sub-sequences which repeat in different parts of its sequence. Let I = {i1, i2 · · · in} be the set
of repeating sub-sequences of xi. Where each i ∈ I is the sub-sequence but without repeats, that
is, each element of I is a primitive sequence. To account for the repeats, let K = {k1, k2 · · · kn}
be the set containing the number of repetitions of each of the primitive sequences in I . Now, any
x ∈ X can be re-written as combination of primitive sequences together with its non-repeating
sub-sequences. Concretely, given some TS x, we compress all its repeating sub-sequences in the
form of ikjj , where j is the jth sub-sequence in I , which takes on kj repetitions.

Every TS, xi ∈ X , which can be derived from changing the number of repetitions of a
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primitive sequence, to match another sequence, xj ∈ X is considered a Repeating TS. Both
xi and xj are considered elements of R. Contained in the set I are the candidate pattern
generators[30, 43] of the network, that is, the sequence of vertex activations which sustain
ongoing network activity, and the realized cycles of the graph. It is not necessary that the
dynamics realizes all the possible cycles of the graph. Because the elements of R are attained
from observation, that Repeating TSs are not necessarily represent true periodic network activity,
in the sense that it is guaranteed to repeat indefinitely.

Given the definition of Repeating Sequences, we can define the set U of One-Time TSs as
U = {u|u ∈ X, u /∈ R}. The difference between R and U is that for all xi ∈ U there is no
other sequence xj ∈ X such that the difference between xi and xj is only in some repetition of
a sub-sequence in xi. Note ui ∈ U may contain repeating sub-sequences. Since there are many
approaches to ascertain Basis TSs, we do not provide an explicit algorithm to extract Basis TSs.
It is possible to reconstruct all TSs in X form the the Basis TSs and knowledge of the number
of repetitions of each sub-sequence.
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Figures and Tables

Table 1: Table of Similarity Measures. The columns contain the pairs of networks compared. The rows in the
leftmost column of the table represent the percent of a TS (the matching criteria α in Sec. 2.3.1) which matched
any of the TSs from the reference network. The heading for each column are organized as reference network vs.
target network. The cells in the table represent the number of TSs of the reference network which found a match
TS from the target network meeting the corresponding row’s matching criteria.

Gilbert Rand Based Network

Percent match
Feed(124) vs Feed
Rand(598)

Feed(124) vs
Full(697)

Feed(124) vs
Embedded Rand
Feed(649)

Full(697) vs Embed-
ded Rand Feed(649)

Full(697) vs Full
Rand(665)

0.00% 124 124 124 697 697
25.00% 9 78 9 576 10
50.00% 0 33 0 36 1
75.00% 0 13 0 3 0

100.00% 0 6 0 1 0
Edge Swapped Network

Percent match
Feed(124) vs Feed
Rand(130)

Feed(124) vs
Full(697)

Feed(124) vs
Embedded Rand
Feed(674)

Full(697) vs Embed-
ded Rand Feed(674)

Full(697) vs Full
Rand(643)

0.00% 124 124 124 697 697
25.00% 50 78 9 688 16
50.00% 6 33 0 614 2
75.00% 3 13 0 422 0

