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Abstract 
 
Around half of high grade serous ovarian carcinomas (HGSOC) show homologous 
recombination repair deficiency (HRD), often caused by germline or somatic single 
nucleotide variant (SNV) mutations or small indels disrupting BRCA1/2. We have uniformly 
processed the largest collection of whole genome sequencing (WGS) data from HGSOC 
samples to date (N=205), comprehensively characterising the somatic mutational landscape, 
and expression at the BRCA1/2 loci. We discover that large structural variants (SV) are a 
frequent but unappreciated source of BRCA1/2 disruption in these tumours. Somatic 
structural variation at these loci is dominated by multi-megabase deletions that span the 
entirety of BRCA1 (median = 4.9Mb) or BRCA2 (median = 6.2Mb), independently affecting a 
substantial proportion of patients (16%) in addition to those affected by damaging germline 
or somatic short variants, within the BRCA1/2 coding sequences (24%). In common with 
previous studies, we show that the presence of damaging somatic SNVs or short indels in 
BRCA1 (OR=10, 95% CI 1.8-103, p=0.002, adj p=0.027 and BRCA2 (OR=17, 95% CI 2.1-816), 
p=0.002, adj.p=0.021) was found to influence HRD. For the first time we also study the 
compound effect of SV and SNV or short indel mutations at both loci, demonstrating that 
SVs often contribute to compound deficiencies involving SNVs or indels, with large somatic 
deletions contributing to these compound deficiencies in 15/205 (7%) of samples. Notably 
the strongest risk of HRD (OR=19 (2.4-896), p=6.6x10-3, adj P=8.5x10-3) is generated by 
combined large deletions at BRCA1 and BRCA2 in the absence of SNVs or indels, affecting 
3% of patients. Overall, we show that HRD is a complex phenotype in HGSOC tumours, 
affected by the patterns of shorter variants such as SNVs and indels, SVs, methylation and 
expression seen at multiple loci, and we construct a successful (ROC AUC = 0.75) predictive 
model of HRD using such variables. In addition, HRD impacts patient survival when 
conferred by mechanisms other than through the well-understood short variants at 
BRCA1/2, currently exploited in the clinic. These results alter our understanding of the 
mutational landscape at the BRCA1/2 loci in highly rearranged tumours, and increase the 
number of patients predicted to benefit from therapies exploiting HRD in tumours such as 
PARP inhibition.  
 
Main 
 
Homologous recombination repair deficiency (HRD) is identifiable in many cancers and is 
particularly prominent in high grade serous ovarian cancer (HGSOC)1, affecting around 50% 
of tumours2 and leaving detectable mutational spectra across the tumour genome3. The 
mutational landscape of HGSOC is dominated by extensive genomic copy number changes 
and structural rearrangement driven by chromosome instability and defective DNA repair, 
rather than the patterns of recurrent point mutation in tumour suppressor and oncogenes 
often observed in other solid tumours4,5. 
 
Germline variants disrupting the coding sequence of BRCA1 and BRCA2 are the most 
common types of HRD-associated defect, occurring in 8% and 6% of patients respectively, 
while disruptive somatic short mutations in these genes are present in an additional 4% and 
3% of patients respectively6,7. These germline short variants (GSV) and somatic short 
variants (SSV) include single nucleotide variants (SNVs) as well as short indels, with 
frameshifts being the predominant mechanism of inactivation. These BRCA-deficient 
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patients represent approximately 20% of patients with HGSOC. An additional 11% of 
patients are thought to be BRCA-deficient through epigenetic silencing of BRCA12,8. 
Mutational or epigenetic inactivation of other genes involved in the HR pathway are also 
thought to confer HRD in a smaller proportion of HGSOC patients7,9–12. Genome-wide 
patterns of SNVs, indels and structural variation have been identified as strong predictors of 
BRCA1/2 deficiency3. These mutational signatures of BRCA1/2 deficiency are also found in 
additional patients who lack short variants at BRCA1/2, suggesting that other unknown 
aberrations may also be involved in HRD3. The demonstration of BRCA1/2 loss and detection 
of HRD is crucial in the management of HGSOC and other cancers to identify patients whose 
prognosis is markedly improved by the administration of PARP inhibitors13–15. PARP 
inhibitors selectively kill cells that are deficient in HR (homology-directed repair) because 
these cells can neither resolve stalled replication forks nor accurately repair the increased 
number of double strand breaks that result from the use of these agents16. 
 
The clinical importance of germline and somatic short variants at BRCA1/2 is well 
established in cancer, with variants documented in multiple repositories17,18. In contrast, the 
abundance and effects of structural variants (SVs) at BRCA1/2 are not well understood, 
particularly for large SVs encompassing multi-megabase regions. Similarly, the compound 
effects of SVs and short variants occurring simultaneously at BRCA1 and BRCA2 are poorly 
studied. Matched tumour-normal whole genome sequencing (WGS) of freshly-frozen tissue 
is accepted as the best resource to accurately detect SVs in tumours but in the past such 
data have been scarce for HGSOC19,20. Here we comprehensively characterise the 
mutational landscape of BRCA1/2 in HGSOC using the largest collection to date of uniformly 
processed WGS data (N=205), comprising two previously published cohorts5,6, as well as a 
large novel cohort described here for the first time. We document the prevalence of HRD 
across these three cohorts to reveal the complexity of the mutations associated with HRD, 
their impact on gene expression and associations with clinical variables. 
 
Results 
 
WGS data from matched primary tumour and normal blood samples were uniformly 
remapped and analysed to generate a range of somatic mutation calls (Methods, 
Supplementary Figure 1) for three HGSOC cohorts: the Australian Ovarian Cancer Study5 
(AOCS) (N=80), The Cancer Genome Atlas (TCGA)6 WGS HGSOC samples (N=44) and the 
previously unpublished Scottish High Grade Serous Ovarian Cancer (SHGSOC) study (N=81). 
The combined uniformly analysed cohort (N=205) presented here represents the largest 
collection of HGSOC WGS data investigated to date.  
 
Large structural variants are a frequent source of BRCA1/2 disruption in HGSOC 
 
We identified SVs in HGSOC samples using a combination of three algorithms chosen in 
order to enable the most accurate detection of the full range of SVs in the tumours. All large 
(>1Mb) deletion and duplication calls were identified by two variant callers that 
incorporated two independent forms of evidence: read depth variation and deviations in 
heterozygous single nucleotide variant (SNV) allele frequencies. All calls that passed manual 
curation were then carried forward for analysis (Supplementary Table 2). During the course 
of these analyses, the WGS data from the AOCS and TCGA were also reprocessed and 
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analysed in parallel by the Pan-Cancer Analysis of Whole Genomes (PCAWG) project21. 
Recent studies have suggested that ensemble approaches to SV detection are overly 
conservative22,23 but we found that our manually curated CNA calls >1Mb demonstrated a 
high correspondence with PCAWG variant calls. Of the large copy number variants identified 
using our approach in samples included in PCAWG, 98% (41/42) were also recovered 
independently by the PCAWG project within the same samples, suggesting that our SV calls 
are likely to carry a negligible false positive rate. 
 
