
 1 

Title (117 characters): Transmission of West Nile and other temperate mosquito-borne 1 

viruses peaks at intermediate environmental temperatures 2 

Marta S. Shocket1,2* (mshocket@stanford.edu), Anna B. Verwillow1 (anna19@stanford.edu), 3 

Mailo G. Numazu1 (mnumazu@stanford.edu), Hani Slamani3 (hanis1@vt.edu), Jeremy M. 4 

Cohen4,5 (jcohen39@wisc.edu), Fadoua El Moustaid6 (fadoua@vt.edu), Jason Rohr4,7 5 

(jasonrohr@gmail.com), Leah R. Johnson3,6 (lrjohn@vt.edu), and Erin A. Mordecai1 6 

(emordeca@stanford.edu) 7 

  8 
1Department of Biology, Stanford University, Stanford, CA, USA 9 

2Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los 10 

Angeles, CA, USA 11 

3Department of Statistics, Virginia Polytechnic Institute and State University (Virginia Tech), 12 

Blacksburg, Virginia, USA 13 

4Department of Integrative Biology, University of South Florida, Tampa, FL, USA 14 

5Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, USA 15 

6Department of Biological Sciences, Virginia Polytechnic Institute and State University (Virginia 16 

Tech), Blacksburg, Virginia, USA 17 

7Department of Biological Sciences, Eck Institute of Global Health, Environmental Change 18 

Initiative, University of Notre Dame, South Bend, IN, USA 19 

 20 
Keywords: Culex pipiens, Culex tarsalis, Culex quinquefasciatus, West Nile virus, Western 21 

Equine Encephalitis virus, Eastern Equine encephalitis virus, St. Louis Encephalitis virus, Rift 22 

Valley Fever virus, Sindbis virus, Ockelbo disease, mosquito-borne disease, infectious disease, 23 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 10, 2020. ; https://doi.org/10.1101/597898doi: bioRxiv preprint 

https://doi.org/10.1101/597898


 2 

temperature 24 

* Corresponding Author: Marta S. Shocket, mshocket@stanford.edu, phone: 650-723-5923 25 

 26 

Availability of data and material: Upon acceptance, all data and code will be submitted to Dryad 27 

repository and the appropriate web link will be listed here for publication. 28 

Authors' contributions: EAM, LRJ, and MSS conceived of and designed the study. MN, AV, HS, 29 

FEM, and MSS collected trait data. MN and MSS fit models. JC compiled West Nile virus case 30 

data and climate data. JC and MSS analyzed West Nile virus case data. MSS wrote the first draft 31 

of the manuscript. All authors revised and approved the manuscript.  32 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 10, 2020. ; https://doi.org/10.1101/597898doi: bioRxiv preprint 

https://doi.org/10.1101/597898


 3 

ABSTRACT (150 WORDS = LIMIT) 33 

The temperature-dependence of many important mosquito-borne diseases has never been 34 

quantified. These relationships are critical for understanding current distributions and predicting 35 

future shifts from climate change. We used trait-based models to characterize temperature-36 

dependent transmission of 10 vector–pathogen pairs of mosquitoes (Culex pipiens, Cx. 37 

quinquefascsiatus, Cx. tarsalis, and others) and viruses (West Nile, Eastern and Western Equine 38 

Encephalitis, St. Louis Encephalitis, Sindbis, and Rift Valley Fever viruses), most with 39 

substantial transmission in temperate regions. Transmission is optimized at intermediate 40 

temperatures (23–26ºC) and often has wider thermal breadths (due to cooler lower thermal 41 

limits) compared to pathogens with predominately tropical distributions (in previous studies). 42 

The incidence of human West Nile virus cases across US counties responded unimodally to 43 

average summer temperature and peaked at 24ºC, matching model-predicted optima (24–25ºC). 44 

Climate warming will likely shift transmission of these diseases, increasing it in cooler locations 45 

while decreasing it in warmer locations.   46 
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INTRODUCTION 47 

Temperature is a key driver of transmission of mosquito-borne diseases because the 48 

mosquitoes and pathogens are ectotherms whose physiology and life histories depend strongly on 49 

environmental temperature [1–8]. These temperature-dependent traits drive the biological 50 

processes required for transmission. For example, temperature-dependent fecundity, 51 

development, and mortality of mosquitoes determine whether vectors are present in sufficient 52 

numbers for transmission. Temperature also affects the mosquito biting rate on hosts and 53 

probability of becoming infectious.  54 

Mechanistic models based on these traits and guided by principles of thermal biology 55 

predict that the thermal response of transmission is unimodal: transmission peaks at intermediate 56 

temperatures and declines at extreme cold and hot temperatures [2–12]. This unimodal response 57 

is predicted consistently across mosquito-borne diseases [2–8] and supported by independent 58 

empirical evidence for positive relationships between temperature and human cases in many 59 

settings [5,13–16], but negative relationships at extremely high temperatures in other studies 60 

[2,16–19]. Accordingly, we expect increasing temperatures due to climate change to shift disease 61 

distributions geographically and seasonally, as warming increases transmission in cooler settings 62 

but decreases it in settings near or above the optimal temperature for transmission [20–23]. Thus, 63 

mechanistic models have provided a powerful and general rule describing how temperature 64 

affects the transmission of mosquito-borne disease. However, thermal responses vary among 65 

mosquito and pathogen species and drive important differences in how predicted transmission 66 

responds to temperature, including the specific temperatures of the optimum and thermal limits 67 

for each vector–pathogen pair [2–7]. We currently lack a framework to describe or predict this 68 

variation among vectors and pathogens.  69 
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Filling this gap requires comparing mechanistic, temperature-dependent transmission 70 

models for many vector–pathogen pairs. However, models that incorporate all relevant traits are 71 

not yet available for many important pairs for several reasons. First, the number of relevant 72 

vector–pathogen pairs is large because many mosquitoes transmit multiple pathogens and many 73 

pathogens are transmitted by multiple vectors. Second, empirical data are costly to produce, and 74 

existing data are often insufficient because experiments or data reporting were not designed for 75 

this purpose. Here, we address these challenges by systematically compiling data and building 76 

models for understudied mosquito-borne disease systems, including important pathogens with 77 

substantial transmission in temperate areas like West Nile virus (WNV) and Eastern Equine 78 

Encephalitis virus (EEEV). Accurately characterizing the thermal limits and optima for these 79 

systems is critical for understanding where and when temperature currently promotes or 80 

suppresses transmission and where and when climate change will increase, decrease, or have 81 

minimal effects on transmission. 82 

In this study, we model the effects of temperature on an overlapping suite of widespread, 83 

important mosquito vectors and viruses that currently lack complete temperature-dependent 84 

models. These viruses include: West Nile virus (WNV), St. Louis Encephalitis virus (SLEV), 85 

Eastern and Western Equine Encephalitis viruses (EEEV and WEEV), Sindbis virus (SINV), and 86 

Rift Valley fever virus (RVFV) [24–28] (summarized in Table 1). All but RVFV sustain 87 

substantial transmission in temperate regions [24–28]. We selected this group because many of 88 

the viruses share common vector species and several vector species transmit multiple viruses 89 

(Table 1, Fig 1). All the viruses cause febrile illness and severe disease symptoms, including 90 

long-term arthralgia and neuroinvasive syndromes with a substantial risk of mortality in severe 91 

cases [24–28]. Since invading North America in 1999, WNV is now distributed worldwide 92 
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[21,24] and is the most common mosquito-borne disease in the US, Canada, and Europe. SLEV, 93 

EEEV, and WEEV occur in the Western hemisphere (Table 1), with cases in North, Central, and 94 

South America [28–30]. For EEEV, the North American strains are genetically distinct and more 95 

virulent than the Central and South American strains [28]. An unusually large outbreak of EEEV 96 

in the United States last year (2019) has yielded incidence four times higher than average (31 97 

cases, resulting in 9 fatalities) and brought renewed attention to this disease [31]. SINV occurs 98 

across Europe, Africa, Asia, and Australia, with substantial transmission in northern Europe and 99 

southern Africa [26,28]. RVFV originated in eastern Africa and now also occurs across Africa 100 

and the Middle East [27]. These pathogens primarily circulate and amplify in wild bird reservoir 101 

hosts (except RVFV, which primarily circulates in livestock). For all six viruses, humans are 102 

dead-end or unimportant reservoir hosts [28,32], in contrast to pathogens like malaria, dengue 103 

virus, yellow fever virus, and Ross River virus, which sustain infection cycles between humans 104 

and mosquitoes [28,33,34]. Most transmission of RVFV to humans occurs through direct contact 105 

with infected livestock (that are infected by mosquitoes), and to a lesser extent via the mosquito-106 

borne transmission from infected vectors [32]. 107 
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 108 

Figure 1: Viruses transmitted by a community of vectors. The six viruses in this study (WNV 109 

= West Nile virus, SLEV = St. Louis Encephalitis virus, EEEV = Eastern Equine Encephalitis 110 

virus, WEEV = Western Equine Encephalitis virus, SINV = Sindbis virus, RVFV = Rift Valley 111 

Fever virus) and the Culex (Cx.), Aedes (Ae.), Coquillettidia (Cq.), and Culiseta (Cs.) vectors 112 

that are important for sustaining transmission to humans. Grey shading indicates an important 113 

vector-virus pair; hatching indicates available temperature-dependent data for infection traits 114 

(parasite development rate [PDR] and vector competence [bc or b and c]). The importance of 115 

each vector for transmission may vary over the geographic range of the virus. Infection data were 116 

available for SINV and RVFV in Ae. taeniorhynchus, although this North American mosquito 117 

does not occur in the endemic range of these pathogens. Data sources: [25–27,32,76]. 118 
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 119 

Table 1: Properties of six viruses transmitted by an overlapping network of mosquito 120 

vectors. Sources: WNV [24,25,140,147–150]; SLEV [25,29]; EEEV [25,30]; WEEV [25]; SINV 121 

[26]; RVFV [27,32,76,151]. 122 
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We primarily focus on Culex pipiens, Cx. quinquefasciatus, and Cx. tarsalis, well-studied 123 

species that are important vectors for many of the viruses and for which appropriate temperature-124 

dependent data exist for nearly all traits relevant to transmission. Although the closely-related 125 

Cx. pipiens and Cx. quinquefasciatus overlap in their home ranges in Africa, they have expanded 126 

into distinct regions globally (Fig 2) [35]. Cx. pipiens occurs in higher-latitude temperate areas in 127 

the Northern and Southern hemisphere, while Cx. quinquefasciatus occurs in lower-latitude 128 

temperate and tropical areas (Fig 2A). By contrast, Cx. tarsalis is limited to North America but 129 

spans the tropical-temperate gradient (Fig 2B). In this system of shared pathogens and vectors 130 

with distinct geographical distributions, we also test the hypothesis that differences in thermal 131 

performance underlie variation in vector and pathogen geographic distributions, since temperate 132 

environments have cooler temperatures and a broader range of temperatures than tropical 133 

environments. We also include thermal responses from other relevant vector or laboratory model 134 

species in some models: Aedes taeniorhynchus (SINV and RVFV), Ae. triseriatus (EEEV), Ae. 135 

vexans (RVFV), Cx. theileri (RVFV), and Culiseta melanura (EEEV). Additionally, we compare 136 

our results to previously published models [2–4,6,7] for transmission of more tropical diseases 137 

by the following vectors: Ae. aegypti, Ae. albopictus, Anopheles spp., and Cx. annulirostris. 138 
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 139 

Figure 2: Culex spp. vectors of West Nile and other viruses have distinct but overlapping 140 

geographic distributions. The geographic distribution of the primary vectors of West Nile 141 

virus: (A) Culex pipiens (dark grey) and Cx. quinquefasciatus (red), adapted from [35,83]; (B) 142 

Cx. tarsalis (blue), northern boundary from [84], southern boundary based on data from the 143 

Global Biodiversity Information Facility. Figure created by Michelle Evans for this paper.  144 

 145 

We use a mechanistic approach to characterize the effects of temperature on vector–virus 146 

pairs in this network using the thermal responses of traits that drive transmission. Specifically, 147 

we use experimental data to measure the thermal responses of the following traits: vector 148 

survival, biting rate, fecundity, development rate, competence for acquiring and transmitting 149 

each virus, and the extrinsic incubation rate of the virus within the vector. We ask: (1) Do these 150 

vectors have qualitatively similar trait thermal responses to each other, and to vectors from 151 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 10, 2020. ; https://doi.org/10.1101/597898doi: bioRxiv preprint 

https://doi.org/10.1101/597898


 11 

previous studies? (2) Is transmission of disease by these vectors predicted to be optimized and 152 

limited at similar temperatures, compared to each other and to other mosquito-borne diseases in 153 

previous studies? (3) How do the thermal responses of transmission vary across vectors that 154 

transmit the same virus and across viruses that share a vector? (4) Which traits limit transmission 155 

at low, intermediate, and high temperatures? Broadly, we hypothesize that variation in thermal 156 

responses is predictable based on vectors’ and viruses’ geographic ranges.  157 

Mechanistic models allow us to incorporate nonlinear effects of temperature on multiple 158 

traits, measured in controlled laboratory experiments across a wide thermal gradient, to 159 

understand their combined effect on disease transmission. This approach is critical when making 160 

predictions for future climate regimes because thermal responses are almost always nonlinear, 161 

and therefore current temperature–transmission relationships may not extend into temperatures 162 

beyond those currently observed in the field. We use Bayesian inference to quantify uncertainty 163 

and to rigorously incorporate prior knowledge of mosquito thermal physiology to constrain 164 

uncertainty when data are sparse [3]. The mechanistic modeling approach also provides an 165 

independently-generated, a priori prediction for the relationship between temperature and 166 

transmission to test with observational field data on human cases, allowing us to connect data 167 

across scales, from individual-level laboratory experiments, to population-level patterns of 168 

disease transmission, to climate-driven geographic variation across populations. Using this 169 

approach, we build mechanistic models for 10 vector–virus pairs by estimating thermal 170 

responses of the traits that drive transmission. We validate the models using observations of 171 

human cases in the US over space (county-level) and time (month-of-onset). The validation 172 

focuses on WNV because it is the most common of the diseases we investigated and has the most 173 

complete temperature-dependent trait data. 174 
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MODEL OVERVIEW 175 

 To understand the effect of temperature on transmission and to compare the responses 176 

across vector and virus species, we used R0—the basic reproduction number [36]. We use R0 as a 177 

static, relative metric of temperature suitability for transmission that incorporates the nonlinear 178 

effects of temperature on multiple traits [1,8,37] and is comparable across systems, rather than 179 

focusing on its more traditional interpretation as a threshold for disease invasion into a 180 

susceptible population. Temperature variation creates additional nonlinear effects on 181 

transmission [38–41] that are not well-captured by R0, [10,36,42–44] but could be incorporated 182 

in future work by integrating the thermal performance curves fit here over the observed 183 

temperature regime. 184 

The basic R0 model (eq. 1) [37] includes the following traits that depend on temperature 185 

(T): adult mosquito mortality (µ, the inverse of lifespan [lf]), biting rate (a, proportional to the 186 

inverse of the gonotrophic [oviposition] cycle duration), pathogen development rate (PDR, the 187 

inverse of the extrinsic incubation period: the time required for exposed mosquitoes to become 188 

infectious), and vector competence (bc, the proportion of exposed mosquitoes that become 189 

infectious). Vector competence is the product of infection efficiency (c, the proportion of 190 

exposed mosquitoes that develop a disseminated infection) and transmission efficiency (b, the 191 

proportion of infected mosquitoes that become infectious, with virus present in saliva). Three 192 

parameters do not depend on temperature: mosquito density (M), human density (N), the rate at 193 

which infected hosts recover and become immune (r). 194 

Basic R0: 𝑅"(𝑇) = 	(
)(*)+,-(*).

