- 1 **Title**: SimBit: A high performance, flexible and easy-to-use population
- 2 genetic simulator

8

- 4 **Author**: Remi Matthey-Doret^{1,2}
- 5 1: Department of Zoology and Biodiversity Research Centre, University of British Columbia,
- 6 Vancouver, British Columbia V6T 1Z4, Canada
- 7 2: Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland
- 9 Corresponding author: remi.matthey-doret@iee.unibe.ch

Abstract

SimBit is a general purpose and high performance forward-in-time population genetics simulator. SimBit has been designed to be able to model a wide diversity of complex scenarios from a simple set of commands that are very flexible. SimBit also comes with a R wrapper that simplifies the management of an entire research project from the creation of a grid of parameters and corresponding inputs, running simulations and gathering outputs for analysis. Implementing various representations of the individual's genotype allows SimBit to sustain a high performance in a wide diversity of simulation scenarios. SimBit's performance was extensively benchmarked in comparison to SLiM, Nemo and SFS_CODE. No single program systematically outperforms the others but SimBit is most often the highest performing program and maintains high performance in all scenarios considered.

Introduction

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Evolutionary genetics has always had a strong theoretical background. As our understanding of ecological and evolutionary processes improves, we study more and more complex processes for which mathematical modelling becomes very tedious if not impossible. For such processes, only numerical simulations can allow us to perform realistic modelling. In fact, to my knowledge, the first work in computational biology has been conducted by one of the fathers of population genetics, Ronald A. Fisher (1950). We are today in an uncanny valley in which we are almost able to perform realistic genome-wide simulations of populations but not quite yet. Individual-based simulations are used to investigate phenomena in evolutionary biology and ecology (e.g. Gilbert et al., 2017; Yeaman & Whitlock, 2011), to question conservation scenarios (e.g. Cowley, 2008; Halls & Welcomme, 2004) and are also used in statistical settings such as with Approximate Bayesian Computation (reviewed in Beaumont, 2010) or with a machine learning algorithm (e.g. Schrider & Kern, 2018). However, such technics are often computationally very expensive and it can take a lot of time to parametrize these simulations. As a consequence, many studies limit forward simulations to unrealistically low number of individuals or loci. Writing an algorithm to make efficient individual-based simulations is no easy task, and most authors therefore rely on existing, flexible simulation programs. It is often difficult, however, to choose a simulation program. There are no objective ways to compare and express how userfriendly a program is. Also, different program packages have drastically different performance for different simulation scenarios. Learning how to use a new program can be a lengthy and difficult task, therefore many users just use the program they already know or just pick one program that is able to perform the simulations they need without questioning its performance. However, as shown

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

below, even under simple scenarios, a given program can be hundreds or thousands of times slower than another one which will drastically affect the feasibility, or level of replication, of a study. Here, I present SimBit, a general purpose forward-in-time population genetics simulator written in C++. SimBit has been designed to have a high performance for a wide variety of simulation scenarios. SimBit does so by using diverse representations of the genetic architecture for different simulation scenarios. As a user of Nemo (Guillaume & Rougemont, 2006), SFS CODE (Hernandez, 2008; Hernandez & Uricchio, 2015) and SLiM (Haller et al., 2019; Haller & Messer, 2017, 2019), I gathered my experience to make SimBit a program that offers a fast learning curve to new users. With a simple set of commands that are very flexible, users can quickly simulate a great diversity of scenarios. SimBit can simulate a wide variety of selection scenarios (any selection coefficient and dominance coefficient at any locus, any epistatic interaction with any number of loci, any spatial and temporal changes of selection scenarios, etc.), demographic scenarios (any number of discrete patches with specific migration scenario, hard vs. soft selection, changes in patch size depending on fecundity, exponential vs logistic growth, gametic or zygotic dispersion, etc.), mating systems (any cloning rate and selfing rate, hermaphrodites or males and females), different types of representation of the genetic architecture (bi-allelic loci, QTLs, etc.) and SimBit has a great diversity of tools to manipulate simulations and gather output. Finally, SimBit comes with a R wrapper that is very handy for managing the creation of numerous input commands. This article aims at presenting the general working of SimBit and compares its performance to other similar programs. For detailed information about how to use SimBit, please consult the manual.