A variety of SVs were detected at the BRCA1/2 loci but were dominated by large multi-
megabase deletions spanning the entirety of BRCA1 or BRCA2. In all three cohorts these 
deletions often encompass a large proportion of chromosomes 17 or 13 though the majority 
are more focal (median BRCA1 deletion = 4.9Mb, median BRCA2 deletion = 6.2Mb) (Figure 
1). Heterozygous deletions occur at similar rates at BRCA1 (16%) and BRCA2 (14%) overall, 
and at comparable rates between the similarly sized AOCS and SHGSOC cohorts 
(Supplementary Table 1). In 6/205 (3%) of samples in the combined cohort, we observe 
large deletions at both BRCA1 and BRCA2 in the absence of BRCA1/2 short variants. This is in 
contrast to the mutually exclusive pattern of mutation observed for short variants at 
BRCA1/2 where a sample only ever has at most one short variant across BRCA1 and BRCA2. 
Inversions occur less often than deletions, but do occur in isolation in 6% of samples, and 
within groups of large overlapping inversions in 5% of samples. In addition, we observe large 
duplications that span the entire length of either gene in all cohorts (Supplementary Table 
2). We observe similar genome-wide SV mutational spectra in each cohort despite the 
clinical differences among them: in particular AOCS represents chemoresistant/relapsed 
cases, while SHGSOC is composed mainly of samples taken before treatment. This suggests 
that large SVs predicted to impair BRCA1/2 function are a general feature of HGSOC 
evolution and should be considered alongside BRCA1/2 short variants when investigating 
the functional impact of mutational aberrations at BRCA1/2. Large deletions at BRCA1/2 are 
abundant but are not significantly over-represented at these genes relative to the rates of 
large deletions throughout the genome in HRD samples (Supplementary Figure 2). However, 
given the critical roles of BRCA1/2 in DNA repair, deletions at these loci may have a 
disproportionate effect on function. 
 
Large deletions spanning BRCA1/2 contribute to HRD independently of pathogenic SNVs 
and indels 
 
We examined the functional impact of all BRCA1/2 mutations detected across all cohorts 
using an established method, HRDetect3, which predicts HRD based upon genome-wide 
mutational spectra, and therefore provides a functional readout for the HR repair pathway 
in tumours (Figure 2). 
 
A high proportion (86%) of tumours with damaging GSVs or SSVs in BRCA1/2 were assigned 
HRDetect scores indicating HRD (>0.7). As expected, patients with short variants in BRCA1/2 
even in the absence of deletion, are more likely to have HR deficient tumours than those 
patients without short or structural variants at these genes (GSV OR 6.9, 95% CI 1.8 – 33, p-
value=2.3x10-3, adj. p-value= 3x10-2; SSV OR 25, 95% CI 3.2-1121, p-value = 1.7x10-4, adj. p-
value = 2.3x10-3) (Figure 3). Four samples with GSVs at BRCA1/2 demonstrated low 
HRDetect scores and accordingly showed no evidence for subsequent loss of the wild-type 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.05.11.088278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.11.088278
http://creativecommons.org/licenses/by/4.0/


 5 

allele in the tumour which suggests that certain GSVs that are predicted to be disruptive are 
insufficient to generate HRD (Supplementary Table 3). 
 
The majority of samples (65%) with BRCA1/2 deletions were assigned high HRDetect scores 
indicating HRD, though many occur in tumours that also harbour short variants. Many 
(30/49, 61%) of the samples with BRCA1/2 deletions lack short variants, permitting the 
analysis of the effects of deletions independently of short variants. The compound effect of 
deletions at both the BRCA1 and BRCA2 loci in the absence of short variants is particularly 
pronounced, demonstrating a significantly increased risk of HRD (OR 19, CI 2.4- 896, 
p=1.3x10-3, adj p =1.7x10-2) and consistently high HRDetect scores. In fact, compound 
deletions at both loci generate an OR that is comparable with other classes of HRD 
mutations known to have clinical importance, including the well-studied disruptive BRCA1/2 
short variants (Figure 3). Single deletions at either BRCA1 or BRCA2 do not consistently 
confer an increased risk of HRD in the absence of a BRCA1/2 short variant (Figure 3) though 
the analysis may be underpowered to detect small effects given the current sample size. 
The HRDetect scores for samples with these single deletions form a bimodal distribution for 
which we have been unable to find a defining characteristic for the difference, such as the 
length of the deletion, resultant level of gene expression or a background of whole genome 
doubling. The estimated effect that we observe of a single deletion at BRCA2 merits further 
investigation although it does not achieve statistical significance in our data (OR 2, 95% CI 
0.37-10.3) (Figure 3). Given the notable effect of compound deletions in the absence of 
BRCA1/2 short variants we conclude that large BRCA1/2 deletions have a currently 
unexploited potential as biomarkers in patient stratification for treatments targeting HRD 
particularly when they occur together. 
 
Beyond deletions the functional impact of other classes of SV, such as inversions or 
duplications, is less well studied but it is clear that samples bearing these mutational classes 
can show evidence of HRD (Figure 2). Inversions can occur at either gene, but are more 
likely at BRCA1, and duplications are more likely to occur at BRCA2 (Supplementary Table 1). 
The 6 samples with only BRCA1 inversions split equally into HRD and HR proficient groups, 
which suggests that in isolation their presence is not associated with HR deficiency. In 
contrast, only one of the samples with only BRCA2 duplications is HR deficient, which 
suggests potential for enrichment in HR proficient samples but this would need to be 
further explored in greater sample sizes (Figure 3). The potential role of these sorts of 
events in repair deficiencies within tumours is intriguing particularly as it is less clear what 
the mechanism of action of these events might be. 
 
Deletions are a frequent source of biallelic BRCA1/2 inactivation in repair deficiency 
 
Samples across the combined cohort never had more than one short variant across BRCA1 
and BRCA2. This suggests that somatic short variants (SSVs) are not a mechanism for biallelic 
inactivation of a gene affected by a germline short variant (GSV) and also that deficiency 
caused by a short variant at one gene is mutually exclusive with deficiency achieved by a 
short variant at the other. This is consistent with reports from a previous study of HGSOC24 
(Supplementary Table 3). In contrast, of the HGSOC tumours with a GSV at BRCA1/2 
predicted to cause HRD we find that 11/32 (34%) show evidence for an SV at the same gene 
which, in combination with the GSV, may contribute to HRD if the SV occurs on the other 
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allele from the GSV (Supplementary Tables 2 and 3). In the combined HGSOC cohort we find 
that most of these somatic events (8/11 = 73%) are large deletions, while a further two 
tumours possess more than one SV spanning the same gene as the GSV, in the absence of a 
somatic deletion, and one more shows evidence of somatic duplication. The importance of 
'second hit’25 mutations in tumours is well established26 but these data suggest that multi-
megabase deletions have an under-appreciated role in this phenomenon in HGSOC. Across 
the three cohorts, 24% (50/205) of patients have a disruptive short variant at either BRCA1 
or BRCA2, and 30% (15/50) of these patients also carry a BRCA1/2 deletion at the same 
locus. Also, it appears that SVs, including deletions, can occur at both BRCA1 and BRCA2 in 
the same sample. Large somatic deletions occur at both BRCA1 and BRCA2 in 13 samples 
and in 7 of these samples there is no short variant at either gene, although 1 sample had a 
hypermethylated BRCA1 promoter. These data suggest that large deletions and other SVs 
disproportionately contribute to biallelic inactivation in HGSOC, driven by the unusually high 
rates of structural variation seen in this cancer27. 
 
