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ABSTRACT 

Approximately 6 million adults in the US have heart failure (HF). HF progression is variable due 
in part to differences in sex, age, and genetic ancestry. Previous population-based genetic 
studies have largely focused on cross-sectional data related to HF, a disease known to change 
over time. Utilizing longitudinal data trajectory probabilities as a continuous trait may increase 
the likelihood of finding significant, biologically relevant associations in a genome-wide 
association (GWA) analysis. We analyzed data from the electronic health record in a medical 
biobank from a single, metropolitan US center to gather clinically pertinent data for analyses. 
We evaluated whole genome sequencing of 896 unrelated biobank participants, including 494 
with at least 1 electrocardiogram and 324 who had more than 1 echocardiogram (~3 
observations per person). A censored normal distribution multivariable mixture model was used 
to cluster phenotype measures for genome-wide analyses. GWA analysis on the trajectory 
probability of the corrected QT measurement (QTc) taken from electrocardiograms identified 
significant associations with variants in regulatory regions proximal to the WLS gene, which 
encodes the Wnt ligand secretion mediator, Wntless.  WLS was previously associated with QT 
length using of approximately 16,000 participants supporting the utility of this method to uncover 
significant genetic associations in small datasets. GWA analysis on the trajectory probability of 
left ventricular diameter as taken from echocardiograms identified novel significant associations 
with variants in regulatory regions near MYO10, which encodes the unconventional Myosin-10.  
We found that trajectory probabilities improved the ability to discover significant and relevant 
genetic associations. This novel approach increased yield from smaller, well-phenotyped 
cohorts with longitudinal data from a medical biobank. 
 
 
 
 
 
 
   
KEYWORDS: Trajectory analysis, left ventricular diameter, QTc interval, genome-wide 

association study, biobank 
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AUTHOR SUMMARY 

Approximately 6 million adults in the US have heart failure, a disease known to change 

over time. In a hospital based electronic health record, electrocardiograms and 

echocardiograms, used to evaluate heart failure, can be tracked over time.  We utilized these 

data to create a novel trait that can be applied to genetic analyses. We analyzed genome 

sequence of 896 biobank participants from diverse racial/ethnic backgrounds.  Genome-wide 

association (GWA) analyses were performed on a subset of these individuals for heart failure 

outcomes. A statistical model that incorporates cardiac data that are tracked over time was used 

to cluster these data using a probabilistic approach. These probabilities were used for a GWA 

analysis for corrected QT measurement (QTc) and left ventricular diameter (LVID). The QTc 

interval analysis identified significant correlations with variants in regulatory regions near the 

WLS gene which encodes the Wnt ligand secretion mediator, Wntless. Analysis of LVID 

identified significant associations with variants in regulatory regions near the MYO10 gene 

which encodes the unconventional Myosin-10. Through these analyses, we found that using the 

trajectory probabilities can facilitate the discovery of novel significant, biologically relevant 

associations. This method reduces the need for larger cohorts, and increases yield from 

smaller, well-phenotyped cohorts.   
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INTRODUCTION 

Genome-wide association studies (GWAS) have uncovered thousands of novel relationships 

between genetic variants and human disease conditions and traits.  In order to achieve 

significance in the face of multiple testing correction, cohort sizes in the thousands or tens of 

thousands are generally required, presenting a challenge for rare disorders or for deeply 

phenotypically characterized cohorts.  Because of the need for large sample sizes in GWAS, 

these studies generally often focus on case-control and cross-sectional data in curated cohort 

studies.  A less commonly used approach in GWAS harnesses refined phenotyping that can be 

garnered from tracking traits over time, or longitudinal data analyses.  Longitudinal data can be 

used to better identify patterns in complex traits, especially those with varying or late age of 

onset. Longitudinal data have not only been shown to increase power in GWAS but also have 

showed increases in heritability estimates in phenotypes such as blood pressure  and body 

mass index (BMI) (Levy et al., 2000; Mei et al., 2012; Xu et al., 2014).   

 Medical biobanks provide a unique opportunity for longitudinal analyses.  While medical 

biobanks are often not curated for a specific phenotype, they do benefit from having longitudinal 

medical record information.  There are multiple approaches to analyzing longitudinal data.  For 

example, longitudinal data can be clustered into distinct trajectories using a latent class mixed 

model (Proust-Lima et al., 2017).  This technique was used to identify novel genetic variants 

associated with white blood cell count over time using a 2-group clustering on a cohort of 

approximately 10,000 individuals (Hall et al., 2019).  An additional method used for clustering 

longitudinal data is a mixture model using latent class growth data (Jones and Nagin, 2007; 

Nagin, 2014).  This method was applied in a 5-cluster model and used in a GWAS of blood 

pressure on a medium-sized dataset of approximately 1,000 individuals (Justice et al., 2016). 

This study utilized PROC TRAJ to capture the trajectory of the longitudinal data to be assigned 

to groups and relied on a censored normal distribution using multivariable mixture model (Jones 

and Nagin, 2007; Nagin, 2014).  Clustering longitudinal data, while valuable, inherently loses 
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data information by compressing longitudinal progression into groups. Alternative methods to 

evaluate longitudinal trajectories are needed improve robustness for even smaller datasets, 

making these smaller longitudinal datasets suitable for GWAS.  The PROC TRAJ algorithm also 

provides probabilities that are used to assign an individual to a group.  This probability can then 

be used to capture trajectory as a continuous trait when 2-group clustering is applied.  We now 

utilized this method to analyze cardiac phenotypes from a medical biobank.  Here we show that 

using trajectory probabilities as a continuous trait can improve the likelihood to find significant 

and biologically relevant associations for GWA analysis in small, longitudinal, well-phenotyped 

datasets. 

Heart failure (HF) affects nearly 6 million adults (Benjamin et al., 2019; Mozaffarian et 

al., 2016).  Within the U.S. population, there are differences in timing and progression of HF 

between individuals of different racial/ethnic groups and between males and females, and as 

the population ages the incidence of HF increases (Komanduri et al., 2017).  The aging heart is 

characterized as having increased stiffness and changes in myocardial performance and size 

(Chiao and Rabinovitch, 2015; Oxenham and Sharpe, 2003).  Electrocardiograms (EKGs) 

measure electrical conductance through the heart and yield significant continuous traits; 

progression of certain EKG measurements, such as the corrected QT interval (QTc) over time, 

serve as an indicator of pathology. The aging, diseased heart enlarges over time, and shifts in 

left ventricular internal dimensions (LVID) can be measured from echocardiograms. 

 Here, we used single nucleotide polymorphisms (SNPs) measured as part of whole 

genome sequencing on a diverse cohort of biobank participants from a single metropolitan site 

in the US.  We used up to 23 years of longitudinal electrocardiogram and echocardiogram data 

from the electronic health record (EHR) to cluster participants into normal and atypical groups.  

