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Abstract 
 
Familial, genome-wide association (GWAS), and sequencing studies and genetic correlation analyses 
have progressively unraveled the shared or pleiotropic germline genetics of breast and ovarian 
cancer.  In this study, we aimed to leverage this shared germline genetics to improve the power of 
transcriptome-wide association studies (TWAS) to identify candidate breast cancer and ovarian 
cancer susceptibility genes.  We built gene expression prediction models using the PrediXcan 
method in 681 breast and 295 ovarian tumors from The Cancer Genome Atlas and 211 breast and 99 
ovarian normal tissue samples from the Genotype-Tissue Expression project and integrated these 
with GWAS meta-analysis data from the Breast Cancer Association Consortium (122,977 
cases/105,974 controls) and the Ovarian Cancer Association Consortium (22,406 cases/40,941 
controls).  The integration was achieved through novel application of a pleiotropy-guided 
conditional/conjunction false discovery rate approach for the first time in the setting of a TWAS.  
This identified 14 new candidate breast cancer susceptibility genes spanning 11 genomic regions and 
8 new candidate ovarian cancer susceptibility genes spanning 5 genomic regions at conjunction FDR 
< 0.05 that were > 1 Mb away from known breast and/or ovarian cancer susceptibility loci.  We also 
identified 38 candidate breast cancer susceptibility genes and 17 candidate ovarian cancer 
susceptibility genes at conjunction FDR < 0.05 at known breast and/or ovarian susceptibility loci.  
Overlaying candidate causal risk variants identified by GWAS fine mapping onto expression 
prediction models for genes at known loci suggested that the association for 55% of these genes was 
driven by the underlying GWAS signal. 
 
Significance 
 
The 22 new genes identified by our cross-cancer analysis represent promising candidates that 
further elucidate the role of the transcriptome in mediating germline breast and ovarian cancer risk. 
 
Introduction 
 
The last three decades have witnessed major advances in our understanding of the shared inherited 
genetic basis of breast and ovarian cancer.  The identification of rare inherited mutations in BRCA1 
(1) and BRCA2 (2) that confer high risks of developing both breast and ovarian cancer has directly 
opened up the identification of novel oncogenic mechanisms leading to the development of poly 
ADP ribose polymerase inhibitor therapy (3).  The findings from genome-wide association studies 
(GWAS) have demonstrated that there is a strong genetic correlation between breast and ovarian 
cancer (4) and have identified several genomic regions containing common (minor allele frequency > 
1%) variants that confer risk of developing both breast and ovarian cancer (5,6). 
 

Transcriptome-wide association studies (TWAS) represent the latest study design for the 
identification of disease-associated susceptibility genes.  TWAS involve establishing robust multi-
variant models for the component of somatic (normal or tumor) gene expression that is regulated by 
germline genetic variation in a smaller data set where both germline genotype and somatic 
transcriptomic data are available.  These models are then used to impute the germline genetically 
regulated component of gene expression into a larger GWAS data set where measured gene 
expression is unavailable but that offers significantly improved power to identify genes associated 
with disease risk where such risk may be mediated by expression.  Moving from single variants 
(GWAS) to genes (TWAS) as the unit of association reduces the multiple testing burden.  The use of 
gene expression provides a readily accessible read-out of the functional basis of the identified 
association in contrast to GWAS-identified risk variants that predominantly reside in non-coding 
regions of the genome (7). 
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PrediXcan is a method developed recently for conducting TWAS (8).  TWAS methods have 
been applied to single cancer types before, including breast cancer (9,10) and ovarian cancer 
(11,12).  Here we present the first application of PrediXcan, and indeed broadly of TWAS, in the 
pleiotropic cross-cancer setting.  We used the normal and tumor breast- and ovary-specific gene 
expression and matched germline genotype data sets to generate tissue-specific PrediXcan models 
and first imputed these models into GWAS data for the corresponding cancers (i.e., from breast 
tissue-derived models into breast cancer GWAS and likewise for the ovarian models).  We then 
imputed models across cancer types (i.e., from breast tissue-derived models into ovarian cancer 
GWAS and vice versa).  Finally, we implemented a powerful conjunction false discovery rate 
approach (13,14) that has been applied previously to GWAS (15–18), but not to TWAS, to leverage 
the combined GWAS sample of over 145,000 breast and ovarian cancer cases.  We identify new 
candidate breast and ovarian cancer susceptibility genes in regions not previously implicated by 
GWAS or TWAS analyses of these cancers. 
 