Deletions spanning BRCA1/2 are associated with lower gene expression 
 
We found that patients with a deletion overlapping BRCA1, in the absence of a GSV or SSV, 
had lower BRCA1 expression than those patients with no BRCA1 short or structural variants 
(log2 fold change of no GSV/SSV/SVs versus a deletion= 0.45, p-value=0.0093). We also 
found that tumours with large somatic deletions at BRCA2 had lower BRCA2 expression than 
those without GSV/SSV/SVs at BRCA2 (log2 fold change in expression between no 
GSV/SSV/SV versus a deletion = 0.43, p-value = 0.037) (Figure 4d). In spite of the 
unavoidable heterogeneity in tumour expression data among samples, the trends observed 
here are consistent with a direct effect of large BRCA1/2 deletions, inducing HRD by 
reducing BRCA1/2 expression, though indirect mechanisms cannot be excluded. 
 
Exploiting our novel combined cohort with matched genomic and transcriptomic data, we 
identified a list of differentially expressed (DE) genes between HR deficient and HR 
proficient HGSOC tumours, encompassing 306 protein coding genes (Supplementary Table 
4). Notably these genes do not include known HR genes and given their diverse functions 
their dysregulation is likely to be a consequence rather than a cause of HRD. The variation in 
these genes, as defined by their first principal component, is significantly different between 
HR deficient and HR proficient samples in the combined cohort (Wilcox p-values =2.3x10-10) 
(Supplementary Figure 4a), 4b)). Transcriptomic signatures have previously been 
generated28–31 to identify HRD tumours; however, most have used suboptimal proxies such 
as mutation rate to predict HRD or have been based upon expression in HR deficient cell 
lines or samples that are not from HGSOC patients28–31. When we identified DE genes 
between HR deficient and HR proficient samples in a subset of the cohort the expression of 
these genes failed to accurately discriminate HR deficient from HR proficient samples in the 
unexamined remainder of the cohort (Wilcox p-value=0.92)(Supplementary Figure 4c), 4d)). 
This is consistent with previous reports32 and suggests that although the transcriptome is 
perturbed in the presence of HRD, such perturbations are not consistent, and consequently 
these expression changes are poor predictors of HRD. 
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Integrative modelling reveals complex mechanisms underlying repair deficiency  
 
We comprehensively modelled the effects of a range of genomic alterations at the BRCA1/2 
loci on HRD, to investigate the relative importance of these features in explaining the 
patterns of HRD observed. Given the relative sparsity of the data and the correlation 
between features we used a multivariable elastic net regularised regression model. 
 
In addition to the previously reported impact of short variants at BRCA1/2 and BRCA1 
promoter hypermethylation on HRD, large deletions at BRCA2 confer an increased risk of 
HRD. Furthermore, samples with double deletions, where deletions are found at both 
BRCA1 and BRCA2, are more likely to be HR deficient. Importantly, the influence of these 
double deletions on HRD exceeds that of genome-wide large CNV loads and genome-wide 
SV loads. Also, large inversions at BRCA1 are independently associated with an increased 
risk of HRD. The functional impact of these events on the gene is currently unknown but this 
suggests that these events may either be markers for processes that impact the gene’s 
function or may even directly impact the function of the gene themselves. The model’s 
ability to predict HRD was good with a mean ROC curve AUC of 0.75, which although 
promising suggests that there are additional unknown sources of HRD (Figure 5).  
 
We can explain the observed pattern of HRD by the presence of mutational or epigenetic 
defects at the BRCA1/2 genes in 81 out of 106 samples with predicted HRD (72 GSV/SSV/SV 
at BRCA1/2, 9 with BRCA1 promoter methylation) but a further 25 samples with HRD remain 
unexplained. On further examination, we found that all of these samples harboured 
damaging GSVs and/or SSVs at other HR genes (defined by KEGG pathway annotation; 
Supplementary Tables 5, 6 and 7), motivating analysis of the potential roles of mutations at 
loci other than BRCA1/2 and their inclusion in an expanded model. We also incorporated 
the combined expression levels of the genes dysregulated in the presence of a BRCA1/2 
short variant in the model as discussed in the previous section. However, due to the lower 
number of samples with expression information and the increased number of features this 
model is likely to be underpowered to accurately identify significant features and we found 
no convincing evidence for a strong influence of mutations at other HR genes or expression 
of genes other than BRCA1/2 on HRD (Supplementary Figure 5). We conclude that the 
current gold-standard of genomic data for HGSOC supports the role of genomic events 
other than short variants at BRCA1/2; however, mutations at other HR genes are less 
informative for HRD prediction.  
 
HRD is associated with longer survival in the absence of disruptive short variants at 
BRCA1/2 
 
HGSOC tumours with HRD show increased responsiveness to platinum agents, and a recent 
trial showed that the use of olaparib as first-line maintenance therapy in women with newly 
diagnosed advanced ovarian cancer and a BRCA1/2 germline or somatic mutation led to a 
70% lower risk of disease progression or death compared to placebo36. However, the 
relationship between HRD in HGSOC resulting from events other than disruption via short 
variants at BRCA1/2, and overall survival or response to treatment has been less clear. 
Studies have demonstrated that HRD as a result of amplification or disruption of genes 
other than BRCA1/2 is associated with better prognosis or improved treatment response 
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11,37–39. Some studies have reported no survival advantage, or worse survival for patients 
with BRCA1 promoter methylation6,8,40. However, more recent analysis of TCGA data1 
supports an association between HRD and longer overall survival in HGSOC. 
 
The probability of HRD is significantly associated with longer overall survival in our 
combined cohort (Hazard ratio=0.36, 95% CI 0.24– 0.54, p-value = 8.4x10-7) and this effect is 
only slightly attenuated by adjustment for patient age and tumour stage at diagnosis (Figure 
6a). Notably, this effect persists (HR=0.46, 95% CI 0.28-0.74, p-value=1.5x10-3) (Figure 6b) 
when we exclude the patients with BRCA1/2 GSV/SSV, who are already known to have 
longer survival. We see a similar effect when we examine the effect of HRD on progression-
free survival (PFS) (HR=0.55, 95% CI 0.36 – 0.85, p-value = 0.007) which also is robust to the 
exclusion of patients with BRCA1/2 GSV/SSV (HR=0.58, 95% CI 0.36-0.95, p-value=0.03). 
Considering HR deficiency as a binary endpoint, as is more realistic in a clinical setting, we 
observe the same effect on overall survival but a much weaker association with progression-
free survival (Figure 6c),d)), which appears stronger in the subset of the cohort without 
short variants at BRCA1/2, because the patients with HRD tumours in this subset had earlier 
stage disease than the patients with non-HRD tumours. These effects are consistent with 
large disruptive deletions at BRCA1/2 affecting overall survival in addition to the survival 
benefit conferred by short variants at BRCA1/2. Overall, the effect of HRD on survival is 
consistent with suggestions that signatures of HRD are predictive biomarkers for platinum 
or PARP inhibitor response that could be used in addition to BRCA1/2 mutations41. 
Furthermore, this translates into longer overall survival for the patient. Similar analyses in 
other cancer types where HRD has been detected may also be informative. This suggests 
that HRD whether arising from short variants, SVs or combinations of these mutations at 
BRCA1/2, represents a consistent tumour phenotype, targetable by therapies exploiting 
HRD. In the shorter term, patient stratification based on short variants could be improved 
by the addition of a broader range of mutational events. 
 