/	 0
(1)

234(1)5
6	7	8(*)

9
:/<

     eq. 1 195 
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As in previous work [2–4,6–8,10], we extend the basic R0 model to account for the effects of 196 

temperature on mosquito density (M) via additional temperature-sensitive life history traits (eq. 197 

2): fecundity (as eggs per female per day, EFD), egg viability (proportion of eggs hatching into 198 

larvae, EV), proportion of larvae surviving to adulthood (pLA), and mosquito development rate 199 

(MDR, the inverse of the development period). 200 

Full R0: 𝑅"(𝑇) = 	(
)(*)+,-(*).

/	 0
(1)

234(1)=>?(*)=@(*)ABC(*)5?D(*)
6	7	8(*)E

9
:/<

  eq. 2 201 

Fecundity data were only available as eggs per female per gonotrophic cycle (EFGC; for Cx. 202 

pipiens) or eggs per raft (ER; for Cx. quinquefasciatus). Thus, we further modified the model to 203 

obtain the appropriate units for fecundity: we added an additional biting rate term to the model 204 

(to divide by the length of the gonotrophic cycle, eqs. S1 and S2) and for Cx. quinquefasciatus 205 

we also added a term for the proportion of females ovipositing (pO; eq. S2). 206 

We parameterized a temperature-dependent R0 model for each relevant vector–virus pair 207 

using previously published data. We conducted a literature survey to identify studies that 208 

measured the focal traits at three or more constant temperatures in a controlled laboratory 209 

experiment. From these data, we fit thermal responses for each trait using Bayesian inference. 210 

This approach allowed us to quantify uncertainty and formally incorporate prior data [3] to 211 

constrain fits when data for the focal species were sparse or only measured on a limited portion 212 

of the temperature range (see Material and Methods for details).  213 

For each combination of trait and species, we selected the most appropriate of three 214 

functional forms for the thermal response. As in previous work [2–4,6–8], we fit traits with a 215 

symmetrical unimodal thermal response with a quadratic function (eq. 3) and traits with an 216 

asymmetrical unimodal thermal response with a Briére function [45] (eq. 4). For some 217 
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asymmetrical responses (e.g., PDR for most vector–virus pairs), we did not directly observe a 218 

decrease in trait values at high temperatures due to a limited temperature range. In these cases, 219 

we chose to fit a Briére function based on previous studies with wider temperature ranges [2,4–6] 220 

and thermal biology theory [46]; the upper thermal limit for these fits did not limit transmission 221 

in the R0 models, and therefore did not impact the results. Unlike in previous work, lifespan data 222 

for all vectors here exhibited a monotonically decreasing thermal response over the range of 223 

experimental temperatures available. We fit these data using a linear function (eq. 5) that 224 

plateaued at coldest observed data point to be conservative. To overwinter, Cx. pipiens and Cx. 225 

tarsalis enter reproductive diapause and hibernate [47,48], and Cx. pipiens can survive 226 

temperatures at or near freezing (0ºC) for several months [47]. Cx. quinquefasciatus enters a 227 

non-diapause quiescent state [48,49] and is likely less tolerant of cold stress, but we wanted a 228 

consistent approach across models and other traits constrained the lower thermal limit of the Cx. 229 

quinquefasciatus R0 model to realistic temperatures. 230 

Quadratic function: 𝑓(𝑇) = 	−𝑞(𝑇 − 𝑇IJK)(𝑇 − 𝑇I)L)   eq. 3 231 

Briére function: 𝑓(𝑇) = 	𝑞 ∙ 𝑇(𝑇 − 𝑇IJK)N(𝑇I)L − 𝑇)   eq. 4 232 

Linear function: 𝑓(𝑇) = 	−𝑚𝑇 +	z      eq. 5 233 

In the quadratic and Briére functions of temperature (T), the trait values depend on a lower 234 

thermal limit (Tmin), an upper thermal limit (Tmax), and a scaling coefficient (q). In the linear 235 

function, the trait values depend on a slope (m) and intercept (z). 236 

 The fitting via Bayesian inference produced posterior distributions for each parameter in 237 

the thermal response functions (eqs. 3–5) for each trait-species combination. These posterior 238 

distributions represent the estimated uncertainty in the parameters. We used these parameter 239 

distributions to calculate distributions of expected mean functions for each trait over a 240 
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temperature gradient (from 1–45ºC by 0.1ºC increments). Then we substituted these samples 241 

from the distributions of the mean thermal responses for each trait into eq. 2 to calculate the 242 

posterior distributions of predicted R0 over this same temperature gradient for each vector–virus 243 

pair (see Material and Methods and S1 Text for details). Thus, the estimated uncertainty in the 244 

thermal response of each trait is propagated through to R0 and combined to produce the estimated 245 

response of R0 to temperature, including the uncertainty in R0(T). 246 

Because the magnitude of realized R0 depends on system-specific factors like breeding 247 

habitat availability, reservoir and human host availability, vector control, species interactions, 248 

and additional climate factors, we focused on the relative relationship between R0 and 249 

temperature [8]. We rescaled the R0 model results to range from 0 to 1 (i.e., ‘relative R0’), 250 

preserving the temperature-dependence (including the absolute thermal limits and thermal 251 

optima) while making each model span the same scale. To compare trait responses and R0 252 

models, we quantify three key temperature values: the optimal temperature for transmission 253 

(Topt) and the lower and upper thermal limits (Tmin and Tmax, respectively) where temperature is 254 

predicted to prohibit transmission (R0 = 0). 255 

 256 

RESULTS 257 

Trait thermal responses  258 

We fit thermal response functions from empirical data for most of the vector and virus 259 

traits that affect transmission (Table S1 and Fig 1). All mosquito traits were temperature-260 

sensitive (three main Culex species: Fig 3, Fig 4; Ae. taeniorhynchus, Ae. triseriatus, Ae. vexans, 261 

Cx. theileri, and Culiseta melanura: Fig S1). For most species, the extensive data for larval traits 262 

(mosquito development rate [MDR] and survival [pLA]) produced clear unimodal thermal 263 
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responses with relatively low uncertainty (Fig 3A,B, Fig S1A,B). For biting rate (a) and 264 

fecundity traits (pO, EFGC, ER, EV), trait data were often more limited and fits were more 265 

uncertain, but still consistent with the expected unimodal thermal responses based on previous 266 

studies [2,4–6] and theory [46] (Fig 3C, Fig 4, Fig S1C-F). However, adult lifespan (lf) data 267 

clearly contrasted with expectations from previous studies of more tropical mosquitoes. Lifespan 268 

decreased linearly over the entire temperature range of available data (coldest treatments: 14–269 

16ºC, Fig 3D; 22ºC, Fig S1D) instead of peaking at intermediate temperatures (e.g., previously 270 

published optima for more tropical species: 22.2–23.4ºC) [2–4,6,7]. 271 

In general, the adult mosquito traits (biting rate, lifespan, and fecundity [a, lf, pO, EFGC, 272 

ER, EV]) varied more among species than the larval traits (development rate and survival [MDR 273 

and pLA]), although the high degree of uncertainty resulted in overlapping 95% credible intervals 274 

(CIs) between species for most traits (Fig 3, Fig 4, Fig S1), with two exceptions. First, the 275 

thermal response for lifespan (lf) for Cx. tarsalis was significantly less steep than the response 276 

for Cx. pipiens (Fig 3D; 95% CIs for slope coefficients: Cx. tarsalis = 1.12–2.24, Cx. pipiens = 277 

3.83–5.84). Second, the symmetry of the unimodal functional form was generally consistent for 278 

each trait across species, with the exceptions that the thermal responses for the proportion 279 

ovipositing (pO) and egg viability (EV) were symmetrical for Cx. pipiens and asymmetrical for 280 

Cx. quinquefasciatus (Fig 4 A,C). The lifespan pattern (thermal response of Cx. tarsalis less 281 

steep than Cx. pipiens) did not match any a priori prediction, but the differences for pO and EV 282 

matched predictions based on the geographic ranges of the vectors: lower-latitude Cx. 283 

quinquefasciatus performed better at warmer temperatures for pO (Fig 3A), and higher-latitude 284 
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Cx. pipiens performed better at cooler temperatures for EV (Fig 3C). 285 

 286 

Figure 3: Culex spp. mosquito traits respond strongly and consistently to temperature. The 287 

thermal responses of mosquito traits for the North American vectors of West Nile virus: Culex 288 

pipiens (dark grey), Cx. quinquefasciatus (red), and Cx. tarsalis (blue). (A) Mosquito 289 

development rate (MDR), (B) larval-to-adult survival (pLA), (C) biting rate (a), and (D) adult 290 

lifespan (lf). Points without error bars are reported means from single studies; points with error 291 

bars are averages of means from multiple studies (+/- standard error, for visual clarity only; 292 

thermal responses were fit to reported means, see Figs S2–5). Solid lines are posterior means; 293 

shaded areas are 95% credible intervals of the trait mean. See Fig S1 for thermal responses for 294 

Aedes taeniorhynchus, Aedes triseriatus, Ae. vexans, Culiseta melanura. 295 
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 296 

 Figure 4: Culex pipiens and Cx. 297 

quinquefasciatus fecundity traits 298 

respond strongly to temperature but 299 

with different functional forms. The 300 

thermal responses of mosquito traits for 301 

the primary vectors of West Nile virus: 302 

Culex pipiens (dark grey) and Cx. 303 

quinquefasciatus (red). (A) Proportion 304 

ovipositing (pO), (B) fecundity (eggs per 305 

female per gonotrophic cycle, EFGC, or 306 

eggs per raft, ER), and (C) egg viability 307 

(EV). Points without error bars are 308 

reported means from single studies; points 309 

with error bars are averages of means 310 

from multiple studies (+/- standard error, 311 

for visual clarity only; thermal responses 312 

were fit to reported means, see Fig S6). 313 

Solid lines are posterior distribution 314 

means; shaded areas are 95% credible 315 

intervals of the trait mean. See Fig S1 for 316 

thermal responses for Ae. vexans, Cx. 317 

theileri, and Culiseta melanura. 318 

 319 

 320 

 321 

 322 

 323 
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The thermal responses for pathogen development rate were similar among most vector–324 

virus pairs (Fig 5), with a few notable exceptions: WNV in Cx. quinquefasciatus had a warmer 325 

lower thermal limit (Fig 5A); WNV in Cx. univittatus had a cooler optimum and upper thermal 326 

limit (Fig 5A); and SINV in Ae. taeniorhynchus had limited data that indicated very little 327 

response to temperature (Fig 5C). By contrast, the thermal response of vector competence varied 328 

substantially across vectors and viruses (Fig 6). For example, infection efficiency (c) of Cx. 329 

pipiens peaked at warmer temperatures for WNV than for SINV (Fig 6A,G; 95% CIs: SINV = 330 

14.1–30.5ºC, WNV = 31.9–36.1ºC), transmission efficiency (b) of Cx. tarsalis peaked at warmer 331 

temperatures for WNV and SLEV than for WEEV (Fig 6B,E,H; CIs: WEEV = 19.2–23.2ºC, 332 

SLEV = 23.5–29.7ºC, WNV = 23.9–29.3ºC), and the lower thermal limit for vector competence 333 

(bc) for WNV was much warmer in Cx. pipiens than in Cx. univittatus (Fig 6C; CIs: Cx. 334 

univittatus = 1.5–7.1ºC, Cx. pipiens = 15.0–17.9ºC). Infection data for RVFV were only 335 

available in Ae. taeniorhynchus, a New World species that is not a known vector for the virus in 336 

nature. 337 
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 Figure 5: Pathogen development rates 338 

have high thermal optima. Thermal 339 

responses of pathogen development rate 340 

(PDR). (A) West Nile virus in Culex pipiens 341 

(dark grey), Cx. quinquefasciatus (red), Cx. 342 

tarsalis (blue), and Cx. univitattus (orange). 343 

(B) Three viruses in Cx. tarsalis: West Nile 344 

virus (same as in A, blue), Western Equine 345 

Encephalitis virus (light blue), and St. Louis 346 

Encephalitis virus (dark blue). (C) Eastern 347 

Equine Encephalitis virus in Aedes 348 

triseriatus (violet), Rift Valley Fever virus in 349 

Ae. taeniorhynchus (light green), Sindbis 350 

virus in Ae. taeniorhynchus (dark green). We 351 

did not fit a thermal response for Sindbis 352 

virus in Ae. taeniorhynchus because the 353 

limited data responded weakly to 354 

temperature and did not match our priors. 355 

We used informative priors based on thermal 356 

biology theory and data from other systems 357 

to fit the decrease at high temperatures (see 358 

Model Overview); other traits determined the 359 

upper limits of the R0 models. Points without 360 

error bars are reported means from single 361 

studies; points with error bars are averages 362 

of means from multiple studies (+/- standard 363 

error, for visual clarity only; thermal 364 

responses were fit to reported means, see Fig 365 

S7). Solid lines are posterior distribution 366 

means; shaded areas are 95% credible intervals of the trait mean. 367 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 10, 2020. ; https://doi.org/10.1101/597898doi: bioRxiv preprint 

https://doi.org/10.1101/597898


 21 

 368 
Figure 6: Vector competence responds strongly to temperature and varies across vector 369 
and virus species. Thermal responses of infection efficiency (c, # infected / # exposed; first 370 
column), transmission efficiency (b, # transmitting / # infected; second column) or vector 371 
competence (bc, # infected / # exposed; third column) for vector–virus pairs. First row (A,B,C): 372 
West Nile virus in Culex pipiens (dark grey), Cx. tarsalis (blue), and Cx. univitattus 373 
(yellow/orange). Second row: (D,E,F) Western Equine Encephalitis virus in Cx. tarsalis (light 374 
blue). Third row (G,H,I): Sindbis virus in Aedes taeniorhynchus (dark green), Sindbis virus in 375 
Cx. pipiens (light gray), St. Louis Encephalitis virus in Cx. tarsalis (dark blue), Eastern Equine 376 
Encephalitis virus in Ae. triseriatus (violet), and Rift Valley Fever virus in Ae. taeniorhynchus 377 
(light green). Points are means of replicates from single or multiple studies (+/- standard error, 378 
for visual clarity only; thermal responses were fit to replicate-level data, see Fig S8, Fig S9). 379 
Solid lines are posterior distribution means; shaded areas are 95% credible intervals of the trait 380 
mean. 381 
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Temperature-dependent R0 models 382 

Relative R0 responded unimodally to temperature for all the vector–virus pairs, with 383 

many peaking at fairly cool temperatures (medians: 22.7–26.0ºC, see Table 2 for CIs; Fig 7). The 384 

lower thermal limits (medians: 8.7–19.0ºC, see Table 2 for CIs; Fig 7) were more variable than 385 

the optima or the upper thermal limits (medians: 31.9–37.8ºC, see Table 2 for CIs; Fig 7), 386 

although confidence intervals overlapped in most cases because lower thermal limits also had 387 

higher uncertainty (Fig 7). The Ae. taeniorhynchus models were clear outliers, with much 388 

warmer distributions for the upper thermal limits, and optima that trended warmer as well. 389 