We then utilized the trajectory probabilities that were estimate for these individuals to perform 

GWAS using ~6.5 million SNPs.  We found that variants near WLS, a gene which encodes 

Wntless, a Wnt ligand secretion mediator, were associated with QTc interval progression.  We 
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also found that variants in the MYO10 gene, which encodes unconventional myosin-10, were 

associated with enlargement of the left ventricle over time.  Integrated analyses of chromatin 

modifications and chromatin capture data suggested that SNPs near WLS and MYO10 are likely 

regulatory in nature.  Expression of both genes was increased in failed hearts compared to non-

failed hearts.  Notably, GWAS using only the clusters of normal and atypical values did not yield 

significant associations, while GWAS of trajectory probabilities did yield significant associations.  

These data suggest that trajectory probabilities of longitudinal data yield robust phenotypes that 

are likely to detect biologically relevant significant associations in GWA analyses.  

 

METHODS 

Cohort, clinical data and sequencing.  NUgene is a biobank of adults who received care at 

Northwestern Medicine.  The inclusion and exclusion criteria for enrollment in NUgene were 

previously described; primarily, this biobank recruits from the outpatient settings including but 

not limited to general medicine clinics (Ormond et al., 2009).  Nine hundred NUgene biobank 

participants were selected to create a racially and ethnically diverse cohort, and DNA samples 

were whole genome sequenced (WGS), as described in (Pottinger et al., 2020).  Variants were 

called using the Genome Analysis Tool Kit (GATK v3.3.0) best practices (Li and Durbin, 2010; 

McKenna et al., 2010).  These analyses were conducted using the MegaSeq Pipeline 

(Puckelwartz et al., 2014). The NUgene Cohort files were anchored to the 1000 Genomes WGS 

data.  Genetic population substructure was determined using the principal components 

calculated from the NUgene/1000 Genome data (Supplemental Figure 1). The first 3 principal 

components were used to capture the global genetic ancestry (PC1-PC3) of these individuals.  

Association analyses were conducted using PLINK v1.9 (Chang et al., 2015).   

Echocardiogram, electrocardiogram, and demographic data were extracted from the 

electronic data warehouse (EDW) at Northwestern Medicine.  Individual measures were 

obtained for left ventricular internal diameter-diastole (LVIDd) from echocardiogram reports that 
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spanned as much as 14 years of echocardiogram data.  The QTc interval was obtained from 

EKG measures and included multiple measures spanning as long as 23 years of data.  Some 

participants had multiple measurements in a given year.  For these participants the median 

value of results from that year was used for analysis.  Calendar year was used as the time 

component for this analysis. Analyses were completed using SAS 9.4 and R v3.5.1.  The 

diagnosis of heart failure was determined by ICD9 diagnosis codes 425 and all sub-codes, and 

ICD10 diagnostic codes I42 and all sub-codes. 

 

Trajectory Analysis.  Trajectory analyses were conducted using a censored normal distribution 

multivariable mixture model on echocardiographic and electrographic quantitative traits using 

PROC TRAJ in SAS 9.4 (Jones and Nagin, 2007; Nagin, 2014).  This method uses a likelihood 

function to assign a probability to a subject belonging to a trajectory cluster based on 

predetermined (k) number of clusters.  This trajectory method is robust to missingness in 

longitudinal data.  Consistent with the small sample size for this cohort, only 2 cluster 

separations were chosen.  The model assigns a cluster to each individual as well as the 

probability of belonging in each cluster.  Both measures (cluster and trajectory probability) were 

used in genome-wide associations.  

 

GWAS.  Single nucleotide polymorphisms (SNPs) with a minor allele frequency of greater than 

0.05 were used for GWA analyses.  Variants were removed that had high deviations from Hardy 

Weinberg Equilibrium (threshold = 0.005) and genotype missingness rate greater than 0.05.  

Only autosomes were included for analysis.  On average, this included 6.5 million SNPs per 

individual.  All association analyses controlled for age, sex, and the first 3 principal components 

in an additive model.  Quantile-quantile plots were generated for each association analysis to 

test for deviations from normalcy. Analyses were conducted using PLINK v1.9 (Chang et al., 

2015). Sensitivity analyses were conducted to test for ancestry specific results. 
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Variant fine-mapping.  1000 Genomes data for all populations were used.  A linkage 

disequilibrium (LD) map was created with the online tool (https://ldlink.nci.nih.gov/) using all 

individuals from the 1000 Genomes populations.  Variants in LD with the top SNPs as well as 

those that were suggestively associated with outcome at the p-value<7E-07 threshold were 

further analyzed using the Roadmap epigenomics, ChromHMM, and ENCODE data repository 

to identify patterns indicative of enhancers and promoters using histone Chip-Seq data in heart 

left ventricle, aorta, and subcutaneous abdominal adipose tissues(2012; Kundaje et al., 2015). 

The “fold change over negative control” bigwig files were used from the histone H3K27Ac ChIP-

Seq datasets. The files used for these analyses are described in Supplemental Table 1. 

ATAC-Seq was conducted using iPSC cardiomyocytes.  iPSCs were cultured and 

differentiated as described previously(Montefiori et al., 2018).  ATAC-seq libraries were 

performed as in (Buenrostro et al., 2015) with minor changes as reported in (Montefiori et al., 

2017). Briefly, 50,000 freshly harvested cardiomyocytes were pelleted by centrifugation, 

resuspended in 50 ul ice-cold lysis buffer (10mM Tris-HCl pH 7.4, 10mM NaCl, 3mM MgCl2, 

0.1% Igepal CA-630) and centrifuged for 10 minutes at 4°C, 500 x g. Nuclei were resuspended 

in 50 ul of the transposase reaction buffer (Nextera DNA library prep kit (Illumina cat. FC-121-

1030) and 22.5 ul nuclease-free water) and incubated at 37°C for 30 minutes. DNA was purified 

from the reaction by purification on a Qiagen MinElute column (cat. 28206) according to 

manufacturer’s instructions and eluted in 10 ul of elution buffer (10mM Tris-HCl pH 8). Purified 

DNA was used immediately for PCR amplification using custom primers (Buenrostro et al., 

2013). After 5 cycles, qPCR was used to determine the optimal number of additional PCR 

cycles required. Following PCR, ATAC-seq libraries were cleaned and size-selected using 

Ampure XP beads (Agencourt cat. A6388) to enrich for fragments between 300-700 bp and 1 ul 

was used for quantitation and size analysis on an Agilent Bioanalyzer High Sensitivity D1000 

chip (Agilent cat. 5067-5584). ATAC-seq libraries were subjected to 50 bp single-end 
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sequencing on an Illumina Hi-Seq 4000 instrument. A total of 8 technical replicates were 

generated from 3 different differentiation batches. All differentiations yielded CMs with purity > 

80%. Reads were trimmed using cutadapt (Kechin et al., 2017) and aligned to the hg19 genome 

with Bowtie2 version 2.2.3 (Langmead and Salzberg, 2012) with default parameters. Reads with 

mapping quality lower than 10 were discarded. Mitochondrial reads and reads aligned to the 

same coordinates were removed. To call peaks, aligned reads from 8 technical replicates were 

pooled and input into MACS2 version 2.1.0 (Zhang et al., 2008) using the following parameters: 

-nomodel -llocal 20000 -shift -100 -extsize 200.  