Methods 
 
Matched germline genotype – normal/tumor gene expression data sets 
 
We used data for 211 normal breast tissue samples and 99 normal ovarian tissue samples from the 
Genotype-Tissue Expression (GTEx) project (version 7 release; (19)).  Germline genotypes in the GTEx 
data had been called from whole-genome sequencing (Illumina HiSeq X) and gene expression was 
profiled using RNA-Sequencing (Illumina TruSeq).  We also used data from 681 breast cancer (20) 
and 295 high-grade serous ovarian cancer [HGSOC; (21)] cases from The Cancer Genome Atlas 
(TCGA) network.  Germline genotypes in the TCGA data had been called from genotyping arrays 
(Affymetrix SNP 6.0) and gene expression was profiled using RNA-Sequencing (Illumina HiSeq 2000).  
Imputation of TCGA germline genotypes using the 1000 Genomes version 5 reference panel was 
performed as described previously (22,23).  The TCGA sample sizes reported here refer to only those 
samples that had > 95% European ancestry.  Ancestry was estimated using the Local Ancestry in 
adMixed Populations tool (LAMP version 2.5; (24)).  Downstream PrediXcan modelling (described 
below) used variants imputed with quality > 0.8 that had a minor allele frequency > 5% in TCGA data 
sets. 
 
Genome-wide association data sets 
 
Summary statistics from genome-wide association meta-analyses were obtained from the Breast 
Cancer Association Consortium (BCAC; (22)) and the Ovarian Cancer Association Consortium (OCAC; 
(23)).  The breast cancer susceptibility data were based on 122,977 cases and 105,974 controls, 
including 21,468 estrogen receptor (ER)-negative cases.  The ovarian cancer susceptibility data were 
based on 22,406 epithelial ovarian cancer cases and 40,941 controls, including 13,037 HGSOC cases.  
We harmonised the signs of the effect size estimates and aligned them to the same effect allele in 
the breast and ovarian cancer GWAS data sets.  We retained 9,530,997 variants with minor allele 
frequency > 1% and imputation quality > 0.4 in both data sets for S-PrediXcan analyses.  All 
individuals in these studies were of genetically inferred European ancestry. 
 
PrediXcan model development and S-PrediXcan analyses 
 
We built genetically regulated gene expression prediction models using the elastic net regularization 
approach implemented in PrediXcan and validated these models using tenfold cross-validation (8).  
Essentially, this generates a list of variants for each gene where model construction is successful and 
each variant in the list is assigned a weight reflecting its influence on its target gene expression.  
Genes with models where the nested tenfold cross-validated correlation between predicted and 
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actual levels of expression was > 10% (predictive performance r2 > 0.01) and P-value of the 
correlation test was < 0.05 were retained.  These models were adjusted for the latent determinants 
of gene expression variation (referred to hereafter as “PEER factors”), which were identified using 
the Probabilistic Estimation of Expression Residuals (PEER; version 1.3) method (25).  We adjusted 
for 60 and 45 PEER factors for TCGA breast and ovarian cancer data, respectively.  The choice of 
these numbers is a function of sample size and consistent with recommendations (8,25).  ESR1 
expression was also included as a covariate in the construction of breast cancer models to account 
for estrogen receptor status and its influence on the expression of individual genes.  For the GTEx 
version 7 data sets, we downloaded pre-computed PrediXcan models from predictdb.org.  Our 
pipeline for processing the TCGA data sets, including the application of PEER factors, was designed 
to be consistent with the pipeline used to generate the pre-computed GTEx PrediXcan models.  S-
PrediXcan refers to the application of the PrediXcan gene expression models, specifically the variant 
weights from elastic net combined into multi-variant gene-level instruments, to summary statistics 
GWAS data sets and has been described in detail before (8). 
 