Differences in relative R0 stemmed from variation both in vector traits (e.g., in Fig 7A, 390 

with WNV in different vector species) and in virus infection traits (e.g., in Fig 7B, with different 391 

viruses in Cx. tarsalis). The upper thermal limit was warmer for WNV transmitted by Cx. pipiens 392 

(34.9ºC [CI: 32.9–37.5ºC] than by Cx. quinquefasciatus (31.8ºC [CI: 31.1–32.2ºC]), counter to 393 

the a priori prediction based on vector geographic ranges. This result implies that warming from 394 

climate change may differentially impact transmission by these two vectors. Additionally, the 395 

lower thermal limit for WNV varied widely (but with slightly overlapping 95% CIs) across 396 

different vector species (Fig 7D), from 19.0ºC (14.2–21.0ºC) in Cx. quinquefasciatus to 16.8ºC 397 

(14.9–17.8ºC) in Cx. pipiens to 12.2ºC (9.7–15.3ºC) in Cx. tarsalis to 11.1ºC (8.1–15.4ºC) in Cx. 398 

univittatus (an African and Eurasian vector; Table 2). Based on these trends in the thermal limits 399 

of R0, the seasonality of transmission and the upper latitudinal and elevational limits could vary 400 

for WNV transmitted by these different species. 401 
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 402 

Figure 7: Unimodal thermal responses of transmission (relative R0) for ten vector-virus 403 

pairs. Posterior mean relative R0 for (A) West Nile virus (WNV) in Culex pipiens (dark grey), 404 

Cx. tarsalis (blue), Cx. quinquefasciatus (red), and Cx. univitattus (orange); (B) three viruses in 405 

Cx. tarsalis: WNV (same as in A, blue), Western Equine Encephalitis virus (WEEV, light blue), 406 

and St. Louis Encephalitis virus (SLEV, dark blue); (C) Sindbis virus (SINV) in Aedes 407 

taeniorhynchus (dark green) and Cx. pipiens (light grey), Rift Valley Fever virus (RVFV) in Ae. 408 

taeniorhynchus (light green), and Eastern Equine Encephalitis virus (EEEV) in Ae. triseriatus 409 

(violet). (D) Posterior median and uncertainty estimates for the lower thermal limit, optimum, 410 

and upper thermal limit. Points show medians, thick lines show middle 50% density, thin lines 411 

show 95% credible intervals. Models are ordered by increasing median optimal temperature. 412 
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 413 

Table 2: Thermal optima and limits for transmission of mosquito-borne pathogens. Median 414 

temperature of the lower thermal limit (Tmin), optimum, and upper thermal limit (Tmax), with 95% 415 

credible intervals in parentheses. 416 

 417 

Different traits determined the lower and upper thermal limits and optimum for 418 

transmission across vector–virus pairs. The lower thermal limit for transmission was most often 419 

determined by parasite development rate (PDR; WNV and SLEV in Cx. tarsalis, WNV in Cx. 420 

quinquefasciatus) or biting rate (a; WNV in Cx. univitattus, WEEV in Cx. tarsalis, EEEV in Ae. 421 

triseriatus, RVFV and SINV in Ae. taeniorhynchus, SINV in Cx. pipiens; Figs S12–20), which 422 

tend to respond asymmetrically to temperature, with high optima. However, vector competence 423 

(bc) determined the lower limit for WNV in Cx. pipiens (Fig S11). The upper thermal limit was 424 

determined by biting rate (a) for the three Cx. tarsalis models and by adult lifespan (lf) for all 425 

others, although proportion ovipositing (pO) was also important for WNV in Cx. 426 

quinquefasciatus (Figs S11-S20). In all models, lifespan (lf) and biting rate (a) had the strongest 427 

impact on the optimal temperature for transmission, with biting rate increasing transmission at 428 
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low temperatures and lifespan decreasing transmission at high temperatures (Figs S11-S20). This 429 

result is consistent with previous mechanistic models of tropical mosquito-borne diseases, 430 

despite the qualitative difference in the shape of the lifespan thermal response between those 431 

tropical mosquitoes and the more temperate mosquitoes investigated here [2–4,6,7]. 432 

 433 

Model validation with human case data 434 

We validated the R0 models for WNV with independent data on human cases because the 435 

temperature-dependent trait data for those models were relatively high quality and because 436 

human case data were available from the Centers for Disease Control and Prevention across a 437 

wide climatic gradient in the contiguous United States. We averaged county-level incidence and 438 

mean summer temperatures from 2001–2016 to estimate the impact of temperature over space, 439 

while ignoring interannual variation in disease that is largely driven by changes in host immunity 440 

and drought [5]. We used generalized additive models (GAMs, which produce flexible, 441 

smoothed responses) to ask: does average incidence respond unimodally to mean summer 442 

temperature? If so, what is the estimated optimal temperature for transmission? Can we detect 443 

upper or lower thermal limits for transmission? Incidence of human neuroinvasive West Nile 444 

disease responded unimodally to average summer temperature and peaked at 24ºC (23.5–24.2ºC 445 

depending on the spline settings; Fig 8, Fig S24), closely matching the optima from the 446 

mechanistic models for the three North American Culex species (23.9–25.2ºC; Table 2). 447 

However, the human disease data did not show evidence for lower or upper thermal limits: mean 448 

incidence remained positive and with relatively flat slopes below ~19ºC and above ~28ºC, 449 

although sample size was very low above 28ºC and below 15ºC resulting in wide confidence 450 

intervals (Fig 8, Fig S24).  451 
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We used national month-of-onset data for WNV, EEEV, and SLEV to ask: is the 452 

seasonality of incidence consistent with our models for temperature-dependent transmission? 453 

The month-of-onset for cases of WNV was consistent with predicted transmission, R0(T) (Fig 9). 454 

As expected (based on previous studies and the time required for mosquito populations to 455 

increase, become infectious, and bite humans, and for humans to present symptoms and seek 456 

medical care [4,6]), there was a two-month lag between initial increases in R0(T) and incidence: 457 

cases began rising in June to the peak in August. The dramatic decline in transmission between 458 

September and October corresponds also closely to the predicted decline in relative R0, but 459 

without the expected lag. In general, the seasonal patterns of SLEV and EEEV incidence were 460 

similar to WNV, but differed by three orders of magnitude from ~20,000 cases of WNV to ~40-461 

50 cases of EEEV and SLEV during the peak month (Fig 9). However, transmission of SLEV 462 

and EEEV are predicted to begin increasing one month earlier than WNV (March versus April, 463 

Fig 9), because the mechanistic models predict that the lower thermal limits for SLEV and EEEV 464 

are cooler than those for WNV in two of the three North American vectors (Cx. pipiens and Cx. 465 

quinquefasciatus, Fig 7). The month-of-onset data partially support this prediction, as cases of 466 

SLEV (but not EEEV) disease begin to increase earlier in the year than WNV, relative to the 467 

summer peak. 468 
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  469 

Figure 8: Incidence of human neuro-invasive West Nile disease across US counties 470 

responds unimodally to temperature, peaking at 24°C. A generalized additive model (GAM) 471 

was fit to county-level data (n = 3,109) of mean temperature from May-September and incidence 472 

of neuro-invasive West Nile disease, both averaged from 2001-2016. See Fig S24 for fits across 473 

a range of smoothing parameters. 474 

 475 
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 476 
Figure 9: Temperature shapes the seasonal pattern of human cases of mosquito-borne viral 477 

diseases. Incidence (solid lines) lags behind predicted temperature-dependent R0 (dashed lines) 478 

for human cases of neuro-invasive disease caused by West Nile virus (WNV, black), St. Louis 479 

encephalitis virus (SLEV, dark gray), and Eastern Equine Encephalitis virus (EEEV, light gray) 480 

by 2 months. This lag matches patterns in other mosquito-borne diseases, and is caused by the 481 

time required for mosquito populations to increase, become infectious, and bite humans, and for 482 

humans to present symptoms and seek medical care. 483 

 484 
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DISCUSSION 485 

As climate changes, it is critical to understand how changes in temperature will affect the 486 

transmission of mosquito-borne diseases. Toward this goal, we developed temperature-487 

dependent, mechanistic transmission models for 10 vector–virus pairs. The viruses—West Nile 488 

virus (WNV), St. Louis Encephalitis virus (SLEV), Eastern and Western Equine Encephalitis 489 

viruses (EEEV and WEEV), Sindbis virus (SINV), and Rift Valley fever virus (RVFV)—sustain 490 

substantial transmission in temperate areas (except RVFV), and are transmitted by shared vector 491 

species, including Cx. pipiens, Cx. quinquefasciatus, and Cx. tarsalis (except EEEV; Fig 1). 492 

Although most traits responded unimodally to temperature, as expected [2–4,6–8], lifespan 493 

decreased linearly with temperature over the entire temperature range of available data (> 14ºC) 494 

for these Culex vectors (Fig 3). Transmission responded unimodally to temperature, with the 495 

thermal limits and optima for transmission varying among some of the focal mosquito and virus 496 

species (Fig 7, Table 2), largely due to differences in the thermal responses of mosquito biting 497 

rate, lifespan, vector competence, and parasite development rate. Human case data for WNV 498 

disease across the US exhibited a strong unimodal thermal response (Fig 8), and month-of-onset 499 

data for three viruses was consistent with the predicted seasonality of transmission (Fig 9). Thus, 500 

the mechanistic models captured geographical and seasonal patterns of human incidence, despite 501 

the complexity of the enzootic cycles and spillover into humans. Our analysis was somewhat 502 

limited by the lack of data for several trait-species combinations, or by data that were sparse, 503 

particularly at high temperatures. However, our key results—maximal transmission at 504 

intermediate temperatures—are unlikely to change, and underscore the importance of 505 

considering unimodal thermal responses when predicting how climate change will impact 506 

mosquito-borne disease transmission.  507 
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The monotonically decreasing thermal responses for lifespan in these more temperate 508 

mosquitoes (Fig 3D) contrast with unimodal responses of more tropical species [2,4,6,8], and 509 

may reflect differing thermal physiology between species that use diapause or quiescence, two 510 

forms of dormancy, to persist over winter and those that do not (see Model Overview) [47–49]. 511 

Ae. albopictus, a species that occurs in both tropical and temperate zones, exhibits a latitudinal 512 

gradient in the United States in which more temperate populations diapause while sub-tropical 513 

populations do not [50]. Experiments could test this hypothesis by measuring whether the 514 

functional form of the thermal response for lifespan differs between northern and southern US 515 

Ae. albopictus populations. Despite the difference in the shape of the thermal response, lifespan 516 

played a similarly important role here as in previous studies of mosquito-borne pathogens, 517 

strongly limiting transmission at high temperatures (Figs S11–20). Nonetheless, the linear 518 

thermal responses for lifespan ultimately promotes higher transmission at relatively cool 519 

temperatures because unlike in more tropical species, lifespan did not decline at cool 520 

temperatures within the range measured (> 14ºC). At more extreme temperatures expected to be 521 

fatal even for diapausing mosquitoes (i.e., below 0ºC), we expect lifespan to eventually decline, 522 

so that the response over broader temperature ranges is likely unimodal. 523 

Predicted transmission for many of the diseases in this study peaked at and extended to 524 

cooler temperatures than for previously studied diseases with more tropical distributions (see Fig 525 

7 and Table 2 for 95% credible intervals)[8]. Here, the optimal temperatures for transmission 526 

varied from 22.7–25.2ºC (excluding Ae. taeniorhynchus models, Fig 7). By contrast, models 527 

predict that transmission peaks at 25.4ºC for malaria [2,3], 26.4ºC for Ross River virus [6] and 528 

dengue in Ae. albopictus [4], 28.9ºC for Zika in Ae. aegypti [4], and 29.1ºC for dengue in Ae. 529 

aegypti [4,7]. Many models also had cooler lower thermal limits (medians: 8.7–19.0ºC) than 530 
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those of diseases with more tropical distributions (medians: 16.0–17.8ºC)[8]. In combination 531 

with similar upper thermal limits (see below), these patterns led to wider thermal breadths (18.2–532 

27.7ºC; Fig 7) for most of the viruses here compared to the more tropical pathogens (11.7– 533 

16.7ºC), excepting WNV in Cx. quinquefasciatus (12.7ºC), the vector most restricted to lower 534 

latitude, sub-tropical geographic areas (Fig 2). These results match a previous finding that 535 

temperate insects had wider thermal breadths than tropical insects [51], and likely reflect thermal 536 

adaptation to greater variation in temperature in temperate areas compared to tropical areas [52]. 537 

Additionally, SINV—a virus with substantial transmission at very high latitudes in Finland 538 

[26]—had the second coolest lower thermal limit (Fig 7, Table 2). Further, lower-latitude Cx. 539 

quinquefasciatus outperformed higher-latitude Cx. pipiens at warmer temperatures for proportion 540 

ovipositing (pO; Fig 3A), while the reverse occurred at cooler temperatures for egg viability (EV; 541 

Fig 3C). Collectively, these results imply that, to some extent, measurements of physiological 542 

traits can predict geographic patterns of vectors or disease transmission at broad scales. 543 

However, geographic range differences (Fig 2) did not consistently predict variation in thermal 544 

responses among the Culex species in this study (e.g., biting rate [a, Fig 3C] and adult lifespan 545 

[lf, Fig 3D]), indicating that life history and transmission trait responses at constant temperatures 546 

do not always predict the geographic distributions of species. Instead, the ability to tolerate 547 

temperature extremes may limit species distributions more than their performance at average or 548 

constant temperatures [53]. Moreover, although diseases like malaria and dengue are generally 549 

considered to be “tropical”, historically their distributions extended further into temperate 550 

regions [54,55]. Thus, current distributions of disease may reflect a realized niche restricted by 551 

social factors more than a fundamental niche based on ecological factors like temperature.  552 
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In contrast to the optima, lower thermal limits, and thermal breadths, the upper thermal 553 

limits for the vector–virus pairs in this study (31.9–34.9ºC, excluding Ae. taeniorhynchus 554 

models; Fig 7D, Table 2) closely matched those of more tropical diseases (31.5–34.7ºC) [2–555 

4,6,7]. This similarity likely arises because maximum summer temperatures in temperate areas 556 

can match or even exceed maximum temperatures in tropical areas [52]. Accordingly, there may 557 

be a fundamental upper thermal constraint on transmission that applies similarly to all 558 

mosquitoes-borne diseases, driven by short mosquito lifespans at high temperatures. The 559 

relatively high upper thermal limits in both Ae. taeniorynchus transmission models were driven 560 

by the thermal response of lifespan, which was fit to few data points; more data are needed to 561 

determine if it reflects the true thermal response in that species [Fig S1]. These results indicate 562 

that as temperatures rise due to climate change, temperate diseases are unlikely to be displaced 563 

by warming alone, although they may also expand toward the poles, even as tropical diseases 564 

may expand farther into temperate zones. 565 

Independent human case data support unimodal thermal responses for transmission and 566 

the importance of temperature in shaping geographic patterns of mosquito-borne disease. Human 567 

cases of WNV [56–62] and SINV [63,64] are often positively associated with temperature. Here, 568 

we found incidence of neuroinvasive WNV disease peaked at intermediate mean summer 569 

temperatures across counties in the US (Fig 8) that matched the optima predicted by our models. 570 