Discussion 
 
We have assembled the largest collection of HGSOC WGS data examined to date, with 
matched expression data for most of the 205 tumours included, revealing new insights into 
the genesis of HRD in HGSOC based upon genome-wide mutational spectra. We show that 
structural variation at BRCA1/2 in HGSOC is frequent and is dominated by multi-megabase 
deletions encompassing the genes. Large deletions spanning BRCA1/2 contribute to HRD 
independently of short variants, and samples with compound deletions affecting both 
BRCA1 and BRCA2 generate the highest risk of HRD. In addition, deletions and short variants 
contribute together to compound BRCA1/2 genotypes with risk of HRD similar to the 
classical short variants known to be associated with HRD. Examining transcriptomic data for 
the same samples we have shown that large deletions overlapping BRCA1/2 are associated 
with lower BRCA1/2 expression, suggesting a direct impact of these deletions on gene 
function in many cases. The frequent inactivation of BRCA1/2 by large deletions in HGSOC is 
novel to our knowledge, and the original analysis of the AOCS cohort reported only one 
BRCA1/2 large deletion (>1Mb)5 (Patch et al (2015), Supplementary Table 4.2). The original 
TCGA cohort analysis did report frequent losses of the chr13q and chr17q chromosome 
arms (including the BRCA1/2 loci) based upon SNP microarray data6 (Bell et al (2011), 
Supplementary Table S5.1), but such data are known to generate high levels of false 
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positives and negatives33,34 and these losses were not postulated to affect BRCA1/2 
function. Thus previous assessments of SVs impacting the BRCA1/2 loci have been 
characterised by under-reporting, likely to be a result of the use of less sensitive algorithms 
tuned to detect smaller focal deletions5 as well as CNA estimates derived from SNP 
microarray data5,6 and exome-restricted sequencing data6,35. Other types of structural 
variation are less frequent but still evident, such as large inversions at BRCA1 and 
duplications at BRCA2. The impact of these categories of mutation on the function of the 
gene is less well studied but our data suggest that when BRCA1 inversions in particular are 
considered together with the other mutational events in the tumour, their presence may aid 
prediction of HRD. 
 
Finally, we have constructed an integrated model of HRD in HGSOC, including a large variety 
of mutation and expression-based variables across the combined cohort. This model 
supports an independent role for structural variation at BRCA1/2 in HRD and highlights the 
diversity of routes that tumours may follow to reach HRD. Given this diversity, and the 
substantial fraction of samples where HRD is detected in the absence of any detectable 
BRCA1/2 mutations, we conclude that the direct detection of HRD in HGSOC using genome-
wide sequencing data is a valuable addition to the search for inactivating mutations in HR 
pathway genes. This is likely to be the case for other cancers showing evidence for HRD, 
such as uterine, lung squamous, oesophageal, sarcoma, bladder, lung adenocarcinoma, 
head and neck, and gastric carcinomas1. The variety of events sufficient for a tumour to 
develop HRD is not well understood, but recent studies suggest that there is selective 
pressure for biallelic inactivation leading to HRD in cancer types with predisposing germline 
variants in the HR pathway, such as breast, ovarian, pancreatic and prostate cancers36. 
 
One of the key challenges in studies of this type is deciding upon a ‘gold standard’ test of 
HRD. Current functional, clinical and molecular tests all have advantages and disadvantages. 
The limitations of HRDetect include that it was developed and trained using breast tumour 
data and is predicated on BRCA1/2 deficiency arising from SSV disruption and promoter 
methylation, rather than any form of disruption to any HR gene. Although in the context of 
the current study, ofBRCA1/2 disruption by SV, the latter is of less importance. All current 
genomic HRD tests are further limited to demonstrating that HRD once existed in the 
evolution of a tumour, and are blind to the restoration of HR by events such as secondary 
mutations, as well as hypomorphic HRD variants and epigenomic changes. 
 
Accurately identifying tumours with HRD is crucial to predict PARP inhibitor sensitivity. PARP 
inhibitor maintenance studies in HGSOC have demonstrated an exceptional benefit in both 
the first line and relapsed disease settings14,15,37–41. In the BRCA1/2 deficient subgroup, there 
is a 3-5 fold reduction in the risk of progression or death from the use of these agents. In 
patients with functional BRCA1/2, the HRD population is identified using commercially 
available assays such as the Myriad MyChoice assay (which creates a score based upon 
large-scale transitions, loss of heterozygosity and telomeric imbalance) or the Foundation 
Medicine LOH (loss of heterozygosity) assay. These assays provide some enrichment of 
patients who were PARP inhibitor sensitive but they are unable to identify patients who did 
not benefit from PARP inhibition14,15,39. HR proficient tumours have been defined as those 
tumours which harbour low genome-wide rates of mutation and lack inactivating BRCA1/2 
short variants and BRCA1 promoter methylation3. There may be great impact in establishing 
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which genomic features are present, rather than absent, in HR proficient tumours. In 
common with other studies, we compared the risk of HRD associated with various types of 
BRCA1/2 mutation to samples lacking detectable BRCA1/2 mutations instead of samples 
with known HR proficiency. This set is likely to include some hidden HRD samples and as a 
result, we expect our estimates of the effects of BRCA1/2 disruption on the risk of HRD to be 
conservative. 
 
There is an urgent clinical need to better understand the processes that give rise to both 
BRCA1/2 loss and more broadly contribute to HRD. Our study demonstrates that BRCA1/2 
loss by structural variation may have a comparable impact on HRD and patient survival to 
short variants at BRCA1/2. However, these variants are unlikely to be detected by 
sequencing methods currently employed in the clinic.  
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Data availability  
Previously published WGS and RNA-seq data that were reanalysed here are available via 
EGA at accession code EGAS00001001692 (ICGC PCAWG). WGS, RNA-seq and clinical data 
from the Scottish cohort (SHGSOC) will be made available via EGA at accession code 
EGAS00001004410. Other supporting data have been provided in the Supplementary 
Tables. 
 
Code availability 
All code will be made available at https://github.com/ailithewing. 
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Methods 
 
Scottish sample collection and preparation for WGS 
Scottish HGSOC samples were collected via local Bioresource facilities at Edinburgh, 
Glasgow, Dundee and Aberdeen and stored in liquid Nitrogen until required. HGSOC 
patients were determined from pathology records and were included in the study where 
there was matched tumour and whole blood samples. On receipt of tumour material the 
tumour was processed as follows: firstly, the tumour sample was divided into two for DNA 
and RNA extraction. Slivers of tissue were cut from the front and rear faces of the DNA 
sample, then fixed in formalin and embedded in paraffin wax. Sections from the front and 
rear tissues from all samples were examined by H&E staining supplemented by WT1/p53 
immunohistochemistry if required. Following pathology review, samples were only included 
if they met the following criteria: they were confirmed as HGSOC and there was greater 
than 40% tumour cellularity throughout the tumour, determined using the H&E sections. 
Somatic DNA was extracted using the Qiagen DNeasy Blood and tissue kit (cat no 69504). 
The tissue was initially homogenised using a Qiagen Bioruptor, followed by the 
manufacturers recommended protocol (including RNase digestion step). Germline DNA was 
extracted from 1-3ml whole blood using the Qiagen FlexiGene kit (cat no 51206) following 
the manufacturers recommended protocol. The resulting DNA underwent quality control as 
follows: firstly, A260 and A280nm were measured on a Denovix DS-11 Fx to qualitatively 
illustrate A260/280nm and A260/230nm ratios as surrogate measures of DNA purity. 
A260/280 had to be 1.8 or greater and A260/230 had to be 2.0 or greater. Then, DNA was 
quantified using LifeTechnologies Qubit dsDNA BR kit (cat no Q32850) and we required a 
minimum of 50ul at 25ng/ul for WGS. Thirdly, DNA was diluted to 25ng/ul and a 
representative sample was loaded onto a 0.8% TAE gel, ran at 100v for 60mins and then 
imaged using a BioRad ChemiDoc imaging system to visualise the DNA quality. Only when all 
4 quality control requirements were satisfied was the DNA sequenced. The DNA was 
sequenced at the Glasgow Precision Oncology Laboratories. 
 