Conditional and conjunction false discovery rate analyses 
 
We obtained P-values for association of predicted expression of each gene with breast cancer risk 
and with ovarian cancer risk.  We then computed the false discovery rate (FDR) for gene-breast 
cancer risk association conditional on gene-ovarian cancer risk association (as conditional FDRBreast 

Cancer|Ovarian Cancer).  This is the probability that a gene is not associated with breast cancer risk given the 
P-values for association with both breast cancer risk and ovarian cancer risk.  The analogous 
conditional FDR for gene-ovarian cancer risk association was also calculated (FDROvarian Cancer|Breast 

Cancer).  Finally, the conjunctional FDR estimate, which is conservatively defined as the maximum of 
the two conditional FDR values, was computed.  This process minimizes the effect of a single 
phenotype (in this case, breast or ovarian cancer) driving the shared association signal.  It allows the 
power of pleiotropic associations to be tapped for genetic discovery unlike a traditional FDR 
approach that is informed solely by the distribution of P-values for a single phenotype.  We used the 
R implementation of the conditional FDR method available from github.com/KehaoWu/GWAScFDR.  
The conditional and conjunctional FDR method has been described extensively elsewhere (13–18), 
but not applied before to the TWAS setting.  The overall study design is summarized in Figure 1. 
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Figure 1: Flowchart providing an overview of the data sets used and the various steps in the analysis.  GTEx: 
Genotype-Tissue Expression project; TCGA: The Cancer Genome Atlas; GWAS: genome-wide association study; 
FDR: false discovery rate. 
 
Fine-mapped candidate causal risk variant data sets 
 
We examined the overlap between variants in the breast gene expression prediction models and a 
published list of fine-mapped candidate causal risk variants for breast cancer (26).  This was done to 
follow-up genes that we identified in genomic regions that are known to be associated with breast 
cancer risk under the intuition that gene-level association signals identified by S-PrediXcan that 
demonstrate such overlap with fine-mapped variants are likely being driven by the GWAS 
association signal in the same region. 
 

Fine-mapped candidate causal risk variants lists for breast cancer were obtained from Fachal 
et al (26).  Briefly, Fachal et al. fine-mapped 150 known breast cancer susceptibility regions using 
dense genotype data on women participating in the BCAC and in the Consortium of Investigators of 
Modifiers of BRCA1/2 (CIMBA).  Stepwise multinomial logistic regression was used to identify 
independent association signals in each region.  Credible causal variants within each signal were 
defined as being within a 100-fold likelihood of the top conditional variant to delineate the variants 
driving the GWAS associations in each region. 
 
Results 
 
Development of tissue/tumor-specific gene expression prediction models 
 
We built genetically regulated gene expression predictor models using matched germline genotype 
and tumor gene expression data from TCGA by applying elastic net regularization as implemented in 
the PrediXcan software.  Genes with models where the nested tenfold cross-validated correlation 
between predicted and actual levels of expression was > 10% (predictive performance r2 > 0.01) and 
P-value of the correlation test was < 0.05 were retained in line with best practice quality control 
recommendations by the developers of PrediXcan (8).  We constructed and evaluated predictor 
models that met these criteria for 4,457 genes based on 681 TCGA breast tumor samples and for 
2,705 genes based on 295 TCGA ovarian tumor samples.  We obtained pre-computed genetically 
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regulated gene expression predictor models that met the same criteria (predictive performance r2 > 
0.01; correlation test P < 0.05) in matched germline genotype and normal tissue gene expression 
data from the GTEx Project.  Specifically, the pre-computed data included 5,274 genes modelled 
based on 211 GTEx breast tissue samples and 3,034 genes modelled based on 99 GTEx ovarian tissue 
samples. 
 