This result adds to prior evidence for reduced transmission of WNV [65] and other mosquito-571 

borne diseases [2,16–19] at high temperatures. Although we did not detect lower or upper 572 

thermal limits (Fig 8), this result is unsurprising based on fundamental differences between the 573 

types of temperature data used to parameterize and validate the models. The R0 model prediction 574 

is derived from data collected in a controlled laboratory environment at constant temperatures, 575 
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while average incidence in the field reflects temperatures that vary at a variety of temporal scales 576 

(daily, seasonal, and interannual). Thus, we hypothesize that temperature variation over time 577 

may sustain transmission in regions with otherwise unsuitable mean summer temperatures by 578 

providing time windows that are suitable for transmission [38,39,41].  579 

The temperature-dependent models also predict the seasonality of human cases of WNV, 580 

EEEV, and SLEV (Fig 9). The 2-month lag between climate suitability and the onset of human 581 

cases, which matches previous results from other mosquito-borne diseases [4,6], arises from the 582 

time following the onset of suitable conditions required for mosquito populations to increase 583 

[66], become infectious, and bite humans, and for humans to present symptoms and seek medical 584 

care [67,68]. Transmission of the more temperate viruses here may incur additional lags because 585 

human cases only result from enzootic transmission and multiple rounds of amplification within 586 

reservoir hosts may be required before prevalence is sufficiently high to spill over into humans. 587 

Additionally, as wild birds disperse in late summer, both Cx. pipiens and Cx. tarsalis shift their 588 

feeding preferences from birds to humans, increasing transmission to people and influencing the 589 

seasonal dynamics of WNV [69]. Drought, precipitation, and reservoir immunity also strongly 590 

drive transmission of WNV [5,59,60,62] and may interact with temperature. SLEV, EEEV, and 591 

WEEV are less common in nature, and thus less well-studied, but the lower thermal limits in our 592 

study support previous findings that transmission WEEV is favored over SLEV in cooler 593 

conditions [70]. Additionally, the seasonal patterns of incidence data (Fig 9) provide some 594 

support for the model prediction that SLEV transmission is possible at cooler temperatures than 595 

WNV by North American vectors (Table 2). By contrast, mean temperature is not associated 596 

with outbreaks of RVFV, although they are highly predictable based on precipitation driven by 597 

El Niño–Southern Oscillation cycles [71,72]. Thus, disease dynamics depend on the interaction 598 
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between temperature and other environmental factors, and the relative importance of temperature 599 

versus other drivers varies across systems. 600 

Most prior studies with mechanistic models for temperature-dependent transmission of 601 

WNV do not capture the unimodal thermal response that our mechanistic models predict and that 602 

we observe in the human case data (Table 3). Two previous models predicted that transmission 603 

of WNV would increase up to the warmest temperatures they considered, 28ºC [73] and 35ºC 604 

[74]. In both cases, the daily survival rates estimated from lab experiments were far less sensitive 605 

to temperature than our measure of adult lifespan, and neither model was validated with field 606 

data. A third study with models for Cx. pipiens, Cx. quiquefasciatus, and Cx. tarsalis, like our 607 

study, predicted unimodal thermal responses for transmission, with very similar optima but with 608 

lower thermal limits that were ~5ºC warmer, resulting in much narrower thermal breadths (Fig 609 

S22) [5]. This previous model [5] was validated with annual, state-level WNV human case data 610 

(in contrast to our county-level data averaged over multiple years), and detected a positive effect 611 

of temperature, with no decline at high temperatures [5]. The best spatial and temporal scales for 612 

validating temperature-dependent transmission models and detecting the impacts of temperature 613 

remain an open question. For instance, different approaches may be necessary to detect thermal 614 

optima and thermal limits. Critically, differences in modeling and validation approaches can lead 615 

to strongly divergent conclusions and predictions for the impact of climate change. 616 
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 617 

Table 3: Predicted optima for transmission of West Nile virus. Predicted optima for 618 

transmission from this study and previous models. 619 

 620 

Given the unimodal relationship between temperature and transmission of these 621 

temperate mosquito-borne pathogens, we expect climate warming to lead to predictable shifts in 622 

disease transmission [20,22,23]. Warming should extend the transmission season earlier into the 623 

spring and later into the fall and increase transmission potential in higher latitudes and altitudes, 624 

although this prediction may be impacted by changes in bird migrations. However, the thermal 625 

optima for these temperate vector–virus pairs are relatively cool, so in many locations, warming 626 

could result in summer temperatures that exceed the thermal optima for transmission more 627 

frequently, reducing overall transmission or creating a bimodal transmission season [75]. Based 628 

on the average summer temperature data (2001–2016) in our analysis (Fig 8), currently the 629 

majority of people (70%) and counties (68%) are below the optimal temperature for transmission 630 

(23.9 ºC, fit by the GAM), while 30-32% are above the optimum. The numbers are similar when 631 

restricted to counties with observed West Nile virus cases: 69% and 70%, respectively. Thus, all 632 

else being equal, we might expect a net increase in transmission of West Nile virus in response to 633 
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the warming climate, even as hot temperatures suppress transmission in some places. Still, 634 

warming is unlikely to eliminate any of these more temperate pathogens since the upper thermal 635 

limits for transmission are well above temperatures pathogens regularly experience in their 636 

current geographic ranges. More generally, our results raise concerns about the common practice 637 

of extrapolating monotonic relationships between temperature and disease incidence fit from 638 

observational data into warmer climate regimes to predict future cases [59,61]. 639 

While the data-driven models presented here represent the most comprehensive synthesis 640 

to date of trait thermal response data and their impact on transmission for these mosquito–641 

pathogen systems with substantial transmission in temperate regions, additional temperature-642 

dependent trait data would increase the accuracy and decrease the uncertainty in these models 643 

where data were sparse or missing. Our data synthesis and uncertainty analysis suggest 644 

prioritizing parasite development rate (PDR) and vector competence (bc) data and biting rate (a) 645 

data because those thermal responses varied widely among vector–virus pairs and determined the 646 

lower thermal limits and optima for transmission in many models. Additionally, vector 647 

competence and/or parasite development rate data were missing in many cases (WNV in Cx. 648 

quinquefasciatus, EEEV in Cs. melanura, RVFV in vectors from endemic areas, transmission 649 

efficiency [b] for SINV) or sparse (EEEV and WNV in Cx. univittatus), as were biting rate data 650 

(Cx. univittatus, RVFV vectors). Lifespan data—key for determining transmission optima and 651 

upper thermal limits—were the missing for Ae. triseriatus, Cs. melanura, Cx. univittatus, and 652 

RVFV vectors, and at temperatures below 14 ºC for all vector species, so it was unclear which 653 

functional form these thermal responses should take (linear or quadratic). While the other 654 

mosquito demographic traits did not determine thermal limits for transmission in models here, 655 

fecundity (typically as EFD), larval-to-adult survival (pLA), and egg viability (EV) determined 656 
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thermal limits for malaria [2] and Ross River virus [6]. Thus, more fecundity data (missing for 657 

Cx. tarsalis, Cx. univittatus, and Ae. triseriatus; sparse for Cx. pipiens and Cx. quinquefasciatus) 658 

would also reduce model uncertainty. New data are particularly important for RVFV, which has 659 

a tropical distribution but for which the model depends on traits measured in Cx. pipiens 660 

collected from temperate regions and infection traits measured in Ae. taeniorhynchus, a North 661 

American species. RVFV is transmitted by a diverse community of vectors across the African 662 

continent, but experiments should prioritize hypothesized primary vectors (e.g., Ae. 663 

circumluteolus or Ae. mcintoshi) or secondary vectors that already have partial trait data (e.g., 664 

Ae. vexans or Cx. theileri) [27,76]. Although temperature itself does not predict the occurrence of 665 

RVFV outbreaks, it may affect the size of epidemics once they are triggered by precipitation. 666 

Additionally, the thermal response of vector competence may vary across vector populations 667 

[77] and/or virus isolates even within the same species, so more data may also improve the 668 

accuracy of models without missing data. 669 

As carbon emissions continue to increase and severe climate change becomes 670 

increasingly inevitable [78], it is critical that we understand how temperature will shape 671 

transmission of mosquito-borne diseases in a warmer future world. While data gaps are still 672 

limiting, the comparative approach is powerful for predicting similarities and differences across 673 

vectors and viruses, including differences between primarily tropical and temperate diseases [8]. 674 

Accounting for the effects of temperature variation [38,41,79] is an important next step for using 675 

these models to accurately predict transmission. Additionally, the potential for evolution to 676 

warmer climates is uncertain because of limited knowledge on the level of genetic variation in 677 

thermal responses for most vectors or mosquito-borne pathogens within or between populations 678 

(but see [80,81]). Further, vectors and pathogens may experience different selective pressures, as 679 
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mosquito populations may depend on either increased fecundity or longevity at high 680 

temperatures, while pathogens require longer vector lifespans [8]. Thus, future trajectories of 681 

these diseases will depend not just on suitability of mean temperatures but also on temperature 682 

variation, thermal adaptation of vectors and viruses, land use (which governs mosquito–wildlife–683 

human interactions), vector control activities, human and wildlife immune dynamics, and 684 

potential future emergence and spread of new vectors and viruses. 685 

 686 

MATERIALS AND METHODS 687 

All analyses were conducted using R 3.1.3 [82]. 688 

 689 

Vector species range maps 690 

The distributions of Cx. pipiens and Cx. quinquefasciatus are georectified maps adapted 691 

from [35,83]. The northern boundary of Cx. tarsalis was taken from [84]. For the southern 692 

boundary, we drew a convex polygon using five datasets [85–89] in the Global Biodiversity 693 

Information Facility (https://www.gbif.org/). 694 

 695 

Temperature-dependent Trait Data 696 

We found 38 studies with appropriate temperature-dependent trait data from controlled 697 

laboratory experiments [5,56,80,81,90–124]. When necessary, we digitized the data using Web 698 

Plot Digitizer [125], a free online tool. When lifespan data were reported by sex, only female 699 

data were used. Vector competence trait data (b, c, or bc) were only included if time at sampling 700 

surpassed the estimated extrinsic incubation period (EIP,  the inverse of PDR) at that 701 

temperature, which resulted in the exclusion of some studies [126,127]. 702 
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 703 

Fitting Thermal Responses 704 

We fit trait thermal responses with a Bayesian approach using the ‘r2jags’ package [128], 705 

an R interface for the popular JAGS program [129] for the analysis of Bayesian graphical models 706 

using Gibbs sampling. It is a (near) clone of BUGS (Bayesian inference Using Gibbs Sampling) 707 

[130]. In JAGS, samples from a target distribution are obtained via Markov Chain Monte Carlo 708 

(MCMC). More specifically, JAGS uses a Metropolis-within-Gibbs approach, with an Adaptive 709 

Rejection Metropolis sampler used at each Gibbs step (for more information on MCMC 710 

algorithms see [131]). 711 

For each thermal response being fit to trait data, we identified the most appropriate 712 

functional form (quadratic, Briére, or linear; eqs. 3–5) for that specific trait–species combination 713 

[8]. For traits with ambiguous functional responses, we fit the quadratic and Briere and used the 714 

deviance information criterion (DIC) [132] to pick the best fit.  We assumed normal likelihood 715 

distributions with temperature-dependent mean values described by the appropriate function 716 

(eqs. 3–5) and a constant standard deviation described by an additional fitted parameter (τ = 717 

1/σ2). The 95% credible intervals in Figs. 3-6 estimate the uncertainty in the mean thermal 718 

response; 95% prediction intervals that incorporate the estimated standard deviation in the data 719 

are shown in Figs S2-9. 720 

We set all thermal response functions to zero when T < Tmin and T > Tmax (for eq. 3 and 4) 721 

or when T > -z/m (eq. 5) to prevent trait values from becoming negative. For traits that were 722 

proportions or probabilities, we also limited the thermal response functions at 1. For the linear 723 

thermal responses, we calculated the predicted thermal response in a similarly piecewise manner 724 

in order to be conservative: for temperatures at or above the coldest observed data point, we used 725 
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the trait values predicted by the fitted thermal response (i.e., the typical method); for 726 

temperatures below the coldest observed data point, we substituted the trait estimate at the 727 

coldest observed data point (i.e., forcing the thermal response to plateau, rather than continue 728 

increasing beyond the range of observed data). 729 

For the fitting process, we ran three concurrent MCMC chains for 25000 iterations each, 730 

discarding the first 5000 iterations for burn-in (convergence was checked visually). We thinned 731 

the resultant chains, saving every eighth step. These settings resulted in 7500 samples in the full 732 

posterior distribution that we kept for further analysis.  733 

 734 

Generation of Priors 735 

We used data-informed priors to decrease the uncertainty in our estimated thermal 736 

responses and constrain the fitted thermal responses to be biologically plausible, particularly 737 

when data were sparse. These priors used our total dataset, which contained temperature-738 

dependent trait data for all of the main species in the analysis (but with the focal species 739 

removed, see below), as well as from additional temperate Aedes and Culex species 740 

[92,94,102,106,111,112,133–138].  741 

We fit each thermal response with a sequential two-step process, where both steps 742 

employed the same general fitting method (described above in Fitting Thermal Responses) but 743 

used different priors and data. In step 1, we generated high-information priors by fitting a 744 

thermal response to data from all species except the focal species of interest (i.e., a ‘leave-one-745 

out’ approach). For example, for the prior for biting rate for Cx. pipiens, we used the biting rate 746 

data for all species except Cx. pipiens. For this step, we set general, low-information priors that 747 

represented minimal biological constrains on these functions (e.g., typically mosquitoes die if 748 
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temperatures exceed 45ºC, so all biological processes are expected to cease; Tmin must be less 749 

than Tmax). The bounds of these uniformly distributed priors were:  0 < Tmin < 24, 26 <  Tmax < 45 750 

(quadratic) or 28 < Tmax < 45 (Briére), 0 < q < 1, -10 < m < 10, and 0 < b < 250. Then in step 2, 751 

we fit a thermal response to data from the focal species using the high-information priors from 752 

step 1.  753 

Because we cannot directly pass posterior samples from JAGS as a prior, we modified 754 

the results from step 1 to use them in step 2. We used the ‘MASS’ package [139] to fit a gamma 755 

probability distribution to the posterior distributions for each thermal response parameter (Tmin, 756 

Tmax, and q [eq. 3 and 4]; or m and z [eq. 5]) obtained in step 1. The resulting gamma distribution 757 

parameters can be used directly to specify the priors in the JAGS model. Because the prior 758 

datasets were often very large, in many cases the priors were too strong and overdetermined the 759 

fit to the focal data. In a few other cases, we had philosophical reasons to strongly constrain the 760 

fit to the focal data even when they were sparse (e.g., to constrain Tmax to very high temperatures 761 

so that other traits with more information determine the upper thermal limit for R0). Thus, we 762 

deflated or inflated the variance as needed (i.e., we fixed the gamma distribution mean but 763 

altered the variance by adjusting the parameters that describe the distribution accordingly). See 764 

S1 Text for more details and specific variance modifications for each thermal response. 765 