Sequence acquisition 
WGS and RNA-seq reads were downloaded in compressed FASTQ format from the 
sequencing facility (SHGSOC) or in aligned BAM format (including unaligned reads) from the 
European Genome/Phenome Archive (AOCS) and the Bionimbus Protected Data Cloud 
(TCGA_US_OV). The reads obtained in BAM format were query-sorted using sambamba 
0.6.842 and converted to FASTQ with bamtofastq from the biobambam2 2.0.87 package43. 
 
Primary processing of WGS 
Reads were aligned to the hg38 reference genome using a bcbio 1.0.7 pipeline44 with bwa 
0.7.17 aligner45 and Genome Analysis Toolkit 4.0.0.046,47 post-processing (see 
Supplementary Methods for full pipeline configuration, program and resource versions). 
  
Somatic and germline variant calling was also run with a bcbio 1.0.7 pipeline44. Germline 
SNPs and indels were called with GATK 4.0.0.0 HaplotypeCaller46,47. Somatic SNVs and indels 
were called as a majority vote between Mutect248, Strelka249 and VarDict50. Small variants 
were annotated with Ensembl Variant Effect Predictor v9151 and filtered for oxidation 
artifacts by GATK 4.0.0.0 FilterByOrientationBias46,47. Somatic structural variants were called 
with Manta 1.2.152 and somatic copy number variants with CNVkit 0.9.2a053. Loss of 
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heterozygosity and somatic copy number variants were also identified with CLImAT54. 
Whole genome duplication estimates were based on allele-specific somatic CNVs called by 
FACETS55. Structural and copy number variants were annotated with Ensembl Variant Effect 
Predictor v9151. Sample quality control was performed with Qsignature 0.156 to identify 
sample mix-ups and VerifyBamId 1.1.357 to identify sample contamination. Tumour 
cellularity was estimated using both CLImAT’s estimates and p53 variant allele frequency. 
These measures were compared to the qPure estimates for the AOCS cohort5 and 
histopathological estimates for the SHGSOC cohort with very good concordance 
(Supplementary Figure 6). The CLImAT estimates were used as the final estimates of 
cellularity. 
 
Filtering of small variants (SNVs and indels) at BRCA1/2 
Germline short variants at BRCA1/2 were filtered to include only damaging pathogenic 
variants for the purposes of establishing BRCA1/2 mutational status. Included variants were 
all of moderate or high impact according to VEP51. Variants with a pathogenic or risk factor 
annotation according to ClinVar58 were included (n=145). Remaining variants with a ClinVar 
benign or likely benign status were excluded (n=1147). Remaining frameshift or nonsense 
(stop gained) or splice donor/acceptor variants were included (n=125). Remaining missense 
variants with damaging SIFT59 and PolyPhen60 predictions were included (n=36). Remaining 
missense variants called as damaging by only one of SIFT and PolyPhen were considered 
borderline and were excluded if their CADD score < 2061. Missense or inframe variants with 
no Clinvar, SIFT or PolyPhen evidence were excluded.  
 
Somatic short variants at BRCA1/2 were also filtered for pathogenicity to include variants 
that: were annotated by VEP as being of high or moderate impact, were pathogenic 
according to at least one of SIFT or PolyPhen and had a high CADD score. In addition, we 
excluded somatic variants with an allele frequency less than 0.4. 
  
Curating a high-confidence list of structural variants at BRCA1/2 
We identified structural variants in HGSOC patients using Illumina’s paired and split read 
based structural variant detection tool, Manta52. The ICGC-TCGA DREAM Somatic Mutation 
Calling Challenge (SMC-DNA)22 found that Manta performed better when scored using the 
harmonic mean of its precision and recall than taking an ensemble approach of structural 
variant callers. However, we observed that Manta was failing to detect a large number of 
very large deletions (>1Mb) that had been identified using depth of coverage-based 
approaches in PCAWG62. It is unsurprising that CNVs of this size are being missed as 
identifying them using split and paired read technologies will be hard in some cases and 
impossible in others. Therefore, we chose to supplement these calls with copy number 
variants greater than 1 Mb in size that were called by one caller (CNVkit) using evidence 
from read depth and were also confirmed by an allele-specific copy number caller (CLImAT). 
CLImaT provides an additional layer of evidence in addition to read depth as it also 
incorporates the shift in allele frequency of heterozygous SNPs within the potential copy 
number variant into its variant calling algorithm which also accounts for aneuploidy and 
sample cellularity. Deletions were assumed to be heterozygous if the copy number as 
estimated by both CNVkit and CLImAT was 1. It is possible that these deletions are 
homozygous deletions in a subclone of the tumour but as we expect that these events are 
early events63 we believe that it is more likely that they are true heterozygotes so have 
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assumed this more conservative estimate of allelic loss. We visually inspected all the 
identified structural variants in the Integrative Genomics Viewer (IGV) (v2.4.10)64 using a 
log2 coverage bigWig file generated using bamCompare (v3.20) from the deeptools suite65. 
The bigWig file compared coverage between tumour and normal pairs normalized for 
sequencing depth. The magnitude of coverage and log fold change was inspected to confirm 
either duplication or deletion. For large SVs (>30kb) a chromosome wide view of the log2 
track was considered. For structural variants in the range 300bp-30kb, the paired end 
sequencing reads were manually reviewed including looking at split reads, paired end insert 
size, read coverage and pair-orientation. We compared our filtered set of large CNVs in the 
samples included in PCAWG to PCAWG’s copy number calls and found that 40/41 of our 
variants in these samples were also identified by PCAWG. 
 
Implementation of HRDetect 
To predict the level of HR deficiency in each tumour sample we implemented the HRDetect 
algorithm as published by Davies and Glodzik et al3. The algorithm is a logistic regression 
model with the probability of HR deficiency defined as ‘BRCA-ness’ as the outcome. The 
variables that make up the linear predictor represent genomic signatures that have been 
shown to correlate well with BRCA1/2 mutation status. They include: the proportion of 
indels with microhomology at the breakpoints; the contribution of COSMIC SNV signatures 3 
and 8 to the mutational profile of the tumour; the contribution of rearrangement signatures 
3 and 5 to structural variation in the tumour; and the value of an earlier predictor of HR 
deficiency, the HRDIndex66, which combines levels of genome-wide medium length runs of 
loss of heterozygosity (LOH), telomere allelic imbalance (TAI) and large state transitions 
(LST). We based our implementation on a Snakemake pipeline made publicly available by 
Zhao et al67, with some modifications to ensure accurate recapitulation of the original 
method. As some of the AOCS cohort included here were also used in the validation of 
HRDetect in the original publication we were able to compare our implementation for the 
same patients with that of the authors.  
 