Imputation of gene expression into GWAS and pleiotropy-guided FDR control 
 
We used the GTEx normal breast tissue-derived prediction models to impute genetically regulated 
gene expression in a genome-wide association meta-analysis involving 122,977 breast cancer cases 
and 105,974 controls using S-PrediXcan.  We tested for association between imputed gene 
expression and breast cancer risk.  We also used the same GTEx breast tissue-based models to 
impute gene expression in a genome-wide association meta-analysis of 22,406 ovarian cancer cases 
and 40,941 controls and test for association between imputed expression and ovarian cancer risk.  
For these two steps, we applied the conditional FDR method to the S-PrediXcan gene-level 
association P-values to correct for testing 5,274 genes in each analysis.  This yielded two conditional 
FDR values: one for association with breast cancer risk given association with ovarian cancer risk and 
the other for association with ovarian cancer risk given association with breast cancer risk.  Finally, 
we took the larger of the two values for each gene as a conservative estimate of its conjunction FDR 
to identify candidate breast cancer susceptibility genes at conjunction FDR < 0.05.  We refer to these 
genes as candidate breast cancer susceptibility genes because they were identified on the basis of 
gene expression predictor models derived from breast tissue.  However, the conditional-conjunction 
FDR analysis effectively borrowed information from pleiotropic associations with inherited 
susceptibility to a second cancer type (in this case ovarian cancer) in addition to the primary cancer 
type (breast cancer) and these genes may be considered as risk genes for the second cancer as well.  
These steps were repeated for three other ordered combinations of data sets: TCGA breast tumor 
tissue-breast cancer GWAS-ovarian cancer GWAS to identify candidate breast cancer susceptibility 
genes; GTEx normal ovarian tissue-ovarian cancer GWAS-breast cancer GWAS and TCGA ovarian 
tumor tissue-ovarian cancer GWAS-breast cancer GWAS to identify candidate ovarian cancer 
susceptibility genes.  We also replaced the overall breast cancer GWAS and all invasive ovarian 
cancer GWAS used in the four data set combinations described above with ER-negative breast 
cancer GWAS (21,468 cases/105,974 controls) and HGSOC GWAS (13,037 cases/22,406 controls), 
respectively.  This helped identify additional candidate breast and ovarian cancer susceptibility 
genes driven by subtype-specific associations at conjunction FDR < 0.05. 
 

For each gene, coverage was defined as the percentage of the number of variants included 
in its expression prediction model that were also captured in the genome-wide association meta-
analysis.  The coverage was >= 80% for at least 93% of the genes in each of the four matched 
germline genotype and normal or tumor gene expression data sets used to build the predictor 
models indicating that for most genes, most of the corresponding model variants available were 
used.  In each ordered analytic combination of data sets (e.g., GTEx normal breast tissue-breast 
cancer GWAS-ovarian cancer GWAS) we observed that, in general, for progressively smaller S-
PrediXcan P-values of the second cancer type, the true discovery rate for association with the 
primary cancer type approached 100% at progressively larger S-PrediXcan P-values for the primary 
cancer type (Figure 2 and Supplementary Figure 1).  This was consistent with substantial shared 
gene-level associations for breast and ovarian cancer risk and these shared signals being tapped by 
the conditional-conjunction FDR method to power candidate susceptibility gene discovery. 
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Figure 2: True discovery rate against the negative logarithm (base 10) of the P-value for each cancer for subsets 
of genes based on strength of association with the other cancer.  The Y-axis of each plot is the true discovery 
rate which is defined as 1 – conditional false discovery rate (cFDR).  For a given ordered analytic combination of 
data sets (e.g., GTEx normal breast tissue as transcriptome reference panel-breast cancer GWAS-ovarian cancer 
GWAS, plotted in the upper left hand corner) we observed that, in general, for progressively smaller S-PrediXcan 
P-values of the second cancer type (indicated by the key “Threshold p” next to each plot), the true discovery 
rate (Y-axis) for association with the primary cancer type approached 100% at progressively larger S-PrediXcan 
P-values for the primary cancer type (X-axis; negative logarithm (base 10) of the P-values).  BC: overall breast 
cancer risk; OC: all invasive ovarian cancer risk.  Only P-values > 10-6 are plotted on the X-axis. 