The CHiCAGO pipeline raw output of three replicates of iPSC-CM promoter capture Hi-C 

data were previously described (Cairns et al., 2016; Montefiori et al., 2018).  Promoter-baited 

interacting fragments were filtered and 1kb was added to both ends of regions interacting with 

gene promoters due to the use of a 4-bp cutter (Mbol) to generate the Hi-C libraries. This 

method generates fragments that are on average 400bp, making it likely that neighboring 

fragments would contribute to the same interaction. Therefore, each interacting end was 

extended by 1kb to avoid over filtering while obtaining reproducible interactions between 

replicates. Data from each replicate was evaluated using the program Bedtools (Quinlan and 

Hall, 2010), and genomic interactions that were present in at least two replicates were retained. 

Bed files representing Hi-C interactions were visualized in the UCSC genome browser. The files 

used for these analyses are described in Supplemental Table 1. The VISTA Browser was used 

to test for H3K27ac patterns in fetal heart tissue, heart tissue of individuals with dilated 

cardiomyopathy, and tissue from normal hearts (Spurrell et al., 2019).  The UCSC human 

genome browser was used to display the sequencing peaks. 

 

Transcription Factor Binding Sites and eQTL.  Variants were then analyzed using JASPAR’s 

analysis tool for transcription factor binding sites in humans.  A 30bp region around the 

reference and alternative variants in these regions were evaluated.  Reference regions that 
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showed differences in transcription binding in comparison to the alternative regions were further 

evaluated (Fornes et al., 2020). 

 Additionally, the GTEx eQTL calculator was used to evaluate the variants of interest in 

WLS and MYO10 and the tissue information available for heart atrial appendage, heart left 

ventricle, skeletal muscle and artery (obtained from the GTEx Portal on 3/31/2020).  Gene 

expression data from the GTEx browser was also used to evaluate the expression of these 

genes in a subset of tissues. 

 

RNA-Seq for Gene Expression Analysis in Heart Tissue.  RNA-Seq analyses were 

conducted using samples from healthy and failed left ventricle obtained from failed transplants 

or as discarded tissue. These analyses have been previously described (Gacita et al., 2020). 

Genes with <1 count per million were removed from the analysis. Differentially expressed genes 

were defined as any gene with an FDR-corrected p-value of < 0.05. 

 

RESULTS 

Biobank-derived genomic and clinical findings.   The NUgene biobank was established in 

2000 and the electronic data warehouse aggregates clinical data from 1996.  We used WGS 

data from 895 biobank participants; the demographics of this population was previously 

described (Pottinger et al., 2020).  Using genetic ancestry, we found that approximately 46% of 

participants in the cohort used for genome-wide association analyses were of African ancestry 

(Table 1). 

Of the 895 participants with WGS data, 494 had an EKG with the QTc interval 

measured.  Over the 23 years of data collection, these 494 had an average of four QTc 

observations, with 320 participants having at least two measures of QTc (Table 1).  Three 

hundred and twenty-four individuals had echocardiogram data that included a measurement of 

the left ventricle internal dimension in diastole (LVIDd).  All LVIDd measures were normalized to 
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body surface area (BSA).  On average, the 324 participants had 4 independent measures of 

LVIDd over a maximum of 14 years of information.  Of these individuals, 186 participants had at 

least 2 measures of LVIDd.  LVIDd is a standard measure of left ventricular size.  The average 

age for the first electrocardiogram and echocardiogram test in this cohort was 48 years; and 

67% of participants were female (Table 1).  

 

Trajectory probabilities of QTc interval identify novel variants in GWAS.   

The longitudinal data from the EHR were clustered in two groups: a normal QTc interval cluster, 

with data that ranges from 420 to 440 ms, and long QTc interval cluster, with data that ranges 

from 460 to 540 ms.  The majority of participants clustered into the normal QTc interval cluster 

(Figure 1A), while 16% (44 of 275 subjects) were assigned to the long QTc interval cluster.  

Figure 1B shows the probability density plot for these same values, revealing the majority of 

participants fell into the ‘normal’ cluster (physiologically normal range of values) with a 

considerable number of individuals falling between the two tails (Figure 1B).   We analyzed only 

individuals with both an EKG and echocardiogram, as this may indicate a higher likelihood or 

suspicion of cardiac disease.  Of the 275 subjects in this subset, 89 had a diagnosis of heart 

failure.  Of these 89, 29 were included in the long QTc cluster and 60 were contained in the 

normal cluster.  The cluster assignment and probability density showed similar distribution 

between these individuals and the original 494 individuals.   

  We conducted a GWAS using the QTc cluster data from Figure 1A on the 275 

individuals with EKG and echocardiogram data.  All GWAS controlled for age, sex, and global 

genetic ancestry (PC1-PC3) (Figure 1C), although not differences were seen in trait distribution 

by sex (Supplemental Figure 2).  This approach, using the 2-cluster phenotyping, yielded only 

non-significant associations at a p-value<3E-08 threshold in and around WLS, GUCA1C, 

GLRA3, and CADPS2.  This analysis showed nominal deviations from normal with a lambda of 

1.04 (Supplemental Figure 3A) as a lambda between 1 and 1.05 is considered the acceptable 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 11, 2020. ; https://doi.org/10.1101/2020.05.10.087130doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.10.087130


12 
 

threshold for deviation (Freedman et al., 2004).  In contrast, a GWA using trajectory probabilities 

to calculate QTc distribution as a continuous trait showed a significant association (p-value<3E-

08) with SNPs near the WLS gene (Figure 1D).  This analysis showed minimal deviations from 

normal with a lambda of 1.01, an improvement from the dichotomous analysis (Supplemental 

Figure 3B).  These analyses indicate that trajectory probability outcomes can be used to detect 

novel significant associations of longitudinally well-phenotyped cohorts. 

  The variants that were significantly associated with QTc trajectory probability and those 

that were suggestively associated (p-value<7E-07) were further investigated.  All risk alleles of 

these variants show an increase in QTc interval probability, or likelihood of having a long QTc 

interval, in individuals with these variants (Table 2). The risk allele frequency for these variants 

range from 0.2 to 0.4.  A similar direction of association is observed when evaluating these 

variants in the dichotomous or cluster association analysis indicating that the risk allele is 

associated with a longer QTc interval (Supplemental Table 2).  To further investigate these 

results, a variant-specific association analysis was performed evaluating the QTc interval value 

cross-sectionally using the first EKG value.  These data also show a similar direction of 

association as the trajectory probability analysis emphasizing the robustness of the 

associations. Ancestry-specific analyses also showed similar trends in association for these 

variants (Supplemental Table 3) supporting the value of this method. 

 

Enhancers of WLS are associated with cardiac outcomes.  Multiple SNPs in an intergenic 

region on chromosome 1 near WLS, a gene encoding Wntless, a Wnt receptor that participates 

in Wnt secretion and recycling (Port and Basler, 2010) were associated with QTc interval.  