Zhao’s pipeline makes use of the R package HRDtools67 in order to determine the value of 
the HRIndex. We used the same method determined by Zhao et al with the exception that 
we took the mean of the three inputs (LOH, TAI and LST) instead of the sum to reflect the 
original HRDetect approach. In addition, we redefined microhomology at indel breakpoints 
as an overlap between the deletion and the flanking region that is less than the full length of 
the deletion. In order to determine the contribution of each of the signatures to the 
mutational profile of each tumour we implemented three different methods: 
deconstructSigs68, SignIT69 and SigProfilerSingleSample70. Ultimately, we chose to use 
deconstructSigs as its estimates were the most strongly correlated with the results from the 
original HRDetect paper. 
 
We used the weights for the independent variables that were defined by the original model 
rather than retraining the model on our data as the original weights trained on a breast 
cancer dataset have been shown to perform well on ovarian cancer datasets and our total 
sample size is substantially smaller than that used to train the model originally. As input we 
used the somatic SNV and indel calls identified by the ensemble calling approach described 
above; the structural variant calls made by Manta and the copy number segments defined 
by CNVkit. After determining the value of each of the components of the linear predictor for 
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each sample, each of these input variables were standardized using the corresponding mean 
and standard deviation for the variable in question in the dataset that was used to 
determine the weights in the original model. Our implementation of HRDetect was very 
highly correlated with the original HRDetect implementation on the same samples 
(Spearman’s rho = 0.92).  
 
Scottish RNA sample preparation and sequencing 
HGSOC samples were collected and underwent quality control as described for the DNA 
samples used for WGS. Somatic RNA was extracted from the resulting RNA sample using the 
Qiagen Qiasymphony RNA protcol (cat no 931636). The tissue was initially homogenised 
using a Qiagen Bioruptor, followed by the manufacturers recommended protocol (including 
DNase digestion). The resulting RNA the underwent quality control as follows: firstly, A260 
and A280nm were measured on a Denovix DS-11 Fx to qualitatively illustrate A260/280nm 
and A260/230nm ratios as measures of RNA purity. A260/280 had to be 2.0 and A260/230 
had to be 2.0-2.2. Then RNA was quantified using LifeTechnologies Qubit RNA BR kit (cat no 
Q10210). RNAseq was carried out by the Edinburgh Clinical Research Facility on an Illumina 
NExtSeq500 as detailed below. 
 
Total RNA samples were assessed on the Agilent Bioanalyser (Agilent Technologies, 
#G2939AA) with the RNA 6000 Nano Kit (#5067-1512) for quality and integrity of total RNA, 
and then quantified using the Qubit 2.0 Fluorometer (Thermo Fisher Scientific Inc, #Q32866) 
and the Qubit RNA HS assay kit (#Q32855). Libraries were prepared from total-RNA sample 
using the NEBNext Ultra 2 Directional RNA library prep kit for Illumina (#E7760S) with the 
NEBNext rRNA Depletion kit (#E6310) according to the provided protocol. 400ng of total-
RNA was then added to the ribosomal RNA (rRNA) depletion reaction using the NEBNext 
rRNA depletion kit (Human/mouse/rat) (#E6310). This step uses specific probes that bind to 
the rRNA in order to cleave it. rRNA-depleted RNA was then DNase treated and purified 
using Agencourt RNAClean XP beads (Beckman Coulter Inc, #66514). RNA was then 
fragmented using random primers before undergoing first strand and second strand 
synthesis to create cDNA. cDNA was end repaired before ligation of sequencing adapters, 
and libraries were enriched by PCR using the NEBNext Multiplex oligos for Illumina set 1 and 
2 (#E7500). Final libraries had an average peak size of 271bp. Libraries were quantified by 
fluorometry using the Qubit dsDNA HS assay and assessed for quality and fragment size 
using the Agilent Bioanalyser with the DNA HS Kit (#5067-4626). Sequencing was performed 
using the NextSeq 500/550 High-Output v2 (150 cycle) Kit (# FC- 404-2002) on the NextSeq 
550 platform (Illumina Inc, #SY-415-1002). Libraries were combined in an equimolar pool 
based on the library quantification results and run across 5 High-Output Flow Cell v2.5.  
 
Primary processing of RNA-seq  
RNA-seq data was analysed with bcbio-nextgen v1.0.844 using the Illumina RNA-
seq  (https://github.com/bcbio/bcbio-nextgen/blob/master/config/templates/illumina-
rnaseq.yaml) best practice template. Briefly, reads were aligned to the hg38 reference 
genome using hisat271. Quality control was carried out using FastQC v0.11.8, FeatureCounts 
v1.6.472, Qualimap v2.2.2-dev73 and reporting done using MultiQC v1.774. Salmon quant 
v0.12.075 was used to quantify the expression of transcripts against the hg38 RefSeq 
transcript database indexed using the salmon index (k-mers of length 31). For the AOCS and 
TCGA cohorts (paired-unstranded) salmon quant was run with the following options (-IU) 
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and for SHGSOC (paired-stranded) the following options were used (-ISR). The tximport 
package v1.12.176 was loaded from Bioconductor (Release 3.9)77,78 for use in R (v3.6.0) to 
import and summarize salmon transcript-level abundance estimates for further gene-level 
analyses. For differential expression analyses, expression counts were loaded directly from 
tximport into the DESeq2 package v1.24.079. For visualization of gene expression, counts 
were normalized using the variance stabilizing transformation. 
 
To further explore the functional impact of BRCA1/2 mutations we collated previously 
published RNA-seq data available for the AOCS5 (N=80) and TCGA6 (N=30) cohorts, together 
with novel RNA-seq data for the SHGSOC (N=40) cohort generated for the present study as 
detailed above.  
 
Curation and acquisition of the patient’s clinical information 
Scottish High Grade Serous Ovarian Cancer (SHGSOC) 
Clinical data for the SHGSOC cohort was retrieved from the Edinburgh Ovarian Cancer 
Database80, the CRUK Clinical Trials Unit Glasgow and available electronic health records 
(ethics reference 15/ES/0094-SR751). 

Australian Ovarian Cancer Study (AOCS) & The Cancer Genome Atlas (TCGA) 
The clinical information including survival end-points, age and stage at diagnosis is available 
for these patients as part of the PCAWG project21. 
  
Statistical analyses 
All downstream statistical analyses were carried out in R (v3.6.0) using Jupyter notebook 
(v4.3.1). 
 
Enrichment of large deletions at BRCA1/2 in HRD samples 
Circularised permutation was carried out using the R package RegioneR81 to investigate 
whether large deletions overlap more often with BRCA1 and BRCA2 than they do elsewhere 
in the genome. We carried out 1,000,000 permutations to simulate the null hypothesis for 
each gene and judged significance at alpha = 0.05. (Supplementary Figure 2). 
 