 
Identification of new candidate breast cancer and ovarian cancer susceptibility genes 
 
We identified 14 new candidate breast cancer susceptibility genes at the conjunction FDR < 0.05 
threshold (Table 1 and Supplementary Table 1).  The 14 genes were distributed between 11 genomic 
regions > 1 Mb apart from each other (Table 1).  These genes have not been reported as 
susceptibility genes in any prior TWAS of breast cancer risk and are > 1 Mb away from published 
genome-wide significant lead variants for breast cancer susceptibility (27).  For ovarian cancer, we 
identified 8 novel candidate susceptibility genes at conjunction FDR < 0.05 (Table 2 and 
Supplementary Table 2).  The 8 genes were located across 5 genomic regions > 1 Mb apart from 
each other (Table 2).  These genes have not been reported as candidate risk genes in any previously 
reported TWAS of ovarian cancer risk and are > 1 Mb away from published genome-wide significant 
lead variants for ovarian cancer susceptibility (23). 
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Table 1: New candidate breast cancer susceptibility genes identified by pleiotropy-guided S-PrediXcan analysis. 

Gene Genomic Region 
P-value 
BC 

P-value 
OC 

Conditional FDR 
BC|OC 

Conditional FDR 
OC|BC 

Conjunction 
FDR  

Transcriptome reference panel: GTEx breast (normal) | primary GWAS: overall BC risk (second GWAS: all invasive OC risk) 

ZSCAN29 15q15.3 1.8E-04 9.1E-04 4.1E-04 6.0E-03 6.0E-03 

STRCP1 15q15.3 1.6E-03 1.8E-03 4.1E-03 1.9E-02 1.9E-02 

AC011330.5 15q15.3 5.4E-04 2.5E-03 1.8E-03 2.2E-02 2.2E-02 

STRC 15q15.3 1.4E-04 3.8E-03 6.1E-04 2.2E-02 2.2E-02 

ZNF276 16q24.3 3.7E-06 4.7E-03 2.4E-05 2.2E-02 2.2E-02 

RGS19 20q13.33 1.1E-03 5.4E-03 4.3E-03 4.3E-02 4.3E-02 

RNFT1 17q23.1 2.4E-04 8.7E-03 1.3E-03 4.7E-02 4.7E-02 

C15orf65 15q21.3 2.2E-03 5.9E-03 8.2E-03 4.7E-02 4.7E-02 

Transcriptome reference panel: TCGA breast (tumor) | primary GWAS: overall BC risk (second GWAS: all invasive OC risk) 

GMNC 3q28 2.6E-03 1.2E-03 6.1E-03 2.0E-02 2.0E-02 

ESRP2 16q22.1 1.9E-02 9.6E-04 4.3E-02 3.3E-02 4.3E-02 

BHLHA15 7q21.3 8.5E-05 7.0E-03 5.5E-04 4.9E-02 4.9E-02 

SCGB1D2 11q12.3 3.5E-04 5.5E-03 2.0E-03 4.9E-02 4.9E-02 

Transcriptome reference panel: TCGA breast (tumor) | primary GWAS: ER-negative BC risk (second GWAS: HGSOC risk) 

ETAA1 2p14 3.0E-03 1.5E-03 2.0E-02 2.0E-02 2.0E-02 

ATP8B4 15q21.2 1.6E-03 2.2E-03 1.5E-02 2.4E-02 2.4E-02 

Abbreviations: BC, breast cancer; OC, ovarian cancer; FDR, false discovery rate; ER, estrogen receptor; HGSOC, high-grade serous ovarian cancer. 

 

Table 2: New candidate ovarian cancer susceptibility genes identified by pleiotropy-guided S-PrediXcan analysis. 

Gene Genomic Region 
P-value 
OC 

P-value 
BC 

Conditional FDR 
OC|BC 

Conditional FDR 
BC|OC 

Conjunction 
FDR 

Transcriptome reference panel: GTEx ovary (normal) | primary GWAS: all invasive OC risk (second GWAS: overall BC risk)  

