Supplementary Material

- 1. Evidence for functional network classification of chromatin-associated and synaptic-associated Intellectual Disability genes
- 2. Participant numbers by gene and functional network group
- 3. Within-sample predictors of ASC dimensions: model selection and multimodal inference
- 4. Extraction and rotation values for Principal Components Analysis
- 5. Rotated component matrix for three-component solution
- 6. PCA solution with oblique rotation
- 7. Complete table of top-ranked models with Δ AIC <2, for each ASC component
- 8. Effect size plots

Supplementary Material Table 1. Evidence for functional network classification of chromatin-associated and synaptic-associated Intellectual Disability genes

Gene	Protein	Biochemical and	Human adult	Human	Synaptic proteome	Synaptic-relevant	Chromatin-relevant GO Biological
		cellular function	brain	developmental		GO Biological processes	processes
			expression	brain expression			
Resource	ncbi.nlm.nih.gov/omim	genecards.org	braineac.org	hbatlas.org	SynaptomeDB.org	http://amigo.geneontology.org/	http://amigo.geneontology.org/
CHROMATIN	I GROUP						
ARID1B	At-Rich Interaction Domain-Containing Protein 1b	Component of SWI/SNF chromatin remodeling complexes, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-	Max – cerebellum Min - thalamus	Peaks day 150, stable postnatal	NO	 Differentiation of interneurons excitatory / inhibitory balance Dendritic morphology 	 SWI/SNF complex chromatin-mediated maintenance of transcription
EHMT1	Euchromatic Histone Methyltransferase 1	dependent manner Histone methyltransferase that specifically mono- and dimethylates 'Lys-9' of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin	Max – white matter Ubiq in cortex	Peaks early gestation, declines through prenatal, stable postnatal	NO	Nil	 DNA methylation chromatin organization
KAT6B	Lysine Acetyltransferase 6b	Histone acetyltransferase which may be involved in both positive and negative regulation of transcription. Required for RUNX2- dependent transcriptional activation	Not in database	Peaks day 100, stable postnatal	NO	Nil	 negative regulation of transcription, DNA- templated positive regulation of transcription by RNA polymerase II nucleosome assembly
SMARCA2	Swi/Snf-Related, Matrix- Associated, Actin- Dependent Regulator Of Chromatin, Subfamily A, Member 2	Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts	Max – cortex Min – white matter	Increases during prenatal life. Stable postnatal	NO	Nil	

		within a nucleosome					
		in an ATP-dependent					
		manner.					
SETD5	Set Domain-Containing Protein 5	Displays histone methyltransferase activity and monomethylates 'Lys- 9' of histone H3 in vitro. Probable transcriptional regulator that acts via the formation of large multiprotein complexes that modify and/or remodel the chromatin.	Max – cerebellum Min - medulla	Peaks early gestation, steady decline	NO	Nil	 covalent chromatin modification regulation of chromatin organization
SYNAPTIC GR	OUP				-		
CTNNB1	Catenin, Beta-1	Downstream component of the canonical Wnt signalling pathway	Max – cerebellum, thalamus Min – putamen, SNIG	Peaks early gestation, then steady	YES	 synaptic vesicle transport synaptic vesicle clustering synaptic transmission Wnt signalling pathway, calcium modulating pathway 	 Positive regulation of transcription
DDX3X	Dead/H Box 3, X-Linked	Multifunctional ATP- dependent RNA helicase.	Ubiq	Peaks early gestation, then steady	YES	Wnt signalling pathway	 DNA helicase activity Translational and transcriptional regulation Positive regulation of gene expression RNA secondary structure unwinding
DLG3	Discs, Large Homolog 3	Membrane-associated guanylate kinase	Max – hippocampus, cortex Min – medulla, white matter	Increases across prenatal, declines from late childhood	YES	 structural constituent of postsynaptic density regulation of postsynaptic membrane neurotransmitter receptor levels maintenance of postsynaptic density structure regulation of NMDA receptor activity 	nil
РАКЗ	p21 protein (Cdc42/Rac)- Activated Kinase 3	Serine/threonine protein kinase. Acts as downstream effector of small GTPases	Max – hippocampus, cortex	Increases during prenatal life. Stable postnatal	NO (but PAK1 yes)	synapse organizationdendritic spine morphogenesis	Nil