Univariable analyses of genomic features and risk of HR deficiency 
The risk of HR deficiency in tumours with BRCA1/2 mutations, grouped by type, relative to 
those tumours without BRCA1/2 mutations were determined using Fisher’s exact tests. The 
effect of mutations at BRCA1 and BRCA2 were determined together and, where sample size 
permitted, separately for distinct mutually exclusive mutation categories including: germline 
short variants only, somatic short variants only, single deletion in the absence of a short 
variant or other SVs, deletion of both BRCA1 and BRCA2 in the absence of a short variant, 
single non-deleting SV in the absence of short variants or deletion. We also considered the 
impact of the presence of a short variant accompanied by a deletion at either of the genes. 
The relative risk conferred by each mutational category was calculated in comparison to the 
group of patients without BRCA1/2 mutations. Samples where BRCA1/2 promoter 
methylation had been detected were excluded except for where the effect of BRCA1 
promoter methylation was itself being examined. All samples with BRCA1 promoter 
methylation are HR deficient so pseudo counts of 1 are used to estimate the effect size 
which is therefore a likely underestimate. P-values were adjusted for the impact of multiple 
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testing using Benjamini-Hochberg correction and were considered together with the effect 
sizes in the reporting of results.  

Differential expression analyses of BRCA1/2 in tumours with and without deletions at 
BRCA1/2 
In order to compare the gene expression levels at BRCA1/2 between tumours with and 
without BRCA1/2 deletions, we used the package DESeq2 to test for differential expression 
between the raw gene expression counts at each gene between samples with and without a 
deletion at that gene. At BRCA1, samples that also had a short variant had significantly 
lower expression than those that had a deletion alone. This was driven by SNVs resulting in 
a stop gain variant and the presence of indels. As a result we only considered the samples 
with a deletion in the absence of a short variant. At BRCA2, this was not the case and the 
samples with short variants in addition to a deletion had comparable levels of expression to 
those with deletions alone so were included in the analysis. Cohort and tumour sample 
cellularity were included as covariates in the model formula.  
 
Identifying differentially expressed genes in the presence of HRD 
For the samples with RNAseq information, we defined a conservative HR deficient group 
which included the samples with pathogenic short variants at BRCA1/2 either in the 
germline or in the tumour (N=50). The contrasting HR proficient group of tumours, 
consisted of samples without damaging BRCA1/2 short variants or BRCA1 promoter 
hypermethylation or damaging short variants at HR genes as defined by KEGG and a quiet 
mutational profile defined by absence of the HRD related rearrangement signatures (N=47). 
This is consistent with the definition of HR proficiency used to train HRDetect. We used 
DESeq2 to compare the expression of all protein coding genes between the two groups and 
identified those genes that were differentially expressed. Cohort and tumour cellularity 
were included as covariates in the model. We used a log fold change threshold of 1 and a 
Benjamini-Hochberg adjusted p-value threshold of 0.05 to indicate significant differential 
expression. Functional annotation of the differentially expressed genes was carried out by 
comparing the differentially expressed genes with a background list of all protein-coding 
genes and testing for enrichment of the differentially expressed genes in curated gene lists 
from GO: BP, CC and MF and KEGG. This was done using clusterProfiler82with p-value and q-
value thresholds of 0.05.  
 
We defined a gene expression signature for HR deficiency by running principal component 
analysis on the variance stabilising transformed counts of the differentially expressed genes 
using all of the samples. The first principal component was taken as the gene expression 
signature for HRD with HR deficient samples having significantly lower values of the 
signature than HR proficient samples. We tested whether HR deficient and proficient 
samples had significantly different levels of the signature using a Wilcoxon Rank Sum test 
(Mann-Whitney U test). 
 
The ability of a gene expression signature for HRD to predict HRD was assessed by 
identifying differentially expressed genes between only 80% of true HR deficient and 80% of 
true HR proficient samples and examining whether the HR deficient and proficient samples 
in the test set lay at significantly different points along the main axis of variation (first 
principal component) in the expression of these genes within the test set. The difference in 
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the levels of the signature for HR deficient and proficient samples within the test set was 
tested using a Wilcoxon Rank Sum test. 
 
Multivariable elastic-net regularised regression model 
Given the relative sparsity of the data and the correlation between features we used a 
multivariable elastic-net regularised regression model for the binary outcome of HRD 
defined by a probability of HRD greater than 0.7 from HRDetect. The model was 
implemented using the glmnet83,84 package in R. The data were partitioned into train and 
test sets (80:20) and the tuning parameters were optimised, in order to maximise the AUC, 
using 10-fold cross validation of the training set. The model was then fitted to the training 
set and the model performance assessed using the test set. The input variables available for 
selection were: BRCA1 germline short variant status; BRCA1 somatic short variant status; 
the presence of a large somatic deletion at BRCA1; the presence of a large somatic deletion 
at BRCA1 and a BRCA1 short variant; all the corresponding variables for BRCA2; the 
presence of an inversion at BRCA1; the presence of a duplication at BRCA2; the presence of 
a large somatic deletion at BRCA1 and at BRCA2 (double deletion); BRCA1 promoter 
hypermethylation; whole genome doubling; genome-wide load of SNVs, large CNVs and SVs 
in addition to cohort and tumour cellularity. The data was partitioned and the model 
optimised and fitted to 100 train-test splits of the data in order to assess the robustness of 
the feature selection. 
 
The model was then extended to include: pathogenic short variants in the germline or 
tumour at the HR genes defined by KEGG; the presence and load of large CNVs at the HR 
genes defined by KEGG; expression of BRCA1 and BRCA2; the HRD gene signature; genome-
wide SNV load, SV load and large CNV load; sample cellularity and cohort. The gene 
expression signature for HRD was defined using the method described above but with 
differentially expressed genes determined specifically in each variation of the training set in 
order to avoid over-fitting. 
 
Survival-time analyses of the impact of HRD on overall survival 
Follow up information including overall survival time was available for 190 out of 205 
patients, of which 144 were deceased by the time of last follow up. The association between 
genome-wide patterns of HRD and progression-free survival was also assessed. Progression-
free interval time was available for 151 of the patients from the AOCS and SHGSOC cohorts 
of which 129 relapsed by the time of last follow up. The effect of the HRDetect score, as a 
measure of the probability of HRD in the tumour, on the length of time that patients 
survived after diagnosis (overall survival-time) and the time between diagnosis and first 
radiologically defined progression (progression-free survival-time) was assessed using Cox 
proportional hazards models stratified by cohort. Multivariable models were also fitted 
adjusting for age and stage at diagnosis and the Schoenfeld residuals were examined. 
Survival probability through time was compared between HR deficient (HRDetect score > 
0.7) and HR proficient (HRDetect score <=0.7) patients in Kaplan-Meier plots. This was 
repeated excluding the patients with BRCA1/2 short variants to assess the impact of HRD 
driven by other events on survival. 
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Figures 
 

 
 