STRCP1 15q15.3 7.2E-04 6.4E-05 3.1E-03 8.5E-05 3.1E-03 

CPNE1 20q11.22 1.2E-03 7.2E-05 5.0E-03 9.9E-05 5.0E-03 

AC011330.5 15q15.3 1.7E-03 2.6E-05 5.8E-03 4.5E-05 5.8E-03 

CCNE1 19q12 1.9E-03 3.2E-03 1.4E-02 4.4E-03 1.4E-02 

CATSPER2P1 15q15.3 4.8E-03 1.9E-04 1.8E-02 4.1E-04 1.8E-02 

UQCC1 20q11.22 3.8E-03 2.5E-03 2.8E-02 4.7E-03 2.8E-02 

Transcriptome reference panel: TCGA ovary (tumor) | primary GWAS: all invasive OC risk (second GWAS: overall BC risk) 

CPNE1 20q11.22 2.0E-03 9.0E-05 2.0E-02 4.9E-04 2.0E-02 

Transcriptome reference panel: GTEx ovary (normal) | primary GWAS: HGSOC risk (second GWAS: ER-negative BC risk) 

CCNE1 19q12 1.7E-03 2.0E-04 5.9E-03 1.5E-03 5.9E-03 

STRCP1 15q15.3 9.2E-03 3.2E-04 3.1E-02 3.9E-03 3.1E-02 

HEATR3 16q12.1 4.3E-03 3.1E-02 4.6E-02 4.4E-02 4.6E-02 

Transcriptome reference panel: TCGA ovary (tumor) | primary GWAS: HGSOC risk (second GWAS: ER-negative BC risk) 

THSD7A 7p21.3 1.5E-03 1.2E-02 2.8E-02 4.3E-02 4.3E-02 

Abbreviations: BC, breast cancer; OC, ovarian cancer; FDR, false discovery rate; ER, estrogen receptor. 
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Candidate breast cancer and ovarian cancer susceptibility genes at known GWAS loci 
 
We identified 38 candidate breast cancer susceptibility genes that were located within 1 Mb of a 
published lead variant associated at genome-wide significance with breast cancer risk 
(Supplementary Table 3; (27)).  Four of the 38 genes have also been reported in previously published 
TWAS (Supplementary Table 3; (9,10)).  The 38 genes were spread across 12 genomic regions > 1 Mb 
apart from each other.  Overlaying fine-mapped candidate causal breast cancer risk variants on 
breast gene expression predictor model variants showed that for 21/38 (55%) genes the prediction 
model variants included at least one fine-mapped candidate causal variant (Supplementary Tables 3 
and 4).  This suggested that for these genes the GWAS association signal was driving the S-PrediXcan 
signal.  We also identified three additional genes that were > 1 Mb away from known GWAS loci that 
have previously been reported as TWAS loci for breast cancer risk (Supplementary Table 3; (9,10)). 
 

For ovarian cancer, we identified 17 candidate susceptibility genes that were located within 
1 Mb of a published lead variant associated at genome-wide significance with ovarian cancer risk 
(Supplementary Table 5; (23)).  Six of these genes have also been reported in a previously published 
TWAS for ovarian cancer (Supplementary Table 5; (11,12)).  The 17 genes span 5 different genomic 
regions > 1 Mb apart. 
 
Discussion 
 
In this study, we used the conditional and conjunctional FDR as a novel tool to systematically 
improve the power of breast cancer and ovarian cancer candidate susceptibility gene discovery in a 
PrediXcan-based TWAS.  While gene expression prediction models based on multiple tissue types 
has been the more common approach to improving TWAS power (11,28), the 
conditional/conjunction FDR approach gains power through the incorporation of multiple related 
GWAS data sets into a TWAS analysis.  We investigated the shared inherited genetic basis of these 
two cancer types by integrating normal and tumor tissue-specific transcriptomic data sets with large-
scale genome-wide association meta-analysis findings for susceptibility to breast cancer and ovarian 
cancer.  We identified 11 new genomic regions associated with breast cancer risk and five new 
regions linked to ovarian cancer risk. 
 