			Min – cerebellum, white matter				
SHANK3	Sh3 And Multiple Ankyrin Repeat Domains 3	Major scaffold postsynaptic density protein	Max – hippocampus, putamen Min – white matter, medulla	Not in database (SHANKS 1 and 2 – increases across prenatal, stable / declines postnatal)	YES	 synapse assembly positive regulation of long- term neuronal synaptic plasticity positive regulation of synaptic transmission, glutamatergic AMPA and NMDA glutamate receptor clustering 	Nil
STXBP1	Syntaxin-Binding Protein 1	Regulation of synaptic vesicle docking and fusion through interaction with GTP- binding proteins	Max – cortex Min – white matter	Increases during prenatal life. Stable postnatal	YES	 vesicle docking involved in exocytosis regulation of synaptic vesicle priming negative regulation of synaptic transmission, GABAergic positive regulation of calcium ion-dependent exocytosis long-term synaptic depression 	nil
TRIO	Triple Functional Domain	Guanine nucleotide exchange factor (GEF) for RHOA and RAC1 GTPases	Max – cerebellum, cortex Min – white matter	Peaks day 150, declines postnatal	YES	 regulation of Rho protein signal transduction 	Nil
ZDHHC9	Zinc Finger Dhhc Domain- Containing Protein 9	Palmitoyltransferase	Max – white matter Min - cerebellum	Peaks day 100, stable postnatal (adolescent increase?)	NO	 Protein targeting to membrane 	Nil
DYRK1A	Dual-Specificity Tyrosine Phosphorylation- Regulated Kinase 1a	Dual-specificity kinase which possesses both serine/threonine and tyrosine kinase activities. Modulates alternative splicing by phosphorylating the splice factor SRSF6	Max – cerebellum Min – white matter	Peaks early gestation, declines through prenatal, stable postnatal	NO	Protein tyrosine kinase	 negative regulation of mRNA splicing, via spliceosome transcription coactivator activity positive regulation of transcription, DNA-templated

FNG ASC Dimensions – Supplementary Material

Supplementary Material Table 2. Participant numbers by gene and functional network group

Chromatin		Synaptic	
Gene	Ν	Gene	Ν
ARID1B	6	CASK	1
EHMT1	7	CTNNB1	1
KAT6B	1	DDX3X	9
SETD5	8	DLG3	2
SMARCA2	1	DYRK1A	2
		ΡΑΚ3	1
		SHANK3	3
		STXBP1	8
		TRIO	1
		ZDHHC9	1

Supplementary Material 3. Within-sample predictors of ASC dimensions: model selection and multimodal inference

Step 1. *Model selection.* For each ASC component resulting from the PCA, we included the same set of variables: age, gender, global adaptive ability, FNG, and non-ASD behavioural traits (inattention, hyperactivity, and anxiety). Additionally, we explored interactions between genetic diagnosis (FNG) and predictors, to investigate shared vs distinctive associations. To do this we included in the model selection paradigm interaction terms between FNG and i) inattention, ii) hyperactivity, and iii) anxiety. AICc values were compared, with the most parsimonious models (i.e. lowest AIC value) favoured. The selection criteria for best fitting models, were based on ΔAIC , or difference in AIC from between a model i and the first-ranked model (Johnson 2004.) Generally, models with $\Delta AIC<2$ provide a substantially good fit to the data (Burnham and Anderson, 2002).

Step 2. *Multimodal Inference*. In order to provide stable inference and parameter estimation, for each of the behavioural characteristics, we averaged across the top ranked models ($\Delta A/C<2$), and computed the single coefficients' importance. The relative importance of the predictors or coefficients measures the relative likelihood that each predictor is part of the best model (Symonds 2011). This is estimated by summing the Akaike weights (ωAIC) across all the models in the candidate set. In short, the larger the weight is, the more important the variable or predictor, relative to the others. This procedure allows us to look at effects of closely related models, by measuring confidence intervals, and thus reducing model uncertainty (Johnson 2004).

Supplementary Material 4. Scree plots, Extraction and rotation values for Principal Components Analysis

Preliminary PCA on all SRS-2 items

			Component					
		1	2	3	4	5		
Extraction sums of squared loadings	Eigenvalue	14.008	5.726	4.358	2.848	2.796		
	% of variance	21.551	8.810	6.704	4.382	4.302		
	Cumulative %	21.551	30.361	37.065	41.447	45.749		
extracted values for the first five components produced by initial PCA, performed on all 65 SRS-2 items.								