Figure 1: Abundance, location and size of structural variants overlapping BRCA1/2 in three HGSOC 
cohorts. a) Alignment of structural variants overlapping BRCA1 across the AOCS, TCGA and SHGSOC 
cohorts with breakpoints marked in grey according to their position on chromosome 17. Location of 
BRCA1 marked by a blue line with deletions (red), duplications (green) and inversions (blue). b) The 
distribution of sizes of structural variants (Mb), overlapping BRCA1 across all cohorts. c) Alignment of 
structural variants overlapping BRCA2 across the three cohorts with breakpoints marked in grey 
according to their position on chromosome 13. Location of BRCA2 marked by a blue line. d) The 
distribution of sizes of structural variants (Mb) overlapping BRCA2 across all cohorts with deletions 
(red), duplications (green) and inversions (blue). 
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Figure 2: Homologous repair deficiency across three HGSOC cohorts. a) Predictions of HRD for three 
large cohorts of HGSOC coloured by BRCA1/2 mutation status. Categories of mutation include GSVs 
and SSVs, 6 types of structural variation and absence of any BRCA1/2 variant whether it be an SV or 
a short variant. The HRDetect scores range from 0, least likely to be HR deficient to 1, most likely to 
be HR deficient. The red dashed line represents the threshold of 0.7 representing HRD3. b) The 
number of HRD tumours with different categories of BRCA1/2 short variants or deletions. 
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Figure 3: BRCA1/2 mutation classes and repair deficiency in three HGSOC cohorts. The increase in 
log odds ratio of HRD (HRDetect score > 0.7) associated with different categories of mutation at 
BRCA1/2 in comparison to the frequency of the reference category where samples lack any evidence 
of BRCA1/2 inactivation (GSV, SSV, SV or methylation). ORs are defined using Fisher’s Exact tests for 
enrichment. Error bars represent 95% confidence intervals. Mutually exclusive categories of 
mutation examined include GSV only, SSV only, the presence of a deletion at one or both genes 
without a GSV or SSV, the presence of a short variant together with deletion of one or both genes, 
non-deleting SVs in samples without short variants or deletions, samples with BRCA1 promoter 
methylation and no mutational BRCA1/2 deficiencies. Samples with BRCA1 promoter methylation 
are excluded from all BRCA1/2 mutational categories. 
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Figure 4: Structural variation and expression of BRCA1/2 in three cohorts HGSOC. a)c) Expression 
of BRCA1/2 (variance stabilising transformed RNA-seq counts) across samples ordered from lowest 
to highest expression. Median BRCA1/2 expression is indicated by a black dashed line. Sample bars 
are coloured by BRCA1/2 mutational category. b)d) Boxplot of BRCA1/2 expression for each category 
of BRCA1/2 mutation. The BRCA1 deletion category is split into those samples with SNVs and 
deletions and those with only deletions as their expression is significantly different (Supplementary 
Figure 3a). This is not the case for BRCA2 so all samples with deletions are considered together to 
maximise the available sample size (Supplementary Figure 3b). 
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Figure 5: Integrative modelling of repair deficiency in HGSOC. a) Median effect sizes of genomic 
features selected to predict HRD, using elastic net regularised regression on 100 training/test set 
splits. Model performance was measured for each split and average AUC = 0.75. Binary mutational 
status variables (e.g. presence/absence of BRCA1 somatic SNV) were included as factors and 
continuous variables were standardised to allow comparisons between variables. b) Distributions of 
effect size for each variable on HRD (log odds) in each training/test set split. Variables in red are 
selected for inclusion by the model in more than half of the training sets. 
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Figure 6: Predicted HRD is associated with patient survival in the absence of short variants at 
BRCA1/2. a) The effect of HRD on overall survival time after diagnosis (in days) in HGSOC. (N (events) 
=190 (144)). b) The effect of HRD on overall survival time after diagnosis (in days) in HGSOC patients 
without BRCA1/2 GSV/SSV. (N (events) =145 (113)). c) The effect of HRD on progression-free 
survival-time after diagnosis (in days) in HGSOC. (N (events) = 151 (129)). d) The effect of HRD on 
progression-free survival-time after diagnosis (in days) in HGSOC. (N (events) = 115 (100)). Kaplan-
Meier plots comparing survival between HR deficient and HR proficient patients as defined by 
HRDetect score above and below 0.7. Hazard ratio estimates taken from Cox proportional hazards 
models with HRDetect score as a covariate, stratified by cohort and adjusted for age and stage at 
diagnosis.  
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Structural variants at the BRCA1/2 loci are a common source of homologous repair 
deficiency in high grade serous ovarian carcinoma 
 
Supplementary figures 
 
 
 

 
 
Supplementary Figure 1: Uniform primary processing of three large HGSOC cohorts. WGS and RNA-
seq fastqs were downloaded for AOCS and TCGA and the SHGSOC cohort was sequenced for the first 
time. Sequencing reads were aligned uniformly for all cohorts to hg38 and variant detection was 
carried out to detect a range of types of variant using existing published tools. Ploidy and cellularity 
were estimated using the allele-specific copy number caller CLImAT and gene-level expression 
counts were quantified using Salmon. 
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Supplementary Figure 2 – Enrichment testing of large deletions at BRCA1/2 in HRD 
samples. a) Pile up plot of large deletion breakpoints in HRD samples by genomic position. 
BRCA1 and BRCA2 are indicated by blue bars. b) Results of enrichment testing using 
circularised permutation to test whether BRCA1 is enriched for large deletions in HRD 
samples relative to the rest of the genome. The green line indicates the number of large 
deletions overlapping BRCA1 in HRD samples which is not significantly higher than 
elsewhere in the genome. c) The same but for BRCA2 which also is not significantly enriched 
for large deletions in HRD samples.  

a) 

b) c) 
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Supplementary Figure 3 - BRCA1/2 expression in samples with deletions, with and without 
SNVs in the same BRCA1/2 gene. a) Boxplot with points overlayed showing that BRCA1 
expression (variance stabilising transformed) is higher in samples with only deletions than in 
samples with an SNV and a deletion at BRCA1 (DESeq2 fold change for just deletions vs SNV 
+ deletion = 1.6, p-value=0.02). b) Boxplot with points overlayed showing no evidence of a 
significant difference in BRCA2 expression between samples with only deletions and 
samples with an SNV and a deletion at the same gene (DESeq2 fold change for just deletions 
vs SNV + deletion= 1.02, p-value=0.95).  
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Supplementary Figure 4 – Performance of expression signature for HRD at predicting HRD. 
a) The first two principal components of differentially expressed (DE) genes between HRD 
and HRP samples. DE genes identified in the training set and PCA fitted to the training set. b) 
The level of the first principal component in samples in the training set. The first principal 
component, is significantly different between HR deficient and HR proficient samples in the 
combined cohort (Wilcox p-values =2.3x10-10) c) The first two principal components from 
PCA applied to the test set using the DE genes identified in the training set. d) The level of 
the first principal component in samples in the test set. PC1 discriminates poorly between 
HRD and HRP samples which suggests that HRD expression signatures is not a generalisable 
predictor. Notably these genes do not include known HR genes and given their diverse 
functions their dysregulation is likely to be a consequence rather than a cause of HRD.  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 12, 2020. ; https://doi.org/10.1101/2020.05.11.088278doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.11.088278
http://creativecommons.org/licenses/by/4.0/


 36 

 
 
Supplementary Figure 5 - Integrative modelling of repair deficiency in HGSOC in full 
dataset. a) Median effect sizes of features selected to predict HRD, using elastic net 
regularised regression on 50 training/test set splits. Binary mutational status variables (e.g. 
presence/absence of BRCA1 somatic SNV) were included as factors and continuous variables 
were standardised to allow comparisons between variables. b) Distributions of effect size 
for each variable on HRD (log odds) in each training/test set split. Variables in red are 
selected for inclusion by the model in more than half of the training sets. It should be noted 
that, due to the lower number of samples with expression information and the increased 
number of features this model is likely to be underpowered to accurately identify significant 
features. 
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Supplementary Figure 6 - Comparison of methods to estimate the tumour cellularity in 
two cohorts. a) Estimates of tumour cellularity from allele-specific copy number tool 
CLImAT in comparison to estimates using qPure for the AOCS cohort. b) Estimates of tumour 
cellularity from allele-specific copy number tool CLImAT in comparison to scores from 
manual examination of the histopathology for the SHGSOC cohort. 
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