We identified 14 novel candidate breast cancer susceptibility genes (Table 1).  Many of these 
genes have a strong biological rationale for involvement in breast carcinogenesis and are in or near 
genomic regions associated with other cancer types or potential cancer risk factors.  For example, 
the ZNF276 intronic variant rs12925026 is associated at genome-wide significance with non-
melanoma skin cancer (29).  ZNF276 overlaps FANCA in a tail-to-tail manner (30).  The genetically 
regulated predictor model for ZNF276 expression was fit using gene expression measured in GTEx 
breast tissues but neither this data set nor any of the other data sets could capture a predictor 
model for FANCA expression.  FANCA encodes one of eight subunits that together form the core 
Fanconi Anemia (FA) complex that repairs blockages in DNA replication due to cross-linking (31).  
Several members of the FA family of proteins have been implicated in breast and ovarian cancer 
predisposition including, BRCA1 (FANCS), BRCA2 (FANCD1), BRIP1 (FANCJ), PALB2 (FANCN), RAD51C 
(FANCO) and FANCM and it is possible that FANCA may represent another or possibly the true target 
breast cancer susceptibility gene in this region given this biological function and its overlap with 
ZNF276 (31,32).  ZNF276 in its own right has also been implicated as a candidate tumor suppressor 
gene in breast cancer (30). 
 

Other candidate breast cancer susceptibility genes we identified include ESRP2,  which 
encodes an epithelial cell-specific regulator of splicing of the breast cancer susceptibility gene FGFR2 
(33,34) and SCGB1D2, which encodes lipophilin B that is known to be expressed in both breast and 
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ovarian tumors (35).  Lipophilin B is tightly co-expressed with and forms a covalent complex with 
Mammaglobin A encoded by SCGB2A2, the gene next to SCGB1D2 (35).  Mammaglobin A may be 
used to detect disseminated or circulating tumor cells and is under investigation as a potential 
immunotherapeutic target in breast cancer (36).  However, we were unable to develop gene 
expression prediction models for SCGB2A2 in breast normal or tumor tissues.  BHLHA15 encodes an 
estrogen-regulated transcription factor that is required to maintain mammary gland differentiation 
in mice (37).  ETAA1 harbors lead variants associated at genome-wide significance with pancreatic 
cancer (38), and the hormone-related traits of age at menopause (39) and male-pattern baldness 
(40).  It encodes an activator of ATR kinase that accumulates at DNA damage sites and promotes 
replication fork progression and integrity (41).  While our pleiotropy-guided transcriptome 
imputation study was ongoing, a genome-wide association meta-analysis for breast cancer risk that 
was performed in parallel identified lead variants rs79518236 (184 kb from BHLHA15) and 
rs9712235 (244 kb from ETAA1) at genome-wide significance only on addition of 10,407 breast 
cancer cases and 7,815 controls to the Michailidou et al. data set used here ((42), unpublished pre-
print).  There were no known GWAS associations for breast cancer risk in these regions until the 
larger GWAS meta-analysis and our concomitant identification of the same regions using gene 
expression imputation into a smaller GWAS underscores the power of leveraging expression data to 
bolster genetic discovery. 
 

We identified 11 new candidate ovarian cancer susceptibility genes (Table 2).  As with breast 
cancer, there is strong support for a role of several genes in ovarian cancer pathogenesis and many 
of these genes are in regions of the genome that harbor pleiotropic associations with other cancer 
types.  Variants immediately upstream of CCNE1 are associated at genome-wide significance with 
bladder cancer risk (43).  CCNE1 amplification is believed to be an early event in the development of 
ovarian cancer (44) and is a frequent somatic event in HGSOCs that do not carry homologous 
recombination DNA repair pathway defects (45).  CCNE1 amplification is also associated with poor 
prognosis in triple negative breast tumors (46) and it is worth noting that we observed the stronger 
conjunction FDR association signal for CCNE1 in the pleiotropy-informed analysis that was based on 
the HGSOC and ER-negative breast cancer susceptibility GWAS data sets (Table 2).  This study is the 
first to suggest a role for CCNE1 in conferring ovarian cancer risk.  Intronic variants in HEATR3 are 
associated at genome-wide significance with glioma in European ancestry individuals (47) and with 
squamous cell esophageal carcinoma in East Asian ancestry individuals (48).  HEATR3 was also 
identified by a TWAS of glioma susceptibility (49).  Intronic variants in THSD7A are associated with 
epithelial ovarian cancer risk in East Asians (50), albeit not at genome-wide significance (lead variant 
rs10260419 P = 1 x 10-7).  Gene expression prediction models derived from breast and ovarian 
tissues both implicated the 15q15.3 region as a new breast and ovarian cancer susceptibility region 
on imputation with these models into the breast and ovarian cancer GWAS data.  Our analysis 
suggested several genes in this region (Tables 1 and 2), with the pseudogene STRCP1 as the only 
common gene across breast and ovarian tissues.  STRCP1 overlaps the protein coding gene STRC, 
also identified in the breast tissue-based analysis (Table 1), and variants in STRC have previously 
been associated with lung cancer risk (lung cancer lead variant rs35028925 P = 2 x 10-6) (51). 