Figure 2 shows the linkage disequilibrium (LD) map of the significantly associated QTc SNPs 

(p-value<3E-08) including rs199703974, rs4536035, rs4506498.  Variants rs4536035 and 

rs4506498 form an LD block with variant rs4244620 which showed suggestive significance in 

the GWAS (p-value<7E-07). 
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 These variants map upstream of WLS, with the closest SNP 64KB 5’ from the WLS 

transcriptional start site (Table 2).  ChIP-seq for H3K27Ac, a chromatin marker for enhancers, 

from human heart left ventricle revealed enrichment for H3K27Ac in and around variants 

rs1304851468 (Figure 3A, blue track, yellow box).  As WLS is expressed broadly, and 

cardiovascular disease derives from both cardiac intrinsic and extrinsic factors, we also 

evaluated H3K27Ac data from human aorta and subcutaneous abdominal adipose tissue.    

ATAC-seq, which assesses open chromatin, was evaluated from cardiomyocytes differentiated 

from induced pluripotent stem cells (iPSC-derived cardiomyocytes).  This analysis also 

supported the presence of potential active enhancer peaks in and around variants 

rs1304851468 and rs4244620 (Figure 3A, red track).  Chromatin capture – promoter interaction 

data was similarly queried. We also evaluated the pattern of long-range promotor-enhancer 

interactions in iPSC-derived cardiomyocytes (Montefiori et al., 2018).  These data showed 

looping of the region near rs4244620 to the WLS promotor, further supporting the notion that 

this region corresponds to a WLS cardiac enhancer (Figure 3A, purple track).  Interactions were 

not observed for rs1304851468 and the WLS promotor. This may be due to a lack of interaction 

between the loci, or technical aspects such as the immaturity of the iPSC-derived 

cardiomyocyte model or an unresolvable distance based on the limits of the methods.  Similar 

patterns of H3K27Ac acetylation were seen in both normal hearts and failed hearts 

(Supplemental Figure 4) (Spurrell et al., 2019).  These analyses suggest that SNPs identified 

by GWAS map to potential WLS regulatory regions. 

  We compared WLS expression in failed hearts (n=97) and normal hearts (n=108) in a 

previously described cohort (Heinig et al., 2017).  WLS was modestly but significantly 

differentially expressed between failed hearts and non-failed hearts (log fold change=0.078, 

Benjamini–Hochberg adjusted p=1E-8).  The WLS gene is ubiquitously expressed with high 

expression in esophagus, bladder and aorta (Figure 3B).  An eQTL analysis using GTEx data 

showed a significant association with WLS and rs4536035, a variant significantly associated 
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with QTc interval trajectory probability, in the coronary artery (p-value=0.024).  These analyses 

indicate that WLS may act through a vascularly driven process to affect cardiovascular 

outcomes. 

  

Trajectory probabilities of left ventricular size identify novel variants in GWAS.  We tested 

for association with echocardiographic measures using longitudinal LVIDd data (corrected for 

BSA).  The longitudinal data was grouped into 2 clusters that divided participants into a normal 

LVIDd cluster (ranging from 1.9 to 2.3 cm/m2) and dilated LVIDd cluster (ranging from 2.6 to 2.9 

cm/m2).  The normal cluster included 237 of 324 participants (73%) (Figure 4A), while 87 of 324 

(27%) were assigned to the dilated cluster.  A probability density plot for these values 

demonstrated a bimodal distribution with many individuals falling between the peaks (Figure 

4B).  From the total group, 89 had a diagnosis of heart failure with 35 in the dilated cluster and 

56 in the normal cluster.   

  A GWA analysis using 324 individuals with echocardiographic measures (Table 1) was 

conducted using the LVIDd clusters in Figure 4A controlling for age, sex, and global genetic 

ancestry (PC1-PC3), although not differences were seen in trait distribution by sex 

(Supplemental Figure 2).  No significant associations were detected.  However, suggestive 

association peaks were seen in and around CDV3 and MYO10.  This analysis showed nominal 

deviations from normal with a lambda of 1.03 (Supplemental Figure 5A).  In contrast, using the 

trajectory probabilities from Figure 4B as a quantitative trait, a GWA analysis showed a 

significant association (p-value<3E-08) overlapping the MYO10 peak from the dichotomous 

GWA analysis (Figure 4D).  This analysis showed no deviation from normal with a lambda of 1 

(Supplemental Figure 5B).  These analyses again support that trajectory probability outcomes 

provide a novel method for which to find significant associations in GWAS of longitudinally well-

phenotyped cohorts.  All GWA were controlled for age, sex, and global genetic ancestry (PC1-

PC3). 
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  MYO10 encodes myosin 10, a member of the myosin superfamily and has not previously 

been associated with echocardiographic measures.  The risk alleles of the SNPs in this region 

associated with LVIDd probability, or higher likelihood of having a dilated LVIDd, are shown in 

Table 3. The minor allele frequency for these variants range from 0.05 to 0.07.  A similar 

direction of association is observed when evaluating these variants in the dichotomous or 

cluster association analysis indicating that the risk allele is associated with a dilated LVIDd 

(Supplemental Table 4).  To further investigate these SNPs, a variant-specific association 

analysis was used evaluating the LVIDd value cross-sectionally using the first echocardiogram 

value.  These data also show a similar direction of association as the trajectory probability 

analysis.  These analyses indicate that this method is robust in finding significant associations in 

GWA analyses. Ancestry-specific analyses also showed similar trends in association for these 

variants (Supplemental Table 5) supporting the utility of this method. 

 

Integrated analysis suggests SNPs associate with regulatory regions for MYO10.  As 

these variants were in a single intergenic association peak on chromosome 5 near MYO10, the 

LD structure around the variants was evaluated.  Significant variants rs112072727 and 

rs78565023 form an LD block with variant rs74669701 (pink lettering) (Figure 5A).  A 

transcription factor binding site analysis reveals a putative SOX9 binding site is created at 

rs74669701 after the deletion of a T in the alternative sequence (Figure 5B, pink box).  The 

closest intergenic variant was positioned 13KB 5’ of the MYO10 transcriptional start site (Table 

3).  H3K27Ac data from human heart left ventricle and subcutaneous abdominal adipose tissue 

showed enrichment in and around intronic variant rs17651767 (Figure 6A, blue and black 

tracks, yellow box).  Data from human aortae showed enrichment of H3K27Ac peaks in and 

around rs76494545 and rs113861938 (Figure 6A, green track, light blue box).  H3K27Ac 

enrichment in and around rs76494545 and rs113861938 was also seen in data from thoracic, 

and ascending aorta.  ATAC-seq data from iPSC-derived cardiomyocytes did not show activity 
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in the regions of interest (gold and light blue boxes) indicating that iPSC-derived cardiomyocytes 

are likely not an appropriate model of MYO10 gene regulation (Figure 6A, red track).   