 766 

Constructing R0 Models 767 

When data were missing for a vector–virus pair, we used two criteria to decide which 768 

thermal response to use as a substitute: 1) the ecological similarly (i.e., geographic range 769 

overlap) of species with available thermal responses, and 2) how restrictive the upper and lower 770 

bounds of the available thermal responses were. All else being equal, we chose the more 771 
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conservative (i.e., least restrictive) option so that R0 would be less likely to be determined by trait 772 

thermal responses that did not originate from the focal species. See S1 Text for more information 773 

about specific models.  774 

When there was more than one option for how to parameterize a model (e.g., vector 775 

competence data for WEEV in Cx. tarsalis were available in two forms: separately as b and c, 776 

and combined as bc), we calculated R0 both ways. The results were very similar, except for the 777 

model for RVFV with lifespan data from Cx. pipiens lifespan in place of Ae. taeniorhynchus (Fig 778 

S21). See S1 Text for sensitivity and uncertainty methods and S1 Fig S11-20 for results. 779 

 780 

Model validation: spatial analysis 781 

We obtained county-level neuroinvasive WNV disease data from 2001-2016 for the 782 

contiguous US (n = 3,109) through the CDC’s county-level disease monitoring program [140]. 783 

Data were available as total human cases per year, which we adjusted to average cases per 1,000 784 

people (using 2010 US county-level census data) to account for population differences. We 785 

averaged cases across years beginning with the first year that had reported cases in a given 786 

county to account for the initial spread of WNV and the strong impact of immunity on 787 

interannual variation [5]. Ninety-eight percent of human cases of WNV in the US occur between 788 

June and October (data described below), and cases of mosquito-borne disease often lag behind 789 

temperature by 1–2 months [6,66]. Thus, we extracted monthly mean temperature data between 790 

the months of May–September for all years between 2001-2016 and averaged the data to 791 

estimate typical summer conditions for each county. Specifically, we took the centroid 792 

geographic coordinate for every county in the contiguous US with the ‘rgeos’ package [141] and 793 
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extracted corresponding historic climate data (Climate Research Unit 3.1 rasters) [142] from 794 

0.5°2 cells (approx. 2,500-3,000 km2) using the ‘raster’ package [143].  795 

We fit a generalized additive model (GAM) for average incidence as a function of 796 

average summer temperature using the ‘mgcv’ package [144]. We used a gamma distribution 797 

with a log-link function to restrict incidence to positive values and capture heteroskedasticity in 798 

the data (i.e., higher variance with higher predicted means), adding a small, near-zero constant 799 

(0.0001) to all incidence values to allow the log-transformation for counties with zero incidence. 800 

GAMs use additive functions of smooth predictor effects to fit responses that are extremely 801 

flexible in the shape of the response. We restricted the number of knots to minimize overfitting 802 

(k = 5; see Fig S24 for results across varying values of k). For comparison, we also used the 803 

‘loess’ function in base R ‘stats’ package [82] to fit locally estimated scatterplot smoothing 804 

(LOESS) regressions of the same data. LOESS regression is a simpler but similarly flexible 805 

method for estimating the central tendency of data. See Fig S25 for LOESS model results. 806 

 807 

Model validation: seasonality analysis 808 

We calculated monthly temperature-dependent relative R0 to compare with month-of-809 

onset data for neuro-invasive WNV, EEEV, and SLEV disease aggregated nationwide from 810 

2001-2016 [140,145,146], using the same monthly, county-level temperature data as above. For 811 

WNV, we used the subset of counties with reported cases (68% of counties). For SLEV and 812 

EEEV we used all counties from states with reported cases (16 and 20 states, respectively). We 813 

weighted each county R0(T) by its population size to calculate a national estimate of R0(T). For 814 

WNV, the county-level estimates of R0(T) used models for three Culex species (Cx. pipiens, Cx. 815 

quinquefasciatus, and Cx. tarsalis) weighted according to the proportion of WNV-positive 816 
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mosquitoes reported at the state level, reported in [5]. SLEV and EEEV both only had one R0 817 

model. The estimated monthly temperature-dependent relative R0 values and month-of-onset data 818 

were compared visually. 819 
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R0 Model Specifications 

The equation for R0 (eq. 2 in main text) as a function of temperature (T) that was used in 

previous analyses [1–6] has fecundity measured as eggs per female per day (EFD): 

Full R0: 𝑅"(𝑇) = 	(
)(*)+,-(*).

/	 0
(1)

234(1)567(*)58(*)9:;(*)<7=(*)
>	?	@(*)A

B
C/E

   eq. 2 

Fecundity data were not available directly as eggs per female per day, so we had to transform the 

available data to obtain the quantities needed for these models. The data for Cx. pipiens were 

reported as eggs per female per gonotrophic cycle (EFGC). To obtain EFD, we needed to divide 

EFGC by the length of the gonotrophic cycle. In general, the gonotrophic cycle is assumed to be 

approximately the inverse of the biting rate. In fact, our ‘biting rate’ (a) data were observations 

of gonotrophic cycle duration. Accordingly, EFD = EFGC * a, resulting in the following 

equation for R0: 

𝑅"(𝑇) = 	(
)(*)A,-(*).

/	 0(1)
234(1)56FG(*)58(*)9:;(*)<7=(*)

>	?	@(*)A
B
C/E

    eq. S1 

All but two of the vector–virus parameterizations used this form (eq. S1) of the R0 model (see 

Table S1, exceptions described below). 

The fecundity data for Cx. quinquefasciatus were reported as eggs per raft (ER). Females 

lay rafts once per gonotrophic cycle. Thus, in order to obtain an approximation to EFD (eggs per 

female per day), we again divide by the number of days per gonotrophic cycle and, further, we 

multiply by the proportion of females ovipositing (pO), since not every female lays an egg raft. 

These changes result in the following equation for R0: 

𝑅"(𝑇) = 	(
)(*)A,-(*).

/	 0(1)
234(1)5=(*)9H(*)58(*)9:;(*)<7=(*)

>	?	@(*)A
B
C/E

   eq. S2 
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The Cx. quinquefasciatus–WNV model used eq. S2.  

The Ae. triseriatus–EEEV also used eq. S2 (i.e., included pO) but substituted the Cx. 

pipiens thermal response for EFGC in place of the Cx. quinquefasciatus thermal response for ER 

for the following reasons. There were no fecundity trait data available for Ae. triseriatus. (Ae. 

triseratus was chosen as the focal species for the EEEV model because it is the only species with 

temperature-dependent vector competence data available, and it is a possible bridge vector for 

EEEV transmission to humans). Cs. melanura is the primary vector for maintaining enzootic 

cycles of EEEV in birds [7], more often cited in the literature in association with EEEV (e.g., 

[8]), and had data for pO (proportion ovipositing) available. Thus, we chose to include this 

thermal response in model because it contained information that could affect the upper and lower 

bounds of transmission (even though most models did not include pO [proportion ovipositing], 

because they use the Cx. pipiens EFGC [eggs per female per gonotrophic cycle] thermal 

response that includes pO implicitly). Then we needed to choose which egg production metric to 

include. We chose the Cx. pipiens EFGC thermal response over the Cx. quinquefasciatus ER 

thermal response because the former was the better choice according to both criteria: Cx. pipiens 

has a more similar species range to Ae. triseriatus and Cs. melanura and its thermal response was 

slightly more conservative (less restrictive = cooler lower thermal limit and warmer upper 

thermal limit). Although technically the units are not correct (see above), the thermal responses 

for Cx. pipiens EFGC and Cx. quinquefasciatus ER are so similar despite having different units 

(Fig 4B), we decided that the other two criteria were more important than being strict with regard 

to the units, as it is feasible to have an ER thermal response that is quite similar to the EFGC 

thermal response. Ultimately, because the thermal responses for EFGC and ER are so similar, 
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this decision only has a small impact on the R0 results (see Fig S21A comparing four alternative 

model specifications / parameterizations for the Ae. triseriatus-EEEV model). 

In eqs. 2, S1, and S2, the remaining parameters that depend on temperature (T) are: adult 

mosquito mortality (µ, the inverse of lifespan [lf]), pathogen development rate (PDR, the inverse 

of the extrinsic incubation period: the time required for exposed mosquitoes to become 

infectious), egg viability (proportion of eggs hatching into larvae, EV), proportion of larvae 

surviving to adulthood (pLA), and mosquito development rate (MDR, the inverse of the 

development period), and vector competence (bc, the proportion of exposed mosquitoes that 

become infectious). Vector competence is the product of infection efficiency (c, the proportion 

of exposed mosquitoes that develop a disseminated infection) and transmission efficiency (b, the 

proportion of infected mosquitoes that become infectious, with virus present in saliva). The form 

of vector competence varied between models based on the availability of data: bc(T) [reported a 

single parameter], c(T)*b(T) [both parameters reported separately], c(T) only, or b(T) only (see 

Table S1). The two remaining parameters do not depend on temperature: human density (N) and 

the rate at which infected hosts recover and become immune (r). 
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Table S1: Trait thermal responses used in transmission (R0) models. Viruses: West Nile 
(WNV), Eastern and Western Equine Encephalitis (EEEV and WEEV), St. Louis Encephalitis 
(SLEV), Sindbis (SINV), and Rift Valley Fever (RVFV). Ae. vex. = Ae. vexans, Cs. mel. = 
Culiseta melanura; all other vectors (Cx. = Culex) listed under model names. Traits are: 
fecundity (as eggs/female/gonotrophic cycle [EFGC] or eggs per raft*proportion ovipositing 
[ER*pO]), egg viability (EV), larval-to-adult survival (pLA), mosquito development rate (MDR), 
lifespan (lf), biting rate (a), vector competence (bc, b*c, b, or c, as available), and parasite 
development rate (PDR). The WNV–Cx. quinquefasciatus model uses eq. S2 (ER*pO); the 
EEEV–Ae. triseriatus model uses EFGC from Cx. pipiens and pO from Cs. melanura; all other 
models use eq. S1 (EFGC). When data were missing for a vector–virus pair, we substituted the 
most conservative (i.e., least restrictive of transmission) trait thermal response from a vector that 
occurs within the geographic range of disease transmission. Several models had multiple 
potentially valid choices for traits; we explain and show compare these alternative models with 
the main text versions in Fig S21. Checkmarks indicate a thermal response from the vector in the 
model name. The parasite development rate data for SINV was insensitive to temperature (Fig 
4), so the trait thermal response was omitted from the SINV models (‘NA’). 
 
Model: virus–
vector 

EFGC or 
ER*pO 

EV pLA MDR lf a bc, c*b 
c, or b 

PDR 

WNV–Cx. pipiens 
 

ü ü ü ü ü ü ü (bc) ü 

WNV–Cx. 
quinquefasciatus 
 

ü ü ü ü ü ü Cx. uni. 
(c*b) 

ü 

WNV–Cx. tarsalis 
 

Cx. pip. Cx. pip ü ü ü ü ü (b) ü 

WNV–Cx. 
univittatus 
 

Cx. pip. Cx. pip. Cx. 
pip. 

Cx. 
pip. 

Cx. 
pip. 

Cx. 
pip. 

ü (bc) ü 

WEEV–Cx. 
tarsalis 
 

Cx. pip. Cx. pip. ü ü ü ü ü (c*b) ü 

SLEV–Cx. tarsalis 
 

Cx. pip. Cx. pip. ü ü ü ü ü (c*b) ü 

EEEV–Ae. 
triseriatus 
 

Cx. pip., 
Cs. mel. 

Cx. pip. ü ü Cx. 
pip. 

Cs. 
mel. 

ü (bc) ü 

SINV–Cx. pipiens 
 

ü ü ü ü ü ü ü (c) NA 

SINV–Ae. 
taeniorhynchus 
 

Cx. pip. Ae. vex. Ae. 
vex. 

Ae. 
vex. 

ü Cx. 
pip. 

ü (c) NA 

RVFV–Ae. 
taeniorhynchus 

Cx. pip. Cx. the. Ae. 
vex. 

Ae. 
vex. 

ü Cx. 
pip. 

ü (bc) ü 
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Table S2: Trait thermal response functions, data sources, and posterior estimates: biting 
rate and fecundity traits. Asymmetrical responses fit with Brière function (B): B(T) = qT(T – 
Tmin)(Tmax – T)1/2; symmetrical responses fit with quadratic function (Q): Q(T) = -q(T – Tmin)(T – 
Tmax). Median function coefficients and optima (with 95% credible intervals). 
 
Trait / Species 
[data source] 

F(x) q (CIs) Tmin (CIs) Tmax (CIs) Topt (CIs) 

Biting rate (a) 
Cx. pipiens  
[9–12] 

B 1.70·10-4  
(1.18–2.29·10-4) 

9.4  
(2.8–13.4) 

39.6  
(37.9–40.6) 

32.7  
(31.3–33.6) 

Cx. quinquefasciatus  
[9,13] 

B 7.28·10-5  
(5.31–11.8·10-5) 

3.1  
(0.1–10.9) 

39.3  
(38.0–40.8) 

31.9  
(30.6–33.3) 

Cx. tarsalis 
[13] 

B 1.67·10-4  
(0.87–2.56·10-4) 

2.3  
(0.1–9.4) 

32.0  
(30.6–41.7) 

25.9  
(24.8–33.9) 

Cs. melanura 
[14] 

B 1.87·10-4  
(1.49–2.31·10-4) 

7.8  
(5.5–11.4) 

31.8  
(31.0–33.4) 

26.4  
(25.7–27.9) 

Fecundity      
Cx. pipiens (EFGC) 
[12] 

Q 5.98·10-1  
(4.31–7.91·10-1) 

5.3  
(2.6–8.5) 

38.9  
(36.2–41.8) 

22.1  
(20.1–24.4) 

Cx. quinquefasciatus (ER) 
[15,16] 

Q 6.36·10-1  
(4.50–9.05·10-1) 

5.0  
(1.3–9.8) 

37.7  
(34.8–40.7) 

21.4  
(18.9–24.4) 

Proportion ovipositing (pO) 
Cx. pipiens 
[9,17] 

Q 4.45·10-3  
(2.54–7.77·10-3) 

8.2  
(4.6–12.1) 

33.2  
(30.1–37.5) 

20.8  
(18.6–23.4) 

Cx. quinquefasciatus 
[9,15,17] 

B 6.67·10-4  
(5.80–7.91·10-4) 

1.7  
(0.2–4.8) 

31.8  
(31.1–32.2) 

24.9  
(21.8–26.0) 

Cs. melanura 
[14] 

Q 6.31·10-3  
(4.52–7.89·10-3) 

8.7  
(6.9–10.4) 

33.6  
(32.5–35.4) 

20.7  
(16.9–22.3) 

Egg viability (EV)      
Ae. vexans  
[18] 

 1.24·10-3  
(0.73–1.95·10-3) 

0  
(0–1.6) 

55.5  
(45.9–74.1) 

27.6  
(20.4–34.0) 

Cx. pipiens  
[12] 

Q 2.11·10-3  
(1.36–3.05·10-3) 

3.2  
(0.5–7.1) 

42.6  
(39.7–48.3) 

23.0  
(20.7–26.3) 

Cx. quinquefasciatus  
[15,19] 

B 0.47·10-3  
(0.34–0.62·10-3) 

13.6  
(9.3–16.8) 

38.0  
(37.2–38.7) 

32.1  
(31.3–32.7) 

Cx. theileri 
[20] 

Q 2.54·10-3  
(1.86–3.41·10-3) 

5.5  
(2.6–8) 

45.4  
(42.4–49.0) 

23.6  
(18.2–27.0) 

 
Additional data sources for other species used for fitting priors only (priors were fit using all data 
except that of the focal species). Fecundity (ER): Cx. pipiens molestus [15], Cx. pipiens pallens 
[16], and Ae. dorsalis [21]. Proportion ovipositing (pO): Cx. pipiens molestus [15] and Ae. 
dorsalis [21]. Egg viability (EV): Cx. pipiens molestus [15], Aedes dorsalis [22], and Ae. 
nigromaculis [23]. See Supplemental Methods: Priors for trait thermal responses. 
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Table S3: Trait thermal response functions, data sources, and posterior estimates: larval 
traits. Asymmetrical responses fit with Brière function (B): B(T) = qT(T – Tmin)(Tmax – T)1/2; 
symmetrical responses fit with quadratic function (Q): Q(T) = -q(T – Tmin)(T – Tmax). Median 
function coefficients and optima (with 95% credible intervals). 
 