 
In this analysis, we chose to label the identified genes as candidate breast cancer 

susceptibility genes if they were identified on integrating the GTEx or TCGA breast expression 
prediction models with the breast cancer GWAS and incorporating pleiotropic information from the 
ovarian cancer GWAS and vice versa for candidate ovarian cancer susceptibility genes.  However, 
application of the conjunction FDR over and above the conditional FDR in principle identified genes 
associated with both cancer types by tapping into GWAS data from both cancers.  Therefore, in a 
sense all these genes may well be regarded as candidate breast and ovarian cancer susceptibility 
genes. 
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We identified 38 candidate breast cancer susceptibility genes and 17 candidate ovarian 
cancer susceptibility genes in regions previously implicated by GWAS for breast cancer and ovarian 
cancer, respectively (Supplementary Tables 3 and 5).  The identification of a large number of genes 
in these regions is unsurprising given that GWAS associations are the key determinant of the S-
PrediXcan signal.  However, we were able to take full advantage of extensive fine-scale mapping 
data generated by the Breast Cancer Association Consortium to separately pinpoint those genes 
where a fine-mapped candidate causal GWAS risk variant for breast cancer was incorporated in the 
breast PrediXcan model suggesting it drives the gene-based association.  Overall, we found this to be 
the case for 55% of the candidate susceptibility genes identified by PrediXcan in the breast cancer 
susceptibility regions identified by GWAS.  Comprehensive functional follow up of the 19p13.11 
breast and ovarian cancer GWAS region suggests that ABHD8 and ANKLE1 are the most likely targets 
in this region (5).  While there was no overlap between S-PrediXcan model variants for ABHD8 and 
ANKLE1 and fine-mapped risk variants in this region, S-PrediXcan did detect both genes as candidate 
causal susceptibility genes, with ANKLE1 being the only gene that made the cut in both breast and 
ovarian tissues, suggesting that S-PrediXcan applied to pleiotropic gene dense regions such as 
19p13.11 does help short-list the key targets even in the absence of overlap with fine-mapped 
variants.  A total of 21/38 breast and 13/17 ovarian cancer candidate susceptibility genes in the 
published GWAS regions were clustered at 17q21.31, reflecting the unique long-distance linkage 
disequilibrium structure of this region (52).  This phenomenon has also led to clustering of 
associations at 17q21.31 in previous TWAS of breast or ovarian cancer risk (9,11). 

 
In conclusion, the powerful combination of pleiotropic breast and ovarian cancer GWAS data 

sets with transcriptome imputation from normal and tumor breast and ovarian tissues identified a 
total of 16 novel genomic loci (22 new genes) associated with breast and ovarian cancer risks.  Fine-
mapping in larger GWAS data sets and deeper laboratory-based functional follow-up studies of these 
new loci and candidate genes have the potential to provide fresh insights into the common 
biological underpinnings of breast and ovarian cancer. 
 
Data Access Statement 
 
Genome-wide summary genetic association statistics from BCAC are available at: 
http://bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/gwas-icogs-and-oncoarray-summary-
results/ 
 
Genome-wide summary genetic association statistics from OCAC are available at: 
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PrediXcan prediction models trained on the GTEx version 7 data (breast and ovarian tissues) are 
available here: http://hakyimlab.org/post/2017/v7-v6p-analysis/ 
 
PrediXcan prediction models trained on the TCGA data (breast and ovarian tumors) will be made 
publicly available upon publication. 
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