  MYO10 is ubiquitously expressed with high expression in thyroid, lung and tibial arteries 

(Figure 6B).  MYO10 is expressed in hearts at lower levels in the whole heart tissue.  RNAseq 

data from 12 failed hearts and 3 healthy hearts, showed that MYO10 was upregulated in failed 

hearts (log fold change=0.71, FDR adjusted p-value=0.038).  The finding was validated in the 

larger cohort of 97 failed and 108 non-failed hearts (log fold change=0.086, Benjamini–

Hochberg adjusted p-value=5.7E-11) (Heinig et al., 2017).  An eQTL analysis using GTEx data 

show a significant association with MYO10 and rs74669701, a variant in LD with variants 

significantly associated with LVIDd trajectory probability (Figure 5A), in the tibial artery (eQTL 

p-value=0.00099) but not left ventricle of the heart nor skeletal muscle.  These analyses reveal 

that MYO10 variants are associated with regulatory regions in vascuar tissues, expression 

changes in artery and is differentially regulated in heart failure indicating a potential role in 

cardiac extrinsic factors promoting heart failure. 

 

DISCUSSION 

Trajectory probability for GWAS.  Electronic health record (EHR) data, in conjunction with 

genetic information, is a powerful tool to gain insight into novel and established disease 

mechanisms.  Genetic studies relying on phenotype data derived from the EHR capture can 

readily capture clinical data in a cross-sectional and case/control manner.  While useful, these 

data can be enhanced by analyzing progression of disease traits.  Longitudinal data may 

provide novel genetic associations informing disease outcomes.  Here we show that quantifying 

the probability of these cluster phenotypes provides a novel technique for which to find 

significant associations in small cohorts with rich longitudinal data.  In this study, we used 

individual level longitudinal data to create clusters and trajectory probabilities used for cluster 

assignment.  We analyzed QTc interval and LVIDd corrected for BSA using trajectory probability 
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as a continuous trait and found this increased the likelihood to find associations compared to 

only using cluster in GWAS. 

 

WLS associates with EKG intervals.  We found that QTc interval trajectory probability was 

associated with variants in putative enhancer regions linked to WLS, a gene encoding Wntless, 

a Wnt receptor that participates in Wnt’s secretion and recycling (Port and Basler, 2010).  

Deeper analyses suggested that these variants map to active enhancers in left ventricle, aorta, 

subcutaneous abdominal fat, and iPSC-derived cardiomyocytes.  WLS is highly expressed in 

tissues with smooth muscle enrichment, including vascular smooth muscle as in the aorta.  The 

high expression in aorta supports a vascularly-mediated mechanism to regulate cardiovascular 

outcomes, for example shifts in blood pressure may indirectly lead to myocardial compliance 

and fibrosis. The increase in WLS expression in failed hearts compared to non-failed hearts  

could reflect the non-cardiomyocyte component of these hearts including vasculature.  WLS 

was previously associated with QT interval in a meta-analysis of Hispanic populations totaling 

approximately 16,000 individuals (Mendez-Giraldez et al., 2017). Specifically, the variant 

rs112611436, was associated with a 12ms increase in QT interval.  In an animal model WLS-

deficient macrophages were found to have enhanced anti-inflammatory and reparative 

properties in a mouse model of myocardial infarction (Palevski et al., 2017).  Taken together, 

these data support an indirect mechanism by which WLS influences the myocardium and 

thereby the cardiac conduction system. 

 

MYO10 associates with increased LV dimensions.  Trajectory probability GWAS using left 

ventricular dimensions (LVIDd) identified variants in putative enhancers for MYO10. A 

suggestive signal was found in the first intron of MYO10, a region that is known to be enriched 

for active transcriptional regulatory signals (Park et al., 2014).  MYO10 encodes a member of 

the myosin superfamily and the chromatin marks suggested MYO10 expression in aorta and 
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subcutaneous abdominal fat as the target tissues.  MYO10 expression was also increased in 

failed compared to non-failed hearts, which includes non-cardiomyocyte components.  Variant 

rs74669701 showed an increase likelihood for binding of the SOX9 transcription factor which 

has been shown in previous literature to increase cardiac fibrosis in injured hearts (Lacraz et al., 

2017; Scharf et al., 2019). The expression of MYO10 in thyroid, lung and tibial arteries suggests 

a role as cardiac-extrinsic factor in promoting an enlarged heart.   An intronic SNP in MYO10 

was previously associated with insulin-like growth factor binding protein 1 (IGFBP-1) ng/mL 

(Comuzzie et al., 2012).  IGFBP-1 is a marker for insulin-resistance, and this study showed a 

suggestive association in a family-based cohort study of obesity in Hispanic children.  

Specifically, the variant, rs17614462, was associated with an increase in IGFBP-1, and this 

biomarker has been linked to increased risk of metabolic syndrome and cardiovascular diseases 

(Bae et al., 2013).  Another intronic variant in MYO10, rs2434960, was previously associated  

with an increase in adiposity and leptin levels (Zhang et al., 2013).  Metabolic syndrome is 

known to adversely affect HF outcomes and, therefore, these studies may provide insight into 

the genetic interplay between metabolic syndrome and HF (Perrone-Filardi et al., 2015).  

Metabolic syndrome has been previously shown to be associated with left ventricular septal 

thickness (Burchfiel et al., 2005), indicating a possible mechanism for which this gene is 

associated with cardiac outcomes. 

 

Conclusions and Study Limitations.  Smaller cohorts can often be valuable because of 

having deeper phenotypic characterization.  Longitudinal data can be especially powerful 

because it captures more of the data from electronic health records.  Utilizing biobanks that are 

linked to EHRs provides a unique opportunity for phenotyping as there are a wealth of data that 

can be used in many ways especially longitudinally.  Recent polygenic risk score (PRS) studies 

have shown that including longitudinal data in PRS increases the likelihood of finding 

associations (Zhao et al., 2019). Using longitudinal data in a method that is robust to missing 
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data in a censored normal distribution using multivariable mixture model provides a novel 

method for which to detect genetic variants associated with cardiac traits.  In addition, we found 

that using trajectory probabilities provides a method for which to find novel significant 

associations in small, well-phenotyped, longitudinal cohorts, such as those found in biobanks.  

This approach should prove useful in the study of rare disease cohorts and underrepresented 

populations. 

 One limitation of these analyses is that they only include the autosomes. As there are 

known sex differences in cardiovascular disease, it is possible that there are unexplored 

variants on the X chromosome that contribute to phenotype. We also only used the first three 

principal components to correct for global genetic ancestry. While these first 3 account for large 

substructure in the dataset, it is possible that adding additional components would further 

account for minor substructure in the data being analyzed. Lastly, unknown confounders could 

be contributing to the signal that are found in these association analyses. 
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TABLES 

 

Table 1. Demographic characteristics of the NUgene Cohort 

  Electrocardiogram Echocardiogram 

Participants with ≥ 1 
observations  

494 
(1,472 observations) 

324 
(914 observations) 

Participants with ≥ 2 
observations  

320 
(1,190 observations) 

186 
(776 observations) 

Age at first test, years (±sd) 48 ± 11 48 ± 11 

Sex   

Female, % 67 67 

Male, % 33 33 

Genetic Ancestry   

African, % 47 45 

European, % 27 27 

Hispanic, % 17 18 

Other, % 9 10 

Data distribution for electrocardiogram genetic ancestry was based on the 275 individuals who 
had EKG and echo data. 
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Table 2. Characteristics of variants in the WLS peak region associated with QTc interval 
trajectory probability 