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

Demography and species ecologies In the current version, SimBit assumes non-overlapping generations (although different species can have different generation times), diploidy (although one can mimic haploidy), and assumes discrete patches (although patches can be made arbitrarily small, essentially mimicking continuous space). Outside of these three assumptions, SimBit can simulate very diverse types of scenarios. SimBit can simulate any number of patches with any migration matrix, carrying capacity, variation of the patch size from the carrying capacity based on realized fecundity with exponential or logistic growth model (the growth model can be set for each patch independently; see more on that below). Each patch can be initialized at the desired size and all of the above parameters can vary over time. Dispersal can happen at the gametic or at the zygotic phase and may be a function of the patch mean fitness (hard versus soft selection). SimBit can also simulate multiple species and their ecological interactions as explained below. SimBit can simulate realistic changes in population in response to patch mean fitnesses. Let's denote at time t the expected number of offspring of a species s produced in patch p as $\overline{P_{t,s,p}}$. Let's also denote the patch growth rate $r_{t,s,p} = f \sum w_i$ as the product of f, the theoretical maximum fecundity of an individual having a (relative) fitness of 1.0 (set by the user), and $\sum w_i$, the sum of finesses in this patch. If the user allows the patch size to vary from the carrying capacity of this species and that at time t, in patch p, for species s, the carrying capacity is set to $K_{t,s,p}$ then the expected number of offspring produced is $\overline{P_{t,s,p}} = rN_{t,s,p}$ for the exponential model and $\overline{P_{t,s,p}} = rN_{t,s,p}$ $N_{t,s,p} + rN_{t,s,p} \left(1 - \frac{N_{t,s,p}}{K_{t,s,p}}\right)$ for the logistic model, where $N_{t,s,p}$ is the size of the patch p of species s at time t. The actual number of offspring produced, $P_{t,s,p}$ can then either be set deterministically $(P_{t,s,p} = \overline{P_{t,s,p}})$ or stochastically $(P_{t,s,p} = Poisson(\overline{P_{t,s,p}}))$. With more than one patch, these

offspring produced are then spread out through migration. With a single patch (or in absence of immigration and emigration for the patch p), $N_{t+1,s,p}$ is simply set to $P_{t,s,p}$.

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

Into the above framework, we can add the fact that different species can affect each other's through their ecological relationships. This can be achieved through a "competition matrix" that implements a Lotka-Volterra model of competition and/or through a "predation matrix" that implements a consumer-resource model (or predator-prey model) with a linear rate of resource consumption (introduction to these models in Otto & Day, 2007; discrete-time example of a predator-prey model in Çelik & Duman, 2009). Let $\alpha_{i,s}$ be an element of the "competition matrix" describing the competitive effect of species i on focal species s. The expected number of offspring produced is then given by $\overline{P_{t,s,p}} = N_{t,s,p} + rN_{t,s,p} \left(1 - \frac{\sum_{i} \alpha_{i,s} N_{t,i,p}}{K_{t,s,p}}\right)$. Note that competitive effects can only be set on species and on patches having logistic growth. Let $\beta_{i,s}$ be an element of the "predation matrix" describing the effect of species i on species s. The predation effect is added to the expected number of offspring produced $\overline{P'_{t,s,p}} = \overline{P_{t,s,p}} + \sum_i \beta_{i,s}$. In this last equation, I assumed that all effects $\beta_{i,s}$ are independent of the patch sizes of both the causal and recipient species but in practice a user can specify for each $\beta_{i,s}$ whether the effect should be multiplied by the causal species patch size $(N_{t,i,p})$, by the recipient species patch size $(N_{t,s,p})$ or by both. SimBit enforces that all the diagonal values $\alpha_{s,s} = 1.0$ and that all the diagonal values $\beta_{s,s} = 0.0$. SimBit can also allow the patch size to overshoot the carrying capacity $K_{t,s,p}$ up to an arbitrary large value allowing for oscillating or chaotic changes in patch sizes.

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

Mating system SimBit can simulate hermaphrodites or males and females with an arbitrary sex-ratio. At every reproduction event, an organism will be cloned with probability C and self with probability S. By default, the cloning rate is set at 0.0 and the selfing rate is set at 1/2N (Wright-Fisher model), but these can be set by the user. Types of loci and selection Different programs use different representations of the genetic variation. For example, Nemo represents an individual's haplotype with an array in which the nth element of the array indicates the allelic value for the nth locus. In SLiM, each individual's haplotype is represented with a container of mutations (where each mutation is an object that stores its position and other associated features as attributes). In SFS CODE, a haplotype is represented with a linked list of mutations. These different representations of the genetic variation have important consequences for the performance of the software package. Nemo's technique is expected to perform well at high genetic diversity per locus, while SLiM and SFS CODE are expected to perform better at low genetic diversity per locus. Nemo also has QTLs and SLiM can mimick QTLs through Eidos (the programming language used to parameterize SLiM simulations). These different representations also have consequences on the flexibility and performance of a program. SimBit implements five different representations of the genetic variation called T1, T2, T3, T4 and T5. I refer to these representations as types of loci. T1, T4 and T5 types of locus represent binary loci. SimBit has multiple representations of binary loci in order to sustain flexibility and high

performance over a wide range of genetic diversity and of simulation scenarios. T2 type of locus