Trait / Species  
[data source] 

F(x) q (CIs) Tmin (CIs) Tmax (CIs) Topt (CIs) 

Mosquito Dev. Rate (MDR) 
Ae. triseriatus 
[24] 

B 4.30·10-5  
(3.01–5.83·10-5) 

0.8  
(0–7.5) 

36.5  
(34.6–39.5) 

29.3  
(27.8–31.9) 

Ae. vexans 
[25,26] 

B 4.33·10-5  
(3.34–5.50·10-5) 

1.9  
(0.1–10.5) 

38.2  
(37.0–39.5) 

30.9  
(29.8–32.2) 

Cx. pipiens 
[9–11,17,27–29] 

B 3.76·10-5  
(3.36–4.47·10-5) 

0.1  
(0–4.0) 

38.5  
(37.6–39.8) 

30.9  
(30.2–31.9) 

Cx. quinquefasciatus 
[9,17,24,30,31] 

B 4.14·10-5  
(3.46–5.26·10-5) 

0.1  
(0–5.5) 

38.6  
(37.4–40.6) 

31.0  
(30.0–32.6) 

Cx. tarsalis 
[32–34] 

B 4.12·10-5  
(3.15–5.47·10-5) 

4.3  
(0–8.4) 

39.9  
(37.9–42.2) 

32.3  
(31.0–34.0) 

Cs. melanura 
[7] 

B 2.74·10-5  
(1.64–4.72·10-5) 

8.6  
(0–16.8) 

37.6  
(35.1–40.4) 

31.1  
(28.7–33.7) 

Larval survival (pLA)      
Ae. triseriatus 
[24,35] 

Q 3.26·10-3  
(1.95–5.18·10-3) 

8.3  
(4.9–11.4) 

35.7  
(32.9–39.7) 

22.0  
(19.9–24.6) 

Ae. vexans 
[25,26] 

Q 3.29·10-3  
(2.65–4.24·10-3) 

9.1  
(8.1–10.6) 

40.8  
(38.4–43.6) 

25.0  
(23.9–26.2) 

Cx. pipiens  
[9–11,17,27–29] 

Q 3.60·10-3  
(2.96–4.42·10-3) 

7.8  
(6.1–9.3) 

38.4  
(37.1–39.9) 

23.1  
(22.2–24.0) 

Cx. quinquefasciatus 
[9,16,17,24,30,31,36] 

Q 4.26·10-3  
(3.51–5.17·10-3) 

8.9  
(7.6–9.9) 

37.7  
(36.2–39.2) 

23.3  
(22.5–24.0) 

Cx. tarsalis 
[32–34] 

Q 2.12·10-3  
(1.52–3.08·10-3) 

5.9  
(3.0–8.8) 

43.1  
(39.8–47.5) 

24.6  
(22.9–26.4) 

Cs. melanura 
[7] 

Q 3.03·10-3  
(1.55–5.68·10-3) 

10.1  
(5.7–15.1) 

36.2  
(32.8–40.7) 

23.2  
(20.4–26.5) 

 
Additional data sources for other species used for fitting priors only (priors were fit using all data 
except that of the focal species). Mosquito Development Rate (MDR): Cx. pipiens molestus 
[37,38], Cx. pipiens pallens [37], Cx. restuans [10,24,33,39], Cx. salinarius [24], Ae. solicitans 
[24], and Ae. nigromaculis [25]. Larval survival (pLA): Cx. pipiens molestus [36,38], Cx. pipiens 
pallens [16], Cx. restuans [10,17,24,33,39], Cx. salinarius [24], Ae. sollicitans [24], Ae. 
nigromaculis [25]. See Supplemental Methods: Priors for trait thermal responses. 
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Table S4: Trait thermal response functions, data sources, and posterior estimates: vector 
competence traits. Asymmetrical responses fit with Brière function (B): B(T) = qT(T – 
Tmin)(Tmax – T)1/2; symmetrical responses fit with quadratic function (Q): Q(T) = -q(T – Tmin)(T – 
Tmax). Median function coefficients and optima (with 95% credible intervals). 
 
Trait / Species 
[data source] 

F(x) q (CIs) Tmin (CIs) Tmax (CIs) Topt (CIs) 

Transmission efficiency (b) 
SLEV | Cx. tarsalis 
[40] 

Q 2.98·10-3  
(1.63–5.31·10-3) 

10.8  
(6.2–14.2) 

41.6  
(36.8–49.1) 

26.2  
(23.5–29.7) 

WEEV | Cx. tarsalis 
[40] 

Q 3.17·10-3  
(1.65–5.06·10-3) 

8.2  
(5.1–10.7) 

33.5  
(31.0–38.9) 

20.9  
(19.2–23.2) 

WNV | Cx. tarsalis 
[41] 

Q 2.94·10-3  
(1.91–4.48·10-3) 

11.3  
(7.6–14.0) 

41.9  
(37.7–47.0) 

26.6  
(23.9–29.3) 

Infection efficiency (c)      
SINV | Ae. taeniorhynchus 
[42] 

Q 1.24·10-3  
(0.75–2.17·10-3) 

1.4  
(0–9.1) 

48.4  
(40.8–57.1) 

25.4  
(21.0–31.1) 

SINV | Cx. pipiens 
[43] 

Q 1.33·10-3  
(0.47–2.30·10-3) 

0  
(0–0) 

35.0  
(28.1–61.1) 

17.5  
(14.1–30.5) 

WNV | Cx. pipiens 
[44,45] 

Q 2.56·10-3  
(2.05–3.19·10-3) 

15.6  
(14.3–16.6) 

52.2  
(48.4–56.6) 

33.9  
(31.9–36.1) 

SLEV | Cx. tarsalis 
[40] 

Q 2.03·10-3  
(1.28–3.07·10-3) 

8.8  
(6.6–10.6) 

43.7  
(38.9–51.4) 

26.2  
(24.2–29.7) 

WEEV | Cx. tarsalis 
[40,46] 

Q 3.04·10-3  
(2.52–3.68·10-3) 

1.3  
(0.4–2.9) 

38.8  
(36.7–41.5) 

15.5  
(13.4–19.7) 

Vector competence (bc)      
RVFV | Ae. taeniorhynchus  
[47] 

Q 1.51·10-3  
(1.03–2.05·10-3) 

7.1  
(2.8–9.8) 

42.3  
(39.3–46.5) 

24.7  
(22.0–27.0) 

EEEV | Ae. triseriatus 
[48] 

Q 1.51·10-3  
(0.96–2.24·10-3) 

7.0  
(2.9–11.9) 

50.3  
(42.3–63.1) 

28.8  
(23.6–35.8) 

WNV | Cx. pipiens 
[44] 

Q 3.05·10-3  
(1.68–4.87·10-3) 

16.8  
(15–17.9) 

38.9  
(36.1–44.1) 

27.8  
(26.6–30.1) 

WEEV | Cx. tarsalis 
[46] 

Q 1.17·10-3  
(0.55–2.36·10-3) 

5.1  
(0.6–13.3) 

37.0  
(33.5–46.0) 

21.4  
(18.1–27.3) 

WNV | Cx. univittatus 
[49] 

Q 2.32·10-3  
(1.58–3.68·10-3) 

4.2  
(1.5–7.1) 

45.2  
(39.6–53.0) 

23.7  
(19.4–27.3) 
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Table S5: Trait thermal response functions, data sources, and posterior estimates: parasite 
development rate. Asymmetrical responses fit with Brière function (B): B(T) = qT(T – 
Tmin)(Tmax – T)1/2; symmetrical responses fit with quadratic function (Q): Q(T) = -q(T – Tmin)(T – 
Tmax). Median function coefficients and optima (with 95% credible intervals). 
 
Trait / Species 
[data source] 

F(x) q (CIs) Tmin (CIs) Tmax (CIs) Topt (CIs) 

Parasite Dev. Rate (PDR) 
RVFV | Ae. taeniorhynchus 
[47] 

B 8.84·10-5  
(2.51–15.5·10-5) 

9.0  
(5.4–13.8) 

45.9  
(41.9–50.3) 

37.8  
(34.5–41.3) 

EEEV | Ae. triseriatus 
[48] 

B 7.05·10-5  
(5.21–9.68·10-5) 

11.6  
(7.0–16.4) 

44.8  
(40.6–49.4) 

37.2  
(33.8–41.1) 

WNV | Cx. pipiens 
[44,45] 

B 7.38·10-5  
(5.38–9.94·10-5) 

11.4  
(7.3–15.0) 

45.2  
(40.7–50.3) 

37.5  
(33.8–41.6) 

WNV | Cx. 
quinquefasciatus [50] 

B 7.12·10-5  
(4.58–10.2·10-5) 

19.0  
(12.9–21.0) 

44.1  
(38.8–50.4) 

37.7  
(33.6–42.7) 

SLEV | Cx. tarsalis 
[40] 

B 7.11·10-5  
(5.60–8.95·10-5) 

12.8  
(10.3–14.3) 

45.2  
(40.2–51.5) 

37.7  
(33.8–42.6) 

WEEV | Cx. tarsalis 
[40,46] 

B 6.43·10-5  
(4.44–10.4·10-5) 

4.0  
(0–12.6) 

44 .0 
(38.3–50.9) 

35.7  
(31.0–41.4) 

WNV | Cx. tarsalis 
[41] 

B 6.57·10-5  
(5.11–8.85·10-5) 

11.2  
(7.9–14.9) 

44.7  
(40.4–49.4) 

37.0  
(33.6–40.9) 

WNV | Cx. univittatus 
[49] 

B 7.54·10-5  
(4.13–11.1·10-5) 

10.2  
(7.1–15.3) 

34.4  
(31.2–51.1) 

28.8  
(26.1–42.5) 

SINV | Ae. taeniorhynchus  
[42] 

NA Not fitted because lack of temperature sensitivity  

 
 
Table S6: Trait thermal response functions, data sources, and posterior estimates: lifespan. 
Responses fit with a linear function (L): L(T) = -mT + z.  Median function coefficients and Tmax 
(with 95% credible intervals). 
 
Trait / Species 
[data source] 

F(x) m z Tmax = z/m 

Lifespan (lf)     
Ae. taeniorhynchus [51] L 2.02 (1.59–3.19) 85.9 (73.8–117.6) 42.7 (34.5–48.5) 
Cx. pipiens [11,17,52] L 4.86 (3.83–5.84) 169.8 (142.1–195.6) 34.9 (32.9–37.9) 
Cx. quinquefasciatus 
[17,36] 

L 3.80 (1.85–5.29) 136.3 (86.8–174.0) 35.9 (32.1–48.5) 

Cx. tarsalis [32] L 1.69 (1.12–2.24) 69.6 (55.8–83.5) 41.3 (36.6–50.8) 
 
Additional data sources for other species used for fitting priors only (priors were fit using all data 
except that of the focal species). Lifespan (lf): Cx. pipiens molestus [36,37], Cx. pipiens pallens 
[37], and Cx. restuans [17]. See Supplemental Methods: Priors for trait thermal responses.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 10, 2020. ; https://doi.org/10.1101/597898doi: bioRxiv preprint 

https://doi.org/10.1101/597898


 10 

Table S7: Priors for trait thermal response functions: mosquito traits with unimodal 
responses. Gamma distribution parameters (α [shape] and β [rate]) for priors for fitting thermal 
response parameters (Tmin, Tmax, and q). Scaled variances are noted in parentheses, either by the 
system name (applied to all parameters) or by individual parameters.  See Supplemental 
Methods: Priors for trait thermal responses. 
 
Trait / System q: α q: β Tmin: α Tmin: β Tmax: α Tmax: β 
Biting rate (a)       

Cx. pipiens (0.5)  8.84 64200 1.91 0.367 103 3.00 
Cx. quinquefasciatus  39.1  

(0.1) 
234133 
(0.1) 

8.82  
(0.1) 

0.997  
(0.1) 

2992 75.8 

Cx. tarsalis 40.1 
(0.05) 

227752 
(0.05) 

18.7 
(0.05) 

1.745 
(0.05) 

unif. unif. 

Cs. melanura 35.4 
(0.75) 

229694 
(0.75) 

7.77  
(0.75) 

0.895  
(0.75) 

2714 
(0.1) 

68.5  
(0.1) 

Fecundity       
Cx. pipiens (EFGC) (3) 9.23 15.6 2.38 0.419 139 3.52 
Cx. quinquefasciatus (ER) 19.1 30.44 2.87 0.600 486 13.2 

Prop. ovipositing (pO)       
Cx. pipiens (0.5) 9.50 1823 14.8 1.495 263 7.14 
Cx. quinquefasciatus 32.9 55242 1.41 0.397 3346 106 
Cs. melanura 14.4 2635 22.0 2.254 588 16.8 

Egg viability (EV)       
Ae. vexans  (0.01) 26.6 12259 11.6 1.916 486 10.8 
Cx. pipiens (0.2) 29.4 14525 8.83 1.579 514 11.1 
Cx. quinquefasciatus (0.1) 101 262268 1.08 1.032 1361 34.9 
Cx. theileri 5.86 2266 4.46 0.591 266 6.06 

Mos. dev. rate (MDR)       
Ae. triseriatus (0.2) 118 2697528 1.93 0.703 5542 145 
Ae. vexans (0.5) 119 2739401 1.89 0.689 6661 174 
Cx. pipiens (0.1) 71.9 1545915 2.03 0.596 2912 76.5 
Cx. quinquefasciatus (0.1) 113 2569782 1.81 0.651 5900 155 
Cx. tarsalis (0.1) 129 2940582 1.49 0.660 6431 169 
Cs. melanura (0.1) 129 2941063 1.78 0.685 6915 181 

Larval survival (pLA)       
Ae. triseriatus (0.05) 163 46723 231 27.3 4667 122 
Ae. vexans (0.05) 135 37701 210 24.6 4040 107 
Cx. pipiens (0.1) 102 27382 217 24.2 2872 76.7 
Cx. quinquefasciatus (0.1) 88.8 26461 123 14.8 2608 68.4 
Cx. tarsalis (0.025) 94.6 23240 237 26.2 2564 69.5 
Cs. melanura (0.05) 148.9 41533 239 27.8 4391 116 
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Table S8: Priors for trait thermal response functions: infection traits. Gamma distribution 
parameters (α [shape] and β [rate]) for priors for fitting thermal response parameters (Tmin, Tmax, 
and q). Scaled variances are noted in parentheses, either by the system name (applied to all 
parameters) or by individual parameters. See Supplemental Methods: Priors for trait thermal 
responses. 
 