100.00% 1 6 0 0 0
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Figure 1: (A), The reconstruction of the C. elegans connectome. Each gray line represents an edge. Each edge
represents chemical connections between nodes. The colored dashed lines represents a sample of the traversal
of a signal from the sensory neuron ASEL through the interneurons in the network to the VB and DB classes
of motor-neurons. The color gradient indicates the time course as the signal traverses the network. Cold colors
represent early in the neuronal signaling pathway and warm colors represent late in the neuronal signaling pathway.
The node labels and numbers next to them represent the names of the motor neurons at the terminus of the sequence
of activations and the time step when that terminal node was activated. (B), The Full Network’s spike raster
resulting from ASEL stimulation. The activity is a direct result of the signaling parameters (signal conduction
velocity, refractory period), network connectivity, and the spatial locations of each of the nodes. Each dot represents
the activation of a node in the network, the white space represents an inactive state of the node. Each discrete height
on y-axis represents a specific node in the network. (C), The Lattice Network’s spike raster caused by stimulating
ASEL. The Lattice Network preserves the signaling parameters and network connectivity, but in effect modifies
the spatial locations relative to the Full Network. We set the delays for all edges in the Lattice Network to be the
same. The resulting spike raster is significantly less varied than that of the Full Network. We will quantify this
previous statement with the next panel. (D), Each curve is a cumulative count of the unique number of network
states of presented by the Full (red curve) and Lattice (blue curve) Networks as they evolve over time. We observe
an approximately a 20 times more network states in the dynamics of the Full Network than dynamics of the Lattice
Network.
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Figure 2: Histograms of the number of firings of nodes from the VB (orange rectangles) and DB (blue rectangles)
classes. The bin size of the histogram is 250 time steps. (A) Histogram of the Feed Network’s VB and DB class
motorneurons activations. We observe that the VB and DB classes of motorneurons activate in an alternating
pattern. (B) Histogram of the Gilbert Randomized Feed Network’s VB and DB class neurons activations. Because
the randomization procedure significantly modified the network connectivity, the class based alternating neuronal
activation pattern was decimated. We observe a semblance of periodic node activations from the VB and DB classes
after approximately 3000 time steps. (C) Histogram of the Full Network’s VB and DB class neurons activations.
The C. elegans connectome gives rise to significantly more activity in the VB and DB classes of motor neurons
in comparison to the activity in the Feed Network, Panel A. The dynamics on the Full Network also supported
alternating VB, DB class activity. Because of the density of node activation, in the inset we show a zoomed in view
of a sub-interval of activity to better view the VB-DB class alternating neuronal activation pattern. (D) Histogram
of the Gilbert Randomized Full Network’s VB and DB class neurons activations. The randomization procedure
resulted in the destruction of the class-wise alternating neuronal activation pattern.
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Figure 3: TS Plots. All TSs from ASEL to the VB and DB classes. (A), TS plot of Feed Network. The activation
patterns of neurons in the VB and DB classes are synchronized and staggered eventually giving rise to periodic
sequences of node activity. (B), TSs of the Gilbert Randomized Feed Network. Synchronized and staggered
activations from the VB and DB class are absent. Transient period of network activity is longer than in Panel A.
The TSs eventually enter a periodic sequences of node activity. There were significantly more TSs resulting from
the randomized network in comparison to the TSs from the Feed Network as in Panel A. (C), The number of TSs
resulting for stimulating ASEL in the Full Network were significantly more than those from the Feed Network.
Furthermore, the number of motor neurons were activated at a faster rate than they were in the Feed Network. This
indicates that there are many other signaling pathways or more active signaling pathways from ASEL to the VB and
DB classes of motor neurons which are either not captured or not as quickly activated by the Feed Network. The
TSs of the Full Network seem to enter periodic activity within the first 1000 simulation time steps. (D), TSs from
Gilbert Randomized Full Network. The TS displayed a significantly longer transient period before the network
activity entered a periodic regime. The transient period lasted approximately for the first 2000 steps of network
activity.
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Figure 4: TS plots of the basis set of TSs from the Full Network. The basis set contains One-Time TSs and Repeated
TSs. One-time TSs contain TSs which represent transient vertex activity on the network, and the Repeated TSs
contain TSs which represent steady-state or repeating vertex activity on the network. (A), TS plot of Repeated
TSs. These TSs contain sub-sequences that when repeated some number of time is an exact match for another TS
captured over the course of the network dynamics. (B), TS plot of One-Time TSs. These TSs are unique neuronal
signaling paths present in the dynamics.
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Figure 5: The interaction of various mid-body motorneuronal classes implicated in movement response upon
stimulating ASEL in the context of the Full Network. We expand the motorneuron classes under consideration
to include DA, DD, DB, VA, VD, and VB classes. We color code the dorsal side classes in blue and the ventral
size classes in green. To elucidate the classes implicated in individual TSs, as a result of ASEL stimulation, we
counted the number of TSs which contained at least one, two, three and four classes out of the six total classes
under consideration. We only show 4 panels because there were no TSs which contained five or more classes in
them. (A), The values in each of boxes indicate the number of TSs with the specific neuronal class present within
the TS. For example, looking at the box labeled DA, at least one of the neurons in the DA class was present in
325 TSs. The ventral classes were over-represented in TSs with single classes present. (B), Here we considered
the presence of any two classes of motor neurons in individual TSs. The most prevalent two classes present were
neurons from the VA-VB classes. Only the DB-DD class interaction was not observed in any of the TSs captured.
(C), Here we considered three class interactions. The classes present in the TSs are given by the lines connecting
the boxes. The number of sequences are given by the circles. Here we observe significantly fewer TSs than in Panel
B. (D), There are significantly fewer TSs meeting the four present classes criteria. We do not consider the order of
present classes because of the much bigger combinatorial space to visualize.
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