Variant rs number Risk 
Allele 

Parameter 
estimate 

P-value Nearest 
gene 

Distance 
from TSS 

Global 
AF 

chr1:68762502 rs1304851468 G 0.2 1.1E-8 WLS 64KB 0.4* 

chr1:68788564 rs4536035 C 0.19 1.83E-8 WLS 90KB 0.2 

chr1:68788712 rs4506498 T 0.19 2.52E-8 WLS 90KB 0.3 

chr1:68785213 rs11209261 T 0.18 6.31E-8 WLS 87KB 0.3 

chr1:68764949 rs10889761 T 0.18 10E-8 WLS 67KB 0.3 

chr1:68797643 rs10789260 G 0.19 1.85E-7 WLS 99KB 0.2 

chr1:68804349 rs4926357 G 0.18 3E-7 WLS 106KB 0.2 

chr1:68787424 rs11309689 AT 0.15 4.24E-7 WLS 89KB 0.3 

chr1:68784444 rs6588315 G 0.17 4.32E-7 WLS 86KB 0.3 

chr1:68804055 rs4926330 A 0.18 5.26E-7 WLS 106KB 0.3 

chr1:68794008 rs4598529 T 0.18 5.53E-7 WLS 96KB 0.2 

chr1:68787891 rs4244620 C 0.16 6.34E-7 WLS 90KB 0.3 

chr1:68804530 rs4926360 T 0.18 6.95E-7 WLS 106KB 0.2 

chr1:68804258 rs4926356 A 0.18 8.08E-7 WLS 106KB 0.2 

TSS: transcription start site; AF: Allele frequency from gnomAD 
*Based on rs199703974, rs1304851468 absent from gnomAD data  
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Table 3. Characteristics of variants in the MYO10 peak region associated with LVIDd 
trajectory probability 

Variant rs number Risk 
Allele 

Parameter 
estimate 

P-value Nearest 
gene 

Distance 
from TSS 

Global AF 

chr5:16957078 rs113861938 T 0.42 2.10E-9 MYO10 21KB 0.05 

chr5:16956160 rs112072727 T 0.33 1.27E-8 MYO10 20KB 0.06 

chr5:16956338 rs78565023 G 0.32 1.41E-8 MYO10 20KB 0.06 

chr5:16956916 rs77050123 A 0.31 6.49E-8 MYO10 20KB 0.06 

chr5:16958033 rs7734901 G 0.3 7.46E-8 MYO10 22KB 0.06 

chr5:16957447 rs76494545 A 0.3 1.79E-7 MYO10 21KB 0.06 

chr5:16959472 rs74669701 A 0.3 1.99E-7 MYO10 23KB 0.06 

chr5:16959654 rs78658115 C 0.3 1.99E-7 MYO10 23KB 0.06 

chr5:16924422 rs17651767 G 0.3 4.47E-7 MYO10 Intron 1 0.06 

chr5:16949802 rs76015545 C 0.23 7.47E-6 MYO10 13KB 0.07 

TSS: transcription start site; AF: Allele frequency from gnomAD 
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FIGURES AND LEGENDS 

 

 
Figure 1. Continuous, but not binary, analysis of QTc intervals identifies genome-wide 
significance at WLS.  A. A binary analysis of QTc trajectory was derived from EKGs over 20 
years (N=275 subjects).  This data was clustered into long and normal QTc intervals using a 
censored normal distribution using multivariable mixture model.  With this clustering, group 1-
normal (red line) included 84% of the cohort and, group 2-long (green line) included 16% of the 
cohort.  B. Probability estimates, distributed between 0 and 100%, were used to distribute 
measures of QTc interval into 2 groups, normal and long QTc.  The probability of clustering into 
these 2 groups showed a bimodal distribution, with a small number falling between the peaks.  
Using all probability estimates, including those between the two tails, created a trajectory 
probability.  C) GWAS of QTc was conducted using the binary data in A.  This analysis 
controlled for age, sex, and global genetic ancestry (PC1-PC3). The red line indicates genome-
wide significance (p-value<3E-08); the blue line represents the suggestive line for significance 
(p-value<7E-07).  Non-significant association was seen for variants in or near WLS, GUCA1C, 
GLRA3, and CADPS2.  D)  In contrast, GWAS of QTc interval trajectory probability shown in B 
was performed with the same subjects and identified a significant association with variants in or 
near WLS.  The analysis was similarly controlled for age, sex and global genetic ancestry (PC1-
PC3) as in C, and the same genome-wide significance is marked by the red and blue lines.  
WLS encodes the Wnt ligand secretion mediator, Wntless.  
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Figure 2. Linkage disequilibrium (LD) structure and location of SNPs associated with QTc 
trajectory probability near WLS.  The position of WLS is shown at the top.  Shown are the 
SNPs on chromosome 1 in LD with SNPs associated with QTc interval trajectory probability in 
all 1000 Genomes Populations (https://ldlink.nci.nih.gov/).  The SNPs that were significantly 
associated (p-value<3E-08) with QTc interval trajectory probability; rs199703974, rs4536035, 
rs4506498; are bolded and underlined.  Variants rs4536035, rs4506498 form an LD block with 
variant rs4244620 which showed suggestive significance in the GWAS (p-value<7E-07). 
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Figure 3. QTc-associated SNPs map to candidate WLS enhancer regions.  A. QTc-
associated SNPs are denoted by black lines as variants of interest.  Significant SNPs are circled 
in magenta. The yellow and light blue boxes encompass sequences with molecular markings 
consistent with active enhancer elements.  H3K27Ac ChIP-Seq data from left ventricle of human 
heart (bright blue track) showed enrichment in and around variants rs1304851468, indicated by 
magenta circle 1.  Similarly, H3K27Ac ChIP-Seq data from human aorta (green track) and 
subcutaneous abdominal adipose tissue (black track) show enrichment in and around 
rs4244620, a variant in high LD with variants significantly associated with QTc interval trajectory 
(magenta circle 2).  ATAC-seq from iPSC-derived cardiomyocytes (red track) enrichment in and 
around variants rs1304851468 and rs4244620.  Chromatin capture of this region in iPSC-
derived cardiomyocytes revealed a putative enhancer region for WLS near rs4244620 (purple 
boxes).  H3K27Ac data from the Roadmap Epigenome Consortium.  B. GTEx median 
expression in transcripts per million (TPM) of WLS across all available tissue types (data from 
the GTEx Portal on 3/28/2020).  Abbreviations: Subcut- subcutaneous; VO- visceral(omentum); 
Musc- muscularis; AA- atrial appendage; LV- left ventricle; TI- terminal ileum
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Figure 4. Continuous, but not binary analysis, of left ventricular dimensions identifies an 
association with MYO10.  Left ventricular internal dimension in diastole (LVIDd) was extracted 
from echocardiogram reports over a 14 year interval (N=324 subjects).  For all analyses, only 
LVIDd normalized to BSA was used.  A. LVIDd measures were clustered into dilated and 
normal clusters using a censored normal distribution using multivariable mixture model.  With 
this approach, 73% were in the normal (red line) group and 23% were in the dilated group 
(green line).  B. The same data was analyzed by probability estimates distributed between 0 
and 100%.  The probability of clustering into normal and dilated showed a bimodal distribution, 
with a range of data falling between the two peaks.  Using all probability estimates, including 
those between the two tails, created a trajectory probability that was used for GWAS.  C. GWAS 
of LVIDd using the data in A showed a non-significant association with variants in or near 
MYO10, and CDV3.  Analysis controlled for age, sex, and global genetic ancestry (PC1-PC3).  
D. GWAS of LVIDd trajectory probability controlling for age, sex, and global genetic ancestry 
(PC1-PC3) was performed with data in B.  Significant associations were identified with variants 
in or near MYO10; which encodes myosin 10, a member of the myosin superfamily.  The red 
line indicates the significance threshold line (p-value<3E-08); blue line represents the 
suggestive line for significance (p-value<7E-07).
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Figure 5. LD structure and location of SNPs associated with LVIDd and MYO10.  A. The 
position of MYO10 is shown.  Shown are SNPs on chromosome 5 in LD with the SNPs 
significantly associated with LVID trajectory probability in all 1000 Genomes Populations 
(https://ldlink.nci.nih.gov/).  SNPs that were significantly associated (p-value<3E-08) with LVIDd 
trajectory probability; rs112072727, rs78565023, rs113861938; are bolded and underlined.  
Variants rs112072727 and rs78565023 form an LD block with variant rs74669701 (pink 
lettering).  B. A transcription factor binding site analysis showed that a putative SOX9 binding 
site is created at rs74669701 (pink lettering in A after the deletion of T in the alternative 
sequence (pink box). 
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Figure 6. Localization of LVIDd-associated SNPs in putative MYO10 enhancer regions. A. 
LVIDd-associated SNPs are denoted by black lines.  Significant SNPs are circled in magenta. 
The gold and light blue boxes encompass putative enhancers that correspond with the SNPs 
found to be associated with LVIDd trajectory probability.  Shown are H3K27Ac marks from 
human heart left ventricle in the blue track, from human aorta in the green track, and from 
human subcutaneous abdominal adipose in the black track.  H3K27Ac data from the aorta 
showed enrichment for H3K27Ac marks in and around rs76494545 (magenta circle 1) and 
rs113861938 (magenta circle 2).  H3K27Ac marks from left ventricle and subcutaneous 
abdominal adipose tissue show active enhancer peaks in and around variant rs17651767 (gold 
box).  B. GTEx median expression in transcripts per million (TPM) of MYO10 across all 
available tissue types (data from GTEx Portal on 3/28/2020).  Abbreviations: Subcut- 
subcutaneous; VO- visceral(omentum); Musc- muscularis layer; AA- atrial appendage; LV- left 
ventricle; TI- terminal ileum 
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SUPPLEMENTAL INFORMATION FOR POTTINGER ET AL. 