Trait / System q: α q: β Tmin: α Tmin: β Tmax: 

α 
Tmax: 
β 

Transmission efficiency (b) 7.72 3202 9.97 1.268 114 2.9 
SLEV | Cx. tarsalis (0.5) 9.49 2373 79.6 6.181 153 3.74 
WEEV | Cx. tarsalis (0.1) 8.46 3056 12.1 1.455 134 3.5 
WNV | Cx. tarsalis 7.72 3202 9.97 1.268 114 2.9 

Infection efficiency (c)       
SINV | Ae. taeniorhynchus (0.1) 61.7 45102 2.49 0.815 1214 25.1 
SINV | Cx. pipiens (0.01) 57.3 40236 2.64 0.799 1124 23.28 
WNV | Cx. pipiens 28.5 15944 1.44 0.852 237 5.393 
SLEV | Cx. tarsalis 65.2 

(0.01) 
46656 
(0.01) 

1.67 
(0.01) 

0.692 
(0.01) 

1071 
(0.1) 

22.2 
(0.1) 

WEEV | Cx. tarsalis (0.01) 82.2 35791 392 30.502 1264 26.1 
Vector competence (bc)       

RVFV | Ae. taeniorhynchus (2) 8.4 4775 2.316 0.421 147 3.39 
EEEV | Ae. triseriatus 6.68 

(3) 
3612 
(3) 

2.027 
(3) 

0.383 
(3) 

119 
(0.01) 

2.86 
(0.01) 

WNV | Cx. pipiens (0.5) 17.6 7857 1.403 0.534 219 5.42 
WEEV | Cx. tarsalis (0.5) 9.56 5344 3.021 0.498 180 4.05 
WNV | Cx. univittatus 13.7 

(0.01) 
2327 
(0.01) 

380 
(0.01) 

22.434 
(0.01) 

527 
(0.1) 

14.4 
(0.1) 

Parasite dev. rate (PDR)       
RVFV | Ae. taeniorhynchus 20.2 

(0.2) 
331065 
(0.2) 

8.69  
(2) 

0.893 
(2) 

227 
(2) 

4.96  
(2) 

EEEV | Ae. triseriatus (2) 13.2 167635 6.76 0.609 183 4.05 
WNV | Cx. pipiens 8.71  

(2) 
113904 
(2) 

3.51  
(5) 

0.356 
(5) 

140  
(2) 

3.17  
(2) 

WNV | Cx. quinquefasciatus 15.8 201154 8.09 0.772 202 4.44 
SLEV | Cx. tarsalis 11.8 151149 6.31 0.584 179 3.97 
WEEV | Cx. tarsalis 10.3 117795 9.97 

(0.05) 
0.768 
(0.05) 

162 3.62 

WNV | Cx. tarsalis (2) 11.7 148079 5.92 0.541 169 3.77 
WNV | Cx. univittatus 12.3 146439 9.02  

(3) 
0.773 
(3) 

174 
(0.2) 

3.87 
(0.2) 
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Table S9: Priors for trait thermal response functions: lifespan. Gamma distribution 
parameters (α [shape] and β [rate]) for priors for fitting thermal response parameters (m and z). 
Scaled variances are noted in parentheses, either by the system name (applied to all parameters) 
or by individual parameters. See Supplemental Methods: Priors for trait thermal responses. 
 
Trait / System (var.) m: α m: β z: α z: β 
Lifespan (lf)     

Ae. taeniorhynchus (0.01) 119 52.9 268 3.19 
Cx. pipiens (0.01) 117 42.4 238 2.39 
Cx. quinquefasciatus (0.01) 110 32.9 207 1.78 
Cx. tarsalis (0.1) 124 43.0 249 2.42 
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Supplemental Methods: Priors for trait thermal responses 

We used gamma distribution parameters (α [shape] and β [rate]) for informative priors for 

each thermal response parameter (Brière and quadratic functions: Tmin, Tmax, and q); linear 

functions: m and z). First, we fit a thermal response function (with uniform priors) to all the 

Aedes and Culex data for a given trait except that of the focal vector species or vector–virus pair 

(i.e., the parameters for the priors for a for Culex pipiens were fit to the a data for all species 

except Cx. pipiens). Then we used the ‘MASS’ package in R to fit a gamma distribution 

hyperparameters to the distribution from each thermal response parameters.  

The mean of the gamma distribution is equal to α/β, while the variance is determined by 

the magnitude of the parameters (smaller values = higher variance). When fitting thermal 

responses, the appropriate strength for the priors depends on the amount of data used to fit the 

priors and the amount of the data for the focal trait. Prior strengths can be modified by scaling 

the variance (i.e., multiplying the gamma parameters by <1 to increase the variance or >1 to 

decrease the variance) without impacting the mean. In many cases we had to increase the 

variance because of the large number of data points used to fit priors. In a few cases, we had to 

decrease the variation (e.g., to constrain Tmax for Briere functions for PDR where we had no 

observations at high temperatures, in order to make it so PDR would not constrain R0 where 

there was no data). For biting rate (a) for Culex tarsalis, we used a likelihood function where 

Tmin and q had data informed priors and Tmax had uniform priors (as used to fit the priors) in order 

to best capture the thermal response of the data.  
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Supplemental Methods: Sensitivity and uncertainty analyses 

 We performed two sensitivity analyses and one uncertainty analysis to understand what 

traits were most important for determining and contributing to uncertainty in the thermal limits 

and optima. For the first sensitivity analysis, we calculated the partial derivatives of R0 with 

respect to each trait across temperature (T) and multiplied it by the derivative of the trait with 

temperature (i.e., the slope of the thermal response). Equations S3-S6 (below) apply to both 

versions of the R0 model (eqs. S1 and S2). Equation S3 is for to all traits (x) that appear once in 

the numerator. Equation S4, for biting rate (a), differs from previous analyses [2–6] because 

biting rate was cubed to account for fecundity measured per gonotrophic cycle rather than per 

day. Equation S5 is for parasite development rate (PDR), and equation S6 is for lifespan (lf). 

I=J
IK
∙ IK
I*
= 	 =J

EK
∙ IK
I*

        eq. S3 

I=J
I)

∙ I)
I*
= 	 M=J

E)
∙ I)
I*

        eq. S4 

I=J
IN7=

∙ IN7=
I*

= 	 =J
E	OP	N7=+

∙ IN7=
I*

       eq. S5 

I=J
IOP

∙ IOP
I*
= 	=J(CQMN7=)

E	N7=	OP+
∙ IOP
I*

       eq. S6 

For the second sensitivity analysis, we held single traits constant while allowing all other traits to 

vary with temperature. For the uncertainty analysis, we calculated the ‘total uncertainty’ across 

temperature as the width of the 95% highest posterior density (HPD) interval across temperature 

for the full model. Then, we calculated the HPD for ‘uncertainty for each trait’ by fixing all traits 

except the focal trait at their posterior median value across temperature, while keeping the full 

posterior sample of the focal trait. Then, we divided the uncertainty for each trait by the total 

uncertainty, calculated across temperature, to estimate the proportion of uncertainty in R0 that 

was due to the uncertainty in the focal trait.  
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Figure S1: Thermal responses for mosquito traits in additional vector species: Ae. 
taeniorhynchus (green), Ae. triseriatus (violet), Aedes vexans (teal), Cx. theileri (pink), and 
Culiseta melanura (brown). (A) Mosquito development rate (MDR), (B) larval-to-adult survival 
(pLA), and (C) biting rate (a), (D) lifespan (lf), (E) proportion ovipositing (pO) and (F) egg 
viability (EV). Points without error bars are reported means from single studies; points with error 
bars are averages of means from multiple studies (+/- standard error, for visual clarity only; 
thermal responses were fit to reported means). Solid lines are posterior distribution means; 
shaded areas are 95% credible intervals. 
 

  
  

0.00

0.05

0.10

0.15

Mosquito Development Rate (MDR )

Ra
te

 (d
ay

−1
)

A Ae. t r i .
Ae. vex.
Cs. mel.

0.0

0.2

0.4

0.6

0.8

1.0

Larval−to−Adult Survival (pLA )

Su
rv

iva
l p

ro
ba

bi
lity

B

0.00

0.05

0.10

0.15

0.20

0.25
Biting Rate (a)

Ra
te

 (d
ay

−1
)

C

Cs. melanura

0

20

40

60

80

100

Adult Lifespan (l f )

Ti
m

e 
(d

ay
s)

D

Ae. taeniorhynchus

10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0
Proportion Ovipositing (pO )

Pr
op

or
tio

n 
ov

ip
os

itin
g

E

Temperature (°C)

Cs. melanura

10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0
Egg Viability (EV )

Pr
op

or
tio

n 
ha

tc
hi

ng

F

Temperature (°C)

Ae. vexans
Cx. thei leri

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 10, 2020. ; https://doi.org/10.1101/597898doi: bioRxiv preprint 

https://doi.org/10.1101/597898


 16 

Figure S2: Thermal responses for biting rate (a) showing individual data points. (A) Culex 
pipiens, (B), Cx. quinquefasciatus, (C) Cx. tarsalis, and (D) Culiseta melanura. Solid lines are 
posterior distribution means for the mean thermal response; black dashed lines are 95% credible 
intervals for the mean thermal response; red dashed lines are 95% prediction intervals for 
observed data (incorporating the fitted variance).  
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 17 

Figure S3: Thermal responses for larval-to-adult survival (pLA) showing individual data 
points. (A) Culex pipiens, (B), Cx. quinquefasciatus, (C) Cx. tarsalis, (D) Aedes vexans, (E) Ae. 
triseriatus, and (F) Culiseta melanura. Solid lines are posterior distribution means for the mean 
thermal response; black dashed lines are 95% credible intervals for the mean thermal response; 
red dashed lines are 95% prediction intervals for observed data (incorporating the fitted 
variance). 
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 18 

