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Abstract

Motivation: Predicting cell locations is important since with the understanding of cell locations, we may
estimate the function of cells and their integration with the spatial environment. Thus, the DREAM Chal-
lenge on Single Cell Transcriptomics required participants to predict the locations of single cells in the
Drosophila embryo using single cell transcriptomic data.
Results: We have developed over 50 pipelines by combining different ways of pre-processing the RNA-seq
data, selecting the genes, predicting the cell locations, and validating predicted cell locations, resulting in
the winning methods for two out of three sub-challenges in the competition. In this paper, we present an R

package, SCTCwhatateam, which includes all the methods we developed and the Shiny web-application
to facilitate the research on single cell spatial reconstruction. All the data and the example use cases are
available in the Supplementary material.
Keywords: cellular position prediction, single cell transcriptomics, DREAM challenge
Availability: The scripts of the package are available at
https://github.com/thanhbuu04/SCTCwhatateam and the Shiny application is available at
https://github.com/pvvhoang/SCTCwhatateam-ShinyApp
Contact: Thuc.Le@unisa.edu.au
Supplementary information: Supplementary data are available at Briefings in Bioinformatics online.

1 Introduction
Single cell sequencing (scRNAseq) methods quantify the gene expression
levels across thousands of cells of the same tissue, but the methods do not
provide spatial information of the cells. The spatial information of cells
is important in predicting functional roles of individual cells. Therefore,
computational methods are required for reconstructing the spatial infor-
mation [1, 6, 3] from single-cell RNA datasets and reference databases.
The DREAM Challenge on Single Cell Transcriptomics used known spa-
tial information of single cells in the early Drosophila embryo [4] as the
ground-truth and required participants to develop computational methods

to predict cell locations using only 60 genes (sub-challenge 1), 40 genes
(sub-challenge 2), and 20 genes (sub-challenge 3) from the single cell
RNA-seq dataset with 8924 genes of 1297 cells. As Karaiskos et al [4] had
successfully reconstructed the cell locations using 84 marker genes, par-
ticipants were given the expression levels of the 84 genes as the reference
database in addition to the RNA-seq dataset.

We have developed methods to predict cell locations using less 84
genes (i.e. 60, 40 or 20 genes respectively). In our methods, we employ
imputation to process missing data in the single cell RNA-seq dataset and
select genes which are most unlikely to be predicted by other genes to
be used in the prediction. In addition, we use the Matthews Correlation
Coefficient score (MCC) [5] and the Local Outlier Factor (LOF) method
[2] for cell location prediction.
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Because of the excellent performance of our methods and pipelines in
predicting cell locations, we won two (sub-challenges 1 and 2) out of the
three sub-challenges. To make the winning methods accessible to resea-
rchers for spatial cell reconstruction using single cell RNA-seq data, we
have implemented all of these methods as anR package, SCTCwhatateam.
Moreover, we have built aShiny web-application to allow users to upload
their own datasets, customise their "recipe" by selecting methods in each
component of the pipeline, and download the prediction results. As the
winning methods of the challenge, we believe the package and the Shiny
application will be useful for researchers to explore their data and/or to
use our methods as the benchmark methods for testing their new methods.

2 Implementation and main functions

2.1 Overview

The SCTCwhatateam package contains three main components (steps) for
predicting cell locations: data pre-processing, feature (gene) selection, and
cell location prediction, as shown in Fig. 1. For each of the components,
we have developed multiple methods. Using different methods in each
component will result in different pipelines.

Fig. 1. Workflow of SCTCwhatateam SCTCwhatateam has three components, including
data preprocessing, gene selection, and prediction. Each component has multiple methods
and each pipeline is a combination of a method in each component.

2.2 The components of the package

In the following, we describe each of the three components of SCTCw-
hatateam. The details of the available methods for each component are
described in Section 2 of the Supplementary material.

• Data pre-processing: To process data in a single cell RNA sequencing
dataset, two methods, z-score Normalisation and MAGIC [8], are
implemented. z-score Normalisation is used to normalise the raw data
and MAGIC is used to impute missing values.

• Gene selection: To select the important genes which can be used for
the prediction, we have developed 8 new methods based on the gene
expression and biological information of spatial marker genes (i.e.
genes in Section 1 of the Supplementary material). We also employ 3
existing unsupervised feature selection methods based on linear regres-
sion, including General Stepwise Linear Regression, Reverse Stepwise
Linear Regression, and Forward Stepwise Linear Regression.

• Cell location prediction: Three methods have been implemented in the
package for cell location prediction: Matthews Correlation Coefficient
score (MCC) [5], Local Outlier Factor (LOF) [2], and Pearson corre-
lation coefficient. MCC predicts cell locations based on the matching
of gene expression in cells and locations. LOF is used together with
MCC to eliminate outlier locations. Pearson correlation coefficient
predicts cell locations by matching cells and locations on continuous
sequencing data.

2.3 Implementation

The R scripts of the package are available at
https://github.com/thanhbuu04/SCTCwhatateam and the vignette is illu-
strated in Supplement. The Shiny application is available at
https://github.com/pvvhoang/SCTCwhatateam-ShinyApp.

3 Applications and conclusion
We have applied the proposed methods and workflow to predict the positi-
ons for each of the 1,297 cells in the DREAM challenge. We participated
all three sub-challenges. We evaluated our methods mainly based on ave-
rage distance and we used the number of bins as an additional indicator to
select the methods for submissions. The three pipelines, as shown in Table
1, were submitted to the challenge and two of them were the winners of
the sub-challenges [7] (see the detailed results in Supplementary material
Section 3).

Table 1. Three pipelines submitted to the challenge. Details of the winning
methods are in the Supplement.

Pre-processing Feature selection #genes Prediction Ranking among 34
participating teams

MAGIC Seed-Based-Genes 60 MCC&LOF Tied 1
MAGIC Distance-Based-Genes 40 MCC&LOF 1
Normalisation Linear Regression 20 MCC&LOF 3

To provide users the flexibility of using the SCTCwhatateam package,
we have integrated it into a Shiny application. With the Shiny applica-
tion, besides using the Drosophila dataset used by the DREAM challenge,
users can upload their own dataset and then choose different methods
in processing data, selecting genes, and predicting cell locations, and
evaluating the predictions based on their needs.

In conclusion, we have developed anRpackage to predict cell locations
and integrated it in a Shiny application. The effectiveness of the package
is proved as we are the winners in the DREAM challenge. We hope that
the tools will be useful for single cell spatial prediction research.
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Key points
• Developing methods to predict cell locations, including methods for

data preprocessing, gene slection, and location prediction
• Providing the R package of SCTCwhatateam which includes all of the

methods to make the methods accessible to researchers for spatial cell
reconstruction using single cell RNA-seq data

• Building a Shiny web-application to allow users to upload their
own datasets, customise their "recipe" by selecting methods in each
component of the pipeline, and download the prediction results

• Applying the proposed methods and workflow to predict the cell positi-
ons for the DREAM single cell transcriptomics challenge and being the
winners in two (sub-challenges 1 and 2) out of the three sub-challenges
in the DREAM challenge
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