Trajectory analysis of cardiovascular phenotypes from biobank data uncovers novel 
genetic associations 

 
Supplemental Table 1. ENCODE and Roadmap histone modification and chromatin 
organization datasets 

 

Target Dataset Accession 
Number 

Reference 

H3K27Ac Histone 
Modification 

Human LV- ChIP-Seq GSM906396 Roadmap Epigenomics 
Consortium, et al. 2015 

H3K27Ac Histone 
Modification 

Human Aorta- ChIP-Seq GSM906392 Roadmap Epigenomics 
Consortium, et al. 2015 

H3K27Ac Histone 
Modification 

Human Subcutaneous 
Abdominal Adipose- 

ChIP-Seq 

ENCFF190GWA ENCODE Project. 2012 

Open Chromatin iPSC-CM- ATAC-Seq E-MTAB-8983 Montefiori L. & Nobrega 

3D Chromatin 
Organization 

*iPSC-CM- Hi-C 
Promoter Capture* 

E-MTAB-6014 Montefiori L. et al 2018 
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Supplemental Table 2. GWAS SNPs associated with QTc interval trajectory probability, 
the corresponding associations in QTc interval cluster, and the first QTc interval 
measurement. 
 

 
  

  

Variant rs number 
Risk 
Allele 

Parameter 
estimate QTc 

interval 
trajectory 
probability 

P-
value 

Parameter 
estimate 

QTc 
interval 
cluster 

P-
value 

Parameter 
estimate 

QTc 
interval 

measure 1 
P-

value 

chr1:68762502 rs1304851468 G 0.2 1.1E-8 3.8 1.5E-5 9.4 2.5E-3 

chr1:68788564 rs4536035 C 0.19 1.8E-8 3.4 1.1E-5 8.5 3.3E-3 

chr1:68788712 rs4506498 T 0.19 2.5E-8 3.4 1.3E-5 8.4 3.6E-3 

chr1:68785213 rs11209261 T 0.18 6.3E-8 3.3 2E-5 8.2 4.8E-3 

chr1:68764949 rs10889761 T 0.18 10E-8 3.2 4E-5 7.8 9.4E-3 

chr1:68797643 rs10789260 G 0.19 1.8E-7 3.5 4E-5 8.8 4.9E-3 

chr1:68804349 rs4926357 G 0.18 3E-7 3.3 6.6E-5 9.7 1.8E-3 

chr1:68787424 rs11309689 AT 0.15 4.2E-7 2.9 3.9E-5 8 2.7E-3 

chr1:68784444 rs6588315 G 0.17 4.3E-7 2.9 7.9E-5 7.6 8.4E-3 

chr1:68804055 rs4926330 A 0.18 5.3E-7 3.1 1.2E-4 9.2 3.3E-3 

chr1:68794008 rs4598529 T 0.18 5.5E-7 3.3 7.3E-5 8.7 5.9E-3 

chr1:68787891 rs4244620 C 0.16 6.3E-7 3 5.1E-5 7.5 6.8E-3 

chr1:68804530 rs4926360 T 0.18 7E-7 3.1 1.2E-4 9.3 2.7E-3 

chr1:68804258 rs4926356 A 0.18 8.1E-7 3.1 1.3E-4 8.9 4.8E-3 
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Supplemental Table 3. GWAS SNPs associated with QTc interval trajectory probability by 
genetic ancestry. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

rs number 
Risk 
Allele 

Parameter 
estimate 

QTc 
interval 

trajectory 
probability 
(African) 

P-
value 

Parameter 
estimate 

QTc 
interval 

trajectory 
probability 
(Hispanic) 

P-
value 

Parameter 
estimate 

QTc 
interval 

trajectory 
probability 
(European) 