Figure S4: Thermal responses for mosquito development rate (MDR) showing individual 
data points. (A) Culex pipiens, (B), Cx. quinquefasciatus, (C) Cx. tarsalis, (D) Aedes vexans, 
(E) Ae. triseriatus, and (F) Culiseta melanura. Solid lines are posterior distribution means for the 
mean thermal response; black dashed lines are 95% credible intervals for the mean thermal 
response; red dashed lines are 95% prediction intervals for observed data (incorporating the 
fitted variance). 
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Figure S5: Thermal responses for adult mosquito lifespan (lf) showing individual data 
points. (A) Culex pipiens, (B), Cx. quinquefasciatus, (C) Cx. tarsalis, and (D) Aedes 
taeniorhynchus. When data were reported by sex, only female data were used. Solid lines are 
posterior distribution means for the mean thermal response; black dashed lines are 95% credible 
intervals for the mean thermal response; red dashed lines are 95% prediction intervals for 
observed data (incorporating the fitted variance). 
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Figure S6: Thermal responses for fecundity traits showing individual data points. Traits: 
(A) Reproduction measured as eggs per female per gonotrophic cycle (EFGC), (B) reproduction 
measured as eggs per raft (ER) (C–E) proportion ovipositing (pO), and (F–I) egg viability (EV). 
Vector species: (A,C,F) Culex pipiens, (B,D,G), Cx. quinquefasciatus, (E) Culiseta melanura, 
(H) Cx. theileri, and (I) Aedes vexans. Solid lines are posterior distribution means for the mean 
thermal response; black dashed lines are 95% credible intervals for the mean thermal response; 
red dashed lines are 95% prediction intervals for observed data (incorporating the fitted 
variance). 
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Figure S7: Thermal responses for pathogen development rate (PDR) showing individual 
data points. (A) West Nile virus (WNV) in Culex pipiens, (B), WNV in Cx. quinquefasciatus, 
(C) WNV in Cx. tarsalis, (D) WNV in Cx. univittatus, (E) St. Louis Encephalitis virus (SLEV) 
in Cx. tarsalis, (F) Western Equine Encephalitis virus (WEEV) in Cx. tarsalis, and (G) Eastern 
Equine Encephalitis virus (EEEV) in Aedes triseriatus. Solid lines are posterior distribution 
means for the mean thermal response; black dashed lines are 95% credible intervals for the mean 
thermal response; red dashed lines are 95% prediction intervals for observed data (incorporating 
the fitted variance). 
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Figure S8: Thermal responses for vector competence traits in Culex tarsalis, showing 
individual data points. Traits: (A,B,F) transmission efficiency (b, # transmitting / # infected), 
(C,E) infection efficiency (c, # infected / # exposed), and (D) vector competence (bc, # infected / 
# exposed). Viruses: (A) West Nile virus (WNV), (B–D) Western Equine Encephalitis virus 
(WEEV), (E,F) St. Louis Encephalitis virus (SLEV). Solid lines are posterior distribution means 
for the mean thermal response; black dashed lines are 95% credible intervals for the mean 
thermal response; red dashed lines are 95% prediction intervals for observed data (incorporating 
the fitted variance). 
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Figure S9: Thermal responses for vector competence traits showing individual data points. 
Traits: (A,E,F) infection efficiency (c, # infected / # exposed) and (B,C,D,G) vector competence 
(bc, # infected / # exposed). Viruses and vectors: (A,B) West Nile virus (WNV) in Culex pipiens, 
(C) WNV in Cx. univittatus, (D) Eastern Equine Encephalitis virus (EEEV) in Ae. triseriatus, (E) 
Sindbis virus (SINV) in Culex pipiens, (F) SINV in Aedes taeniorhynchus, and (G) Rift Valley 
Fever virus (RVFV) in Ae. taeniorhynchus. Solid lines are posterior distribution means for the 
mean thermal response; black dashed lines are 95% credible intervals for the mean thermal 
response; red dashed lines are 95% prediction intervals for observed data (incorporating the 
fitted variance). 
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Figure S10: Medians & 95% credible intervals for thermal limits and optima of R0 models 
across temperate and tropical mosquito-borne disease systems. Models in order from top to 
bottom: Eastern Equine Encephalitis virus (EEEV) in Aedes triseriatus (dark purple; this paper), 
Western Equine Encephalitis virus (WEEV) in Culex. tarsalis (light purple; this paper), Sindbis 
virus (SINV) in Cx. pipiens (dark blue; this paper), West Nile virus (WNV) in Cx. univittatus 
(medium blue; this paper), WNV in Cx. tarsalis (light blue, this paper), St. Louis Encephalitis 
virus (SLEV) in Cx. tarsalis (dark teal; this paper), WNV in Cx. pipiens (light teal; this paper), 
WNV in Cx. quinquefasciatus (dark green; this paper), Plasmodium falciparum malaria in 
Anopheles spp. (light green; [3]), Rift Valley Fever virus (RVFV) in Ae. taeniorhynchus (yellow; 
this paper), SINV in Ae. taeniorhynchus (light orange; this paper), Ross River virus (RRV) in 
Cx. annulirostris (medium orange, [5]), dengue virus (DENV) in Ae. albopictus (dark orange; 
[4]), Murray Valley Encephalitis virus (MVEV) in Cx. annulirostris (light red, [5]), Zika virus 
(ZIKV) in Ae. aegypti (medium red; [6]), DENV in Ae. aegypti (dark red; [4]). Figure modified 
from [53]. 
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Figure S11: Temperature-dependent R0, sensitivity analyses, and uncertainty analysis for 
model of West Nile Virus (WNV) in Culex pipiens. (A) Median temperature-dependent R0 
(black line) with 95% credible intervals (dashed red lines). (B) Sensitivity analysis #1: derivative 
with respect to temperature for R0 (black) and partial derivatives with respect to temperature for 
each trait. (C) Sensitivity analysis #2: relative R0 calculated with single traits held constant. (D) 
Uncertainty analysis using highest posterior density (HPD) interval widths: the proportion of 
total uncertainty due to each trait. (B-D) Trait colors: biting rate (a, red), vector competence (bc, 
orange), adult lifespan (lf, green), parasite development rate (PDR, cyan), fecundity (EFGC, light 
blue), egg viability (EV, dark blue), larval survival (pLA, purple), and mosquito development rate 
(MDR, pink). All traits from Cx. pipiens. 
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Figure S12: Temperature-dependent R0, sensitivity analyses, and uncertainty analysis for 
model of West Nile Virus (WNV) in Culex quinquefasciatus. (A) Median temperature-
dependent R0 (black line) with 95% credible intervals (dashed red lines). (B) Sensitivity analysis 
#1: derivative with respect to temperature for R0 (black) and partial derivatives with respect to 
temperature for each trait. (C) Sensitivity analysis #2: relative R0 calculated with single traits 
held constant. (D) Uncertainty analysis using highest posterior density (HPD) interval widths: 
the proportion of total uncertainty due to each trait. (B-D) Trait colors: biting rate (a, red), vector 
competence (bc, orange), adult lifespan (lf, green), parasite development rate (PDR, cyan), 
fecundity (EFGC, light blue), egg viability (EV, dark blue), larval survival (pLA, purple), 
mosquito development rate (MDR, pink), and proportion ovipositing (pO, grey). Vector 
competence (bc) from Cx. univitattus; all other traits from Cx. quinquefasciatus.  
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Figure S13: Temperature-dependent R0, sensitivity analyses, and uncertainty analysis for 
model of West Nile Virus (WNV) in Culex tarsalis. (A) Median temperature-dependent R0 
(black line) with 95% credible intervals (dashed red lines). (B) Sensitivity analysis #1: derivative 
with respect to temperature for R0 (black) and partial derivatives with respect to temperature for 
each trait. (C) Sensitivity analysis #2: relative R0 calculated with single traits held constant. (D) 
Uncertainty analysis using highest posterior density (HPD) interval widths: the proportion of 
total uncertainty due to each trait. (B-D) Trait colors: biting rate (a, red), transmission efficiency 
(b, orange), adult lifespan (lf, green), parasite development rate (PDR, cyan), fecundity (EFGC, 
light blue), egg viability (EV, dark blue), larval survival (pLA, purple), and mosquito 
development rate (MDR, pink). Fecundity (EFGC) and egg viability (EV) from Cx. pipiens; all 
other traits from Cx. tarsalis. 
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Figure S14: Temperature-dependent R0, sensitivity analyses, and uncertainty analysis for 
model of West Nile Virus (WNV) in Culex univittatus. (A) Median temperature-dependent R0 
(black line) with 95% credible intervals (dashed red lines). (B) Sensitivity analysis #1: derivative 
with respect to temperature for R0 (black) and partial derivatives with respect to temperature for 
each trait. (C) Sensitivity analysis #2: relative R0 calculated with single traits held constant. (D) 
Uncertainty analysis using highest posterior density (HPD) interval widths: the proportion of 
total uncertainty due to each trait. (B-D) Trait colors: biting rate (a, red), vector competence (bc, 
orange), adult lifespan (lf, green), parasite development rate (PDR, cyan), fecundity (EFGC, light 
blue), egg viability (EV, dark blue), larval survival (pLA, purple), and mosquito development rate 
(MDR, pink). Infection traits (bc and PDR) from Cx. univittatus; all other traits from Cx. pipiens. 
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Figure S15: Temperature-dependent R0, sensitivity analyses, and uncertainty analysis for 
St. model of St. Louis Encephalitis Virus (SLEV) in Culex tarsalis. (A) Median temperature-
dependent R0 (black line) with 95% credible intervals (dashed red lines). (B) Sensitivity analysis 
#1: derivative with respect to temperature for R0 (black) and partial derivatives with respect to 
temperature for each trait. (C) Sensitivity analysis #2: relative R0 calculated with single traits 
held constant. (D) Uncertainty analysis using highest posterior density (HPD) interval widths: 
the proportion of total uncertainty due to each trait. (B-D) Trait colors: biting rate (a, red), 
transmission efficiency (b, orange), infection efficiency (c, brown), adult lifespan (lf, green), 
parasite development rate (PDR, cyan), fecundity (EFGC, light blue), egg viability (EV, dark 
blue), larval survival (pLA, purple), and mosquito development rate (MDR, pink). Fecundity 
(EFGC) and egg viability (EV) from Cx. pipiens; all other traits from Cx. tarsalis. 
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Figure S16: Temperature-dependent R0, sensitivity analyses, and uncertainty analysis for 
model of Western Equine Encephalitis Virus (WEEV) in Culex tarsalis. (A) Median 
temperature-dependent R0 (black line) with 95% credible intervals (dashed red lines). (B) 
Sensitivity analysis #1: derivative with respect to temperature for R0 (black) and partial 
derivatives with respect to temperature for each trait. (C) Sensitivity analysis #2: relative R0 
calculated with single traits held constant. (D) Uncertainty analysis using highest posterior 
density (HPD) interval widths: the proportion of total uncertainty due to each trait. (B-D) Trait 
colors: biting rate (a, red), transmission efficiency (b, orange), infection efficiency (c, brown), 
adult lifespan (lf, green), parasite development rate (PDR, cyan), fecundity (EFGC, light blue), 
egg viability (EV, dark blue), larval survival (pLA, purple), and mosquito development rate 
(MDR, pink). Fecundity (EFGC) and egg viability (EV) from Cx. pipiens; all other traits from 
Cx. tarsalis. 
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Figure S17: Temperature-dependent R0, sensitivity analyses, and uncertainty analysis for 
model of Eastern Equine Encephalitis Virus in Aedes triseriatus. (A) Median temperature-
dependent R0 (black line) with 95% credible intervals (dashed red lines). (B) Sensitivity analysis 
#1: derivative with respect to temperature for R0 (black) and partial derivatives with respect to 
temperature for each trait. (C) Sensitivity analysis #2: relative R0 calculated with single traits 
held constant. (D) Uncertainty analysis using highest posterior density (HPD) interval widths: 
the proportion of total uncertainty due to each trait. (B-D) Trait colors: biting rate (a, red), vector 
competence (bc, orange), adult lifespan (lf, green), parasite development rate (PDR, cyan), 
fecundity (EFGC, light blue), egg viability (EV, dark blue), larval survival (pLA, purple), 
mosquito development rate (MDR, pink), and proportion ovipositing (pO, grey). Fecundity 
(EFGC), egg viability (EV), and lifespan (lf) from Cx. pipiens; biting rate (a) and proportion 
ovipositing (pO) from Culiseta melanura; all other traits from Ae. triseriatus. Note: technically 
fecundity as eggs per female per gonotrophic cycle (EFGC) has already accounted for the 
proportion ovipositing (pO). However, we selected this trait fit because it was very similar to the 
ER thermal response from Cx. quinquefasciatus, but slightly wider (more conservative).  
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 Figure S18: Temperature-dependent R0, sensitivity analyses, and uncertainty analysis for 
model of Sindbis Virus in Culex pipiens. (A) Median temperature-dependent R0 (black line) 
with 95% credible intervals (dashed red lines). (B) Sensitivity analysis #1: derivative with 
respect to temperature for R0 (black) and partial derivatives with respect to temperature for each 
trait. (C) Sensitivity analysis #2: relative R0 calculated with single traits held constant. (D) 
Uncertainty analysis using highest posterior density (HPD) interval widths: the proportion of 
total uncertainty due to each trait. (B-D) Trait colors: biting rate (a, red), infection efficiency (c, 
brown), adult lifespan (lf, green), fecundity (EFGC, light blue), egg viability (EV, dark blue), 
larval survival (pLA, purple), and mosquito development rate (MDR, pink). All traits from Cx. 
pipiens. NOTE: The raw R0 calculation used PDR = 1, which is not biologically reasonable trait 
value. 
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Figure S19: Temperature-dependent R0, sensitivity analyses, and uncertainty analysis for 
model of Sindbis Virus in Aedes taeniorhynchus. (A) Median temperature-dependent R0 (black 
line) with 95% credible intervals (dashed red lines). (B) Sensitivity analysis #1: derivative with 
respect to temperature for R0 (black) and partial derivatives with respect to temperature for each 
trait. (C) Sensitivity analysis #2: relative R0 calculated with single traits held constant. (D) 
Uncertainty analysis using highest posterior density (HPD) interval widths: the proportion of 
total uncertainty due to each trait. (B-D) Trait colors: biting rate (a, red), infection efficiency (c, 
brown), adult lifespan (lf, green), fecundity (EFGC, light blue), egg viability (EV, dark blue), 
larval survival (pLA, purple), and mosquito development rate (MDR, pink). Fecundity (EFGC) 
and biting rate (a) from Culex pipiens; egg viability (EV) and larval traits (pLA and MDR) from 
Ae. vexans; all other traits from Ae. taeniorhynchus. NOTE: The raw R0 calculation used PDR = 
1, which is not biologically reasonable trait value. 
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Figure S20: Temperature-dependent R0, sensitivity analyses, and uncertainty analysis for 
model of Rift Valley Fever Virus in Aedes taeniorhynchus. (A) Median temperature-
dependent R0 (black line) with 95% credible intervals (dashed red lines). (B) Sensitivity analysis 
#1: derivative with respect to temperature for R0 (black) and partial derivatives with respect to 
temperature for each trait. (C) Sensitivity analysis #2: relative R0 calculated with single traits 
held constant. (D) Uncertainty analysis using highest posterior density (HPD) interval widths: 
the proportion of total uncertainty due to each trait. (B-D) Trait colors: biting rate (a, red), vector 
competence (bc, orange), adult lifespan (lf, green), parasite development rate (PDR, cyan), 
fecundity (EFGC, light blue), egg viability (EV, dark blue), larval survival (pLA, purple), and 
mosquito development rate (MDR, pink). Fecundity (EFGC) and biting rate (a) from Culex 
pipiens; egg viability (EV) from Cx. theileri; larval traits (pLA and MDR) from Ae. vexans; all 
other traits from Ae. taeniorhynchus. 
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Figure S21: Histograms of Tmin, optimum, and Tmax for transmission (R0) models. Tmin (left 
column), optimum (center column), and Tmax (right column). Top row (A-C): West Nile virus 
(WNV) in four vectors: Culex pipiens (grey), Cx. quinquefasciatus (red), Cx. tarsalis (blue), and 
Cx. univitattus (orange). Middle row (D-F): three viruses in Cx. tarsalis: WNV (same as in top 
row, bright blue), Western Equine Encephalitis virus (WEEV, light blue), and St. Louis 
Encephalitis virus (SLEV, dark blue). Bottom row (H-J): Sindbis virus (SINV) in Aedes 
taeniorhynchus (grey), SINV in Cx. pipiens (dark green), Rift Valley Fever virus (RVFV) in Ae. 
taeniorhynchus (light green), and Eastern Equine Encephalitis virus (EEEV) in Ae. triseriatus 
(purple). 
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Figure S22: Comparing alternative model parameterizations. Several models had multiple 
potentially valid choices for traits; we show these alternative models here (dashed lines; base 
models from main text in solid lines) to show that they make very little difference, except in D. 
(A) Models for EEEV in Ae. triseriatus with larval traits (larval-to-adult survival [pLA] and 
mosquito development rate [MDR]) from Ae. triseriatus (violet, from the main text) and larval 
traits from Cs. melanura (black). We also show larval traits from Cs. melanura without 
proportion ovipositing (pO) in the model (grey), since the thermal responses for EFCG (eggs per 
female per gonotrophic cycle, in Cx. pipiens) and ER (eggs per raft, in Cx. quinquefasciatus) 
were nearly identical even though the units were different, probably because the ER data were 
not very informative and the priors strongly shaped the thermal response. (B) Models for WNV 
in Cx. quinquefasciatus, with (light red, from the main text) and without (dark red) the thermal 
response for fecundity (as eggs per raft, ER), for the same reason as in A. (C) Models for WEEV 
in Cx. tarsalis with vector competence estimated by infection efficiency (c, Fig 6D) and 
transmission efficiency (b, Fig 6E) measured separately (blue, from the main text) or by vector 
competence measured as a single trait (bc, Fig 6F; light blue). (D) Models for RVFV in Ae. 
taeniorhynchus with lifespan from Ae. taeniorhynchus (light green, from the main text) or from 
Cx. pipiens (dark green). We chose the Ae. taeniorhynchus version for the main text because it is 
the same species the infection traits (PDR, bc) were measured in, and that choice strongly 
impacted the results.  
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Figure S23: Comparison with previous R0 models for transmission of West Nile virus. 
Models taken from this paper (solid lines: Cx. pipiens [grey], Cx. quinquefasciatus [red], Cx. 
tarsalis [blue], and Cx. univittatus [orange]), from Paull et al. 2017 [50] (dashed lines: Cx. 
pipiens [grey], Cx. quinquefasciatus [red], and Cx. tarsalis [blue]), from Vogels et al. 2017 [54] 
(Cx. pipiens [grey] and Cx. pipiens molestus [black]), and from Kushmaro et al. 2015 [55] (not 
species specific, dot-dashed line [brown]).  
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Figure S24: GAM models of mean WNV incidence as a function of average summer 
temperature. (A-F) Models are fit with differing numbers of knots (4–9). In all models, 
incidence peaks around 24°C (Topt = 23.5–24.2°C). 
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Table S10: GAM models of mean WNV incidence as a function of average summer 
temperature. Statistics for models fit with differing numbers of knots: edf (estimated degrees of 
freedom), Ref-df, F, and p-value refer to the smoothed temperature term (see Fig S24 for plots). 
Dev. exp. = percent deviance explained. Topt = temperature of peak incidence. 
 
Panel in 
Fig S24 # knots edf Ref-df F p-value Adj. R2 Dev. exp. (%) Topt 
A k = 4 2.96 2.99 15.87 4.03·10-10 0.018 2.33 23.8°C 
B k = 5 3.77 3.97 11.11 4.64·10-9 0.019 2.44 24.2°C 
C k = 6 4.71 4.96 11.97 4.77·10-11 0.022 2.85 23.5°C 
D k = 7 5.53 5.92 11.01 1.31·10-11 0.024 3.11 23.6°C 
E k = 8 6.55 6.93 11.12 2.73·10-13 0.026 3.62 24.1°C 
F k = 9 7.19 7.80 10.06 3.17·10-13 0.026 3.67 24.2°C 
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Figure S25: LOESS models of mean WNV incidence as a function of average summer 
temperature. Points are means for bins of 42 counties (+/- SE). Lines are locally estimated 
scatterplot smoothing (LOESS) regression models with different smoothing (span) parameters: 
0.1 (red), 0.25 (orange), 0.5 (green), 0.6 (cyan), 0.75 (light blue), 1 (dark blue), and 2 (violet). 
Models were fit to raw county-level data (n = 3,109, binned for visual clarity). The best model 
(span = 0.6, which appropriately balances overfitting and underfitting the data) estimates that 
incidence peaks at 23.9°C. 
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Figure S26: Raw county-level data for mean WNV incidence (2000-2016) as a function of 
average summer temperature (n = 3,109). 
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