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

represents blocks that count mutations, T3 type of locus represent QTLs and all three types. More information on these five types of representations is below. Loci of different types are integrated on the same recombination map. The recombination rate can be specified between any pair of adjacent loci (whether the two loci are of the same type or not) with any number of chromosomes. Mutation rates can also be set independently for each locus. For a number of types of loci (see below), SimBit can make use of an assumption about the selection scenario that can provide substantial improvement in run time. I call this assumption the "multiplicative fitness" assumption. The multiplicative fitness assumption assumes 1) multiplicative fitness interactions among loci and 2) that the fitnesses of the three possible genotypes at a given locus are 1, 1-s and $(1-s)^2$. When a user makes this assumption, SimBit partitions a haplotype into blocks and computes the fitness value for each block. If, during reproduction, no recombination events happen within a given block, then SimBit will not need to recompute the fitness for this specific block as the fitness of the block can simply be multiplied by the fitness of the same block on the other haplotype. By default, SimBit attempts to estimate the optimal size of these blocks, but a user can also explicitly specify the position and location of each block. This technique yields substantial performance improvement in terms of CPU time especially when the recombination rate within blocks is relatively low (see 'Performance' section below). Therefore, unless the exact dominance relationship is of central importance, it is generally recommended to make use of this assumption. The genetic architecture can be set independently for each species and all the selection scenarios presented below can be set differentially for each species, habitat and time. By default, all of the patches belong to the same habitat, but a user can assign each patch to a specific habitat and all the

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

selection pressures described below (including epistasis) can be specified for each habitat independently. Also, selection can be applied on viability and/or on fertility. T1 loci T1 loci track binary variables (e.g., mutated vs wildtype). SimBit has in memory for each haplotype an array of bits of the length of the number of T1 loci simulated. The n^{th} bit indicates whether the n^{th} T1 locus of this haplotype is mutated or not. As such, T1 loci are somewhat similar to Nemo's genetic representation. T1 loci have high performance for simulations with very high per locus genetic diversity. Selection scenarios on T1 loci are extremely flexible. A user can set the fitness values of each of the three possible genotypes at each locus allowing for any kind of dominance scenario including overdominance and underdominance. Any epistatic interactions between any number of loci can also be specified. A user can also use the assumption of "multiplicative fitness" on T1 loci. T2 loci T2 loci are meant to represent aggregate blocks of loci, and, SimBit counts the number of mutations happening in this block. This type should be used only when 1) the genetic diversity per T2 locus is very high, 2) when performance is a major concern, 3) the user is satisfied with the limited selection scenario it can model, and 4) a simple count of the number of mutations happening per T2 locus for each haplotype is a sufficient output. Selection on T2 is forced to have multiplicative effect among haplotypes (therefore T2 loci always use the assumption of "multiplicative fitness").

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

T3 loci T3 loci are quantitative trait loci (QTL) and code for an *n*-dimensional phenotype. The user can set the phenotypic effect of each T3 locus on each of the n axes of the phenotype, and these phenotypic effects can also depend on the environment in order to simulate a plastic response. A user can also add random developmental noise (drawn from a Gaussian distribution) in the production of a phenotype in order to reduce heritability. For T3 loci, the user can define a fitness landscape, where an individual's fitness is given by its phenotype. T4 loci For T4 loci, SimBit computes the coalescent tree of the population over time and adds the mutations onto the tree when the user asks for output. As a consequence, T4 loci are necessarily neutral. T4 loci are inspired from Kelleher et al. (2018) and the method has already been implemented in SLiM (Haller et al., 2019). Tree recording technics can be very promising when dealing with lots of highly linked neutral loci. This technic allows a forward-in-time simulator to perform equally than backward-in-time simulators for some extreme simulation scenarios while retaining many of the advantages of forward-in-time simulations such as simulating selection at other loci (Haller et al., 2019). T5 loci T5 loci are very similar to T1 loci (two simulations with the same random seed differing only by the fact that one uses T1 loci and the other uses T5 loci will produce the same output). For each haplotype, SimBit has a dynamic sorted array with the position of each T5 locus that is mutated. As such T5 loci are somewhat similar to how SLiM keeps track of its genetic architecture. With