P-
value 

Parameter 
estimate 

QTc 
interval 

trajectory 
probability 

(Other) 
P-

value 

rs1304851468 G 0.22 2.3E-4 0.04 0.6 0.23 1.4E-3 0.31 4.1E-3 

rs4536035 C 0.17 6.7E-4 0.09 0.26 0.23 1.3E-3 0.26 8.5E-3 

rs4506498 T 0.17 8.4E-4 0.09 0.26 0.23 1.3E-3 0.26 8.5E-3 

rs11209261 T 0.17 1.5E-3 0.09 0.26 0.23 1.3E-3 0.26 1.2E-2 

rs10889761 T 0.19 9.5E-4 0.1 0.19 0.2 4.3E-3 0.26 1.2E-2 

rs10789260 G 0.19 2.1E-3 0.09 0.23 0.18 2.2E-2 0.32 2.2E-3 

rs4926357 G 0.18 2.1E-3 0.09 0.23 0.17 2.2E-2 0.32 2.2E-3 

rs11309689 AT 0.12 1.1E-2 0.09 0.21 0.2 2.6E-3 0.28 1.6E-3 

rs6588315 G 0.14 6E-3 0.09 0.26 0.23 1.3E-3 0.26 1.2E-2 

rs4926330 A 0.16 5.7E-3 0.1 0.16 0.17 2.2E-2 0.32 2.2E-3 

rs4598529 T 0.17 6.2E-3 0.09 0.23 0.18 2.2E-2 0.32 2.2E-3 

rs4244620 C 0.12 9.9E-3 0.09 0.26 0.23 1.3E-3 0.26 8.5E-3 

rs4926360 T 0.16 7.1E-3 0.09 0.23 0.18 2.2E-2 0.33 3.3E-3 

rs4926356 A 0.16 5.7E-3 0.09 0.23 0.17 2.2E-2 0.32 2.2E-3 
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Supplemental Table 4. GWAS SNPs associated with LVIDd trajectory probability, the 
corresponding associations in LVIDd cluster, and the first LVIDd measurement 
 

Variant rs number 
Risk 
Allele 

Parameter 
estimate 

LVIDd 
trajectory 

probability P-value 

Parameter 
estimate 

LVIDd 
cluster P-value 

Parameter 
estimate 

LVIDd 
measure 1 P-value 

chr5:16957078 rs113861938 
T 

0.42 2.1E-9 9.18 6.3E-6 0.4 4E-7 

chr5:16956160 rs112072727 
T 

0.33 1.3E-8 6.34 4.5E-6 0.32 5.8E-7 

chr5:16956338 rs78565023 
G 

0.32 1.4E-8 6.2 5.2E-6 0.32 5E-7 

chr5:16956916 rs77050123 
A 

0.31 6.5E-8 5.63 1.5E-5 0.31 2.1E-6 

chr5:16958033 rs7734901 
G 

0.3 7.5E-8 5.6 1.5E-5 0.29 4.4E-6 

chr5:16957447 rs76494545 
A 

0.3 1.8E-7 5.12 4.3E-5 0.3 5E-6 

chr5:16959472 rs74669701 
A 

0.3 2E-7 5.1 4.4E-5 0.28 9.9E-6 

chr5:16959654 rs78658115 
C 

0.3 2E-7 5.1 4.4E-5 0.28 9.9E-6 

chr5:16924422 rs17651767 
G 

0.3 4.5E-7 4.71 6.8E-5 0.27 5E-5 

chr5:16949802 rs76015545 
C 

0.23 7.5E-6 3.87 1.5E-4 0.26 9E-6 

All values of LVIDd are corrected for BSA 
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Supplemental Table 5. GWAS SNPs associated with LVIDd trajectory probability by 
genetic ancestry 
 

rs number 
Risk 
Allele 

Parameter 
estimate 

LVIDd 
trajectory 
probability 
(African) 

P-
value 

Parameter 
estimate 

LVIDd 
trajectory 

probability 
(European) 

P-
value 

Parameter 
estimate 

LVIDd 
trajectory 

probability 
(Hispanic) 

P-
value 

Parameter 
estimate 

LVIDd 
trajectory 

probability 
(Other) 

P-
value 

rs113861938 T 0.61 1.1E-6 0.34 4.9E-3 0.17 0.3 0.66 2.2E-2 

rs112072727 T 0.47 5.2E-5 0.33 6.8E-3 0.15 0.1 0.6 7E-3 

rs78565023 G 0.47 4.8E-5 0.34 4.9E-3 0.13 0.2 0.6 7E-3 

rs77050123 A 0.47 4.8E-5 0.34 4.9E-3 0.1 0.3 0.6 7E-3 

rs7734901 G 0.47 4.8E-5 0.34 4.9E-3 0.1 0.3 0.43 1.2E-2 

rs76494545 A 0.47 4.8E-5 0.34 4.9E-3 0.1 0.3 0.66 2.2E-2 

rs74669701 A 0.47 4.8E-5 0.34 4.9E-3 0.1 0.3 0.42 3.6E-2 

rs78658115 C 0.47 4.8E-5 0.34 4.9E-3 0.1 0.3 0.42 3.6E-2 

rs17651767 G 0.32 1.9E-3 0.28 1.6E-2 0.15 0.17 0.6 7E-3 

rs76015545 C 0.11 0.1 0.39 4.2E-3 0.12 0.17 0.51 1.2E-2 

All values of LVIDd are corrected for BSA 
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SUPPLEMENTAL FIGURES 

 

 

Supplemental Figure 1.  The NUgene cohort was anchored to the 1000 Genomes data and a 
principal components analysis was performed.  This analysis shows that the NUgene cohort 
aligns well with the 1000 Genomes data.  The individuals in the NUgene Cohort who cluster with 
the 1000 Genomes African cluster showed more European admixture than those identified in 
1000 Genomes data. 
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Supplemental Figure 2. QTc Interval phenotyping and LVIDd/BSA phenotyping sex 
differences.  A. The probability estimate used to group individuals with measures of QTc 
Interval into 2 groups, normal and long QTc interval, show a distribution between 0 and 1.  
There are no statistical differences in trajectory probabilities between males in females in this 
study.  B. The probability estimate used to group individuals with measures of LVIDd/BSA into 2 
groups, normal and dilated LVIDd/BSA, show a distribution between 0 and 1.  There are no 
statistical differences in trajectory probabilities between males in females in this study. 
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Supplemental Figure 3. Quantile-Quantile plot of the GWAS of QTc interval cluster and 
QTc interval trajectory probability.  A. QQ-plot of the GWAS of QTc interval cluster shows 
slight deviations from normal (λ = 1.04).  B. QQ-plot of the GWAS of QTc interval trajectory 
probability shows minor deviations from normal (λ = 1.01). 
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Supplemental Figure 4. Localization of QTc interval-associated SNPs in putative WLS 
enhancer regions in normal human adult hearts and hearts with DCM.  H3K27Ac Chip-Seq 
data in human adult non-failed hearts (red) and failed hearts (light purple) showed the 
acetylation levels of putative regulatory regions between the different heart samples.  Insets 
show putative enhancer regions (gold and light blue boxes) which reveal that non-failed and 
failed hearts have similar acetylation patterns in the proximal putative regulatory region (gold 
box, black bar), while the pattern in the distal region (blue box) was neither significantly similar 
or different per this analysis (Spurrell, et al. 2019).   
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Supplemental Figure 5. Quantile-Quantile plot of the GWAS of LVIDd/BSA cluster and 
LVIDd/BSA trajectory probability.  A. QQ-plot of the GWAS of LVIDd/BSA cluster shows 
slight deviations from normal (λ = 1.03).  B. QQ-plot of the GWAS of LVIDd/BSA trajectory 
probability shows no deviation from normal (λ = 1). 
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