Final PCA on reduced number of SRS-2 items (30 items)

Component Number

			Componer	nt
		1	2	3
Extraction sums of squared loadings	Eigenvalue	8.729	4.072	2.760
	% of variance	29.095	13.574	9.200
	Cumulative %	29.095	42.669	51.869
Rotation sums of squared loadings	Eigenvalue	6.786	5.908	2.867
	% of variance	22.618	19.694	9.556
	Cumulative %	22.618	42.312	51.869
Extracted and rotated values for the three compo	nent solution produced by a second P	CA, performed on a red	uced number of SRS	-2 items (30)

Supplementary Material 5. Rotated component matrix for three-component solution

Itom		Component	
	Inflexibility	Social Understanding	Social Motivation
Difficulty with changes to routine	.777	.053	.060
Overwhelmed in situations with lots going on	.776	077	.149
Sensory sensitivity	.752	112	058
Has fixated patterns of thought	.732	.092	.258
Tense in social situations	.731	032	.179
Inflexible	.697	.172	.158
When stressed shows rigid behaviours	.689	.150	.017
Too literal	.653	.318	.127
Stares into space	.634	.183	073
Behaves in ways that are strange or bizarre	.555	.516	198
Has difficulty relating to peers	.530	.371	065
Repetitive behaviours	.451	.406	419
Aware when being too loud	093	.706	.046
Aware of others' thoughts and feelings	.125	.695	016
Knows when standing too close to others	102	.693	.003
Offers comfort to others when they are sad	048	.686	.258
Understands cause and effect	.189	.675	204
Recognises when something is unfair	076	.658	.156
Understands the meaning of others' tone	.118	.613	.227
Regarded by others as odd	.292	.598	060
Awkward in turn-taking interactions	.289	.572	.042
Socially awkward	.443	.550	096
Shows unusual sensory interests	.447	.548	178
Difficulty communicating thoughts	.209	.542	.431
Walks between people	.101	.505	301
Avoids initiating social interactions	.220	091	.753

ltom		Component					
item	Inflexibility	Social Understanding	Social Motivation				
Poo self-confidence	007	.219	.700				
Avoids emotional closeness with others	.399	.128	.601				
Silly	.462	.129	523				
Gets frustrated trying to communicate ideas	.479	008	.518				
	_						

Variance explained: 51.87%. Extraction method: Principal Components with Varimax rotation and Kaiser normalization. Item loadings > 0.4 are in bold font.

FNG ASC Dimensions – Supplementary Material

Supplementary Material 6. PCA solution with oblique rotation

Pattern matrix for three-component solution with oblique rotation

ltom -	Component							
	Inflexibility	Social Understanding	Social Motivation					
Overwhelmed in situations with lots going on	.839	231	.136					
Sensory sensitivity	.820	279	073					
Difficulty with changes to routine	.813	100	.049					
Tense in social situations	.782	172	.168					
Has fixated patterns of thought	.758	035	.250					
Inflexible	.703	.050	.152					
When stressed shows rigid behaviours	.698	.018	.152					
Stares into space	.633	.058	079					
Too literal	.627	.212	.125					
Has difficulty relating to peers	.484	.279	064					
Behaves in ways that are strange or bizarre	.479	.418	195					
Aware when being too loud	245	.772	.065					
Offers comfort to others when they are sad	192	.757	.276					
Knows when standing too close to others	252	.757	.021					
Recognises when something is unfair	216	.726	.174					
Aware of others' thoughts and feelings	013	.711	001					
Understands cause and effect	.059	.662	192					
Understands the meaning of others' tone	001	.643	.240					
Regarded by others as odd	.185	.570	050					
Difficulty communicating thoughts	.110	.565	.443					
Awkward in turn-taking interactions	.188	.550	.051					
Walks between people	.000	.493	301					
Socially awkward	.354	.485	090					
Shows unusual sensory interests	.359	.476	172					

Itom	Component						
Rem	Inflexibility	Social Understanding	Social Motivation				
Avoids initiating social interactions	.256	086	.750				
Poor self-confidence	050	.286	.709				
Avoids emotional closeness with others	.399	.097	.600				
Silly	.460	.003	529				
Gets frustrated trying to communicate ideas	.512	069	.512				
Repetitive behaviours	.391	.307	418				
Extraction method: Principal Components with Proma	x rotation and Kaiser normalizatior	n. Item loadings > 0.4 are in bold font.					

Pearson correlation matrix of component scores (Orthogonal and Oblique rotations)

	Inflexibilit	У	Social		Social Mot	ivation	Inflexibilit	y	Social		Social Mot	ivation
	(Orthogon	al)	Understan	nding	(Orthogon	al)	(Oblique)		Understan	ding	(Oblique)	
			(Orthogon	al)					(Oblique)			
N=52	r	р	r	р	r	р	r	р	r	р	r	р
Inflexibility (Orthogonal)			.000	1.000	.000	1.000	.982	<.001	.193	.171	020	.890
Social Understanding	.000	1.000			.000	1.000	.191	.176	.981	<.001	073	.606
(Orthogonal)												
Social Motivation	.000	1.000	.000	1.000			.011	.941	020	.886	.997	<.001
(Orthogonal)												
Inflexibility (Oblique)	.982	<.001	.191	.176	.011	.941			.376	.006	023	.873
Social Understanding	.193	.171	.981	<.001	020	.886	.376	.006			096	.499
(Oblique)												
Social Motivation	020	.890	073	.606	.997	<.011	023	.873	096	.499		
(Oblique)												

Supplementary Material 7. Complete table of top-ranked models with Δ AIC <2, for each ASD dimension.

			AIC			Residual	Explained Deviance
Component	Models	N Variables	Weight	AICc	ΔΑΙϹ	Deviance	or D squared
	Anxiety + FNG + Hyperactivity + Vineland	4	0.221	100.21	0	17.81	0.623
	Anxiety + FNG + Hyperactivity	3	0.202	100.39	0.18	18.89	0.598
	Anxiety + FNG + Hyperactivity + FNG x Hyperactivity	5	0.175	100.68	0.466	18	0.619
	Anxiety + FNG + Hyperactivity + Vineland + FNG x	7	0.136	101.19	0.973	17.1	0.638
Inflexibility	Hyperactivity						
	Anxiety+FNG+Hyperactivity+Vineland+FNG x Vineland	7	0.09	102.01	1.791	17.41	0.631
	Age + Anxiety + FNG + Hyperactivity	4	0.099	102.01	1.799	18.54	0.607
	Anxiety + FNG + Hyperactivity + Inattention	5	0.096	102.06	1.847	18.56	0.607
	Anxiety + FNG + Hyperactivity + Inattention + Vineland +	9	0.174	114.93	0	20.26	0.5952544
	FNG x Hyperactivity + FNG x Inattention						
	FNG + Hyperactivity + Inattention + Vineland + FNG x	8	0.133	115.47	0.537	21.98	0.5607631
Social	Hyperactivity + FNG x Inattention						
Understanding	Anxiety + FNG + Gender + Hyperactivity + Inattention +	10	0.131	115.49	0.564	19.05	0.6193666
	Vineland + FNG x Hyperactivity + FNG x Inattention						
	Anxiety + FNG + Hyperactivity + Inattention + Vineland +	10	0.106	115.93	0.998	19.24	0.6156723
	Anxiety x FNG + FNG x Hyperactivity + FNG x Inattention						

			AIC			Residual	Explained Deviance
Component	Models	N Variables	Weight	AICc	ΔΑΙϹ	Deviance	or D squared
	FNG + Gender + Hyperactivity + Inattention + Vineland +	9	0.1	116.04	1.107	20.76	0.5851734
	FNG x Hyperactivity + FNG x Inattention						
	Age + FNG + Gender + Hyperactivity + Inattention +	10	0.1	116.04	1.112	19.28	0.614705
	Vineland + FNG x Hyperactivity + FNG x Inattention						
Social	Anxiety + FNG + Gender + Hyperactivity + Inattention +	11	0.097	116.1	1.168	17.85	0.6433202
Understanding	Vineland + Anxiety x FNG + FNG x Hyperactivity + FNG x						
	Inattention						
	Age + Gender + Hyperactivity + Vineland	6	0.088	116.29	1.361	25.46	0.4912235
	Age + FNG + Hyperactivity + Inattention + Vineland + FNG	9	0.07	116.76	1.835	21.1	0.5784112
	x Hyperactivity + FNG x Inattention						
	Hyperactivity + Inattention	4	0.34	127.12	0	36.37	0.154765
	Hyperactivity	3	0.328	127.19	0.071	38.43	0.1067548
Social Motivation	Age + Hyperactivity	4	0.199	128.19	1.072	37.24	0.1343813
	Age + Hyperactivity + Inattention	5	0.133	128.99	1.871	35.83	0.1672165

N variables = number of parameters for each model, aic weight= is the probability of each model of being the best model, or relative evidence for each model. aicc=aic criterion of model selection, corrected for smaller sample size, δ aic=aic difference between the best fitting model (equal to zero) and the second best one. residual deviance=distance between the data and the model. fng=functional network group refers to the synaptic/chromatin grouping.

FNG ASC Dimensions – Supplementary Material

Supplementary Material 8. Effect sizes plots

The pictured lines are the confidence intervals of each coefficient, and the white dot is their beta value, FNG=Functional Network Group refers to the synaptic/chromatin grouping. Left This plot shows the averaged estimates of the most important predictors of inflexibility and the direction of the effects. Higher Inflexibility was positively correlated with higher hyperactivity, anxiety, and general ability (Vineland). Middle Averaged coefficients of best predictors explaining the associations with difficulties in social understanding. Higher difficulties in social understanding were negatively correlated with age and lower general ability (Vineland). Right Averaged coefficients, across the candidate set of models, and their direction of effect for Social Withdrawal dimension. Higher difficulties in Social Withdrawal were significantly increased by higher rates of anxiety in the synaptic group.