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

high genetic diversity SimBit therefore tracks a lot of mutated loci, while with low genetic diversity SimBit tracks few mutated loci. For this reason, T5 loci tend to perform better than T1 loci for moderate to low genetic diversity per locus. Behind the scene, SimBit will track separately T5 loci that are under selection and T5 loci that are neutral for improved performance. SimBit can also compress T5 loci (either the neutral ones and/or the selected ones) information in memory. Compression reduces the RAM usage by up to a factor of 2 and can increase or decrease CPU time depending on the simulation scenario. By default, SimBit makes this compression on the neutral T5 loci only and only when it is certain it will improve performance. For advanced users, it is also possible to ask SimBit to invert the meaning of some loci depending on their frequencies. For example, if the locus 23 is fixed or quasi-fixed, haplotypes would track this 23rd locus only if they carry the non-mutated allele. With T5 loci, one can specify the fitness values of the heterozygote and double mutants' genotypes only allowing for all types of dominance including overdominance and underdominance. Just as on T1 loci (and T2 loci), a user can take advantage of the assumption of "multiplicative fitness". **Initialization** Several options exist in SimBit to initialize and reset the genome of existing individuals. The patch size as well as the genetic diversity for each locus can be set at initialization. A user can then perform any mutation desired at predefined times with the option --resetGenetics. To ease user interface, SimBit also allows the user to define "individual types" (via option --individual Types). Those individual types can then be used to either initialize a population or to insert (or replace) new individuals into any patch at arbitrary moments (also via option --resetGenetics). One can, for example, create individual types belonging to large hypothetical patches and simulate immigration

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

from these hypothetical patches by just introducing these individual types into the focal patch. This speeds up simulations as SimBit does not explicitly simulate these large source patches. It is also possible to start a simulation from the individuals of a previous simulation that have been saved in binary files. Binary files are particularly useful to 1) avoid simulating a burn-in multiple times, 2) resume a simulation from an intermediate timepoint, and 3) save the entire population in a compact format to extract specific summary statistics later on. **Outputs** Outputs are often very limiting factors for population genetic simulators (Hoban et al., 2012). SimBit can produce 30 different types of outputs (which can be sampled at any number of generations throughout the simulation). These outputs include, but are not limited to, entire genotypes of each individual in the metapopulation, allele frequencies, F_{ST} , VCF files, fitness (specifying fitness for each type of locus), patch sizes, extinction times of the different species, the whole genealogy between two specified generations, binary files of the entire population (that can be reused for future simulations or simply to extract summary statistics later on). Many of these outputs can be restricted on a specified subset of loci. SimBit can also simulate sequencing errors before producing the outputs to make results easier to compare to empirical data. User interface SimBit reads options either directly from the command line or via an input file. An important goal of SimBit is to have a user interface that takes input that is readable and in a very simple format to give the users a good understanding of what they are simulating and offer very explicit error messages when input is nonsense. SimBit recognizes specific options as they are proceeded by a

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

double dash ('--'). For example, '--patchCapacity unif 1e4' indicates that the carrying capacity is uniform (keyword 'unif') for all patches and is set to 10,000. The ordering of these options does not matter. SimBit also provides a number of macros that are mainly inspired from R functions. These inputs can be read either directly from the command line or from a file. SimBit also comes with an R wrapper. In order to be fast and easy to learn, SimBit provides many functionalities with a relatively small number of options. It achieves this by having most options being specific to a generation, a habitat and/or a species and uses specific markers, @G, @H and @S to input information that are generation-specific, habitat-specific and species-species, respectively. For example, the entry --N @GO unif 100 @G5e3 unif 1000 asks for the carrying capacity of all patches to be uniformly (keyword unif) set to 100 from generation 0 to generation 4999 and then set to 1000 until the end of the simulation. Also, most options come with a diversity of modes of data entry. For example, for the migration scenario, a user can indicate the whole dispersal matrix or can simply specify an island model, a linear stepping stone model or a Gaussian dispersal kernel. Below, I benchmark SimBit in comparison to other softwares. Examples of command line inputs to SimBit for these simulations which results are shown on figures 1, 2, S1, S2, S3 and S4 as well as for the simulations of figure 3 are found in appendix A. Here is an example of a input file used for this benchmark. Please see manual for more information.

270

271

272

273

274

275

276

277

278

```
####################################
### Example of input file ###
####################################
### Number of patches
--PatchNumber 1
### Carrying capacity
--N unif 1e5
### Genetic architecture. Asks for 60000 T5 loci
--Loci T5 6e4
### Mutation rate on T5 loci
--T5 mu unif 1e-7
### Selection (uses multfit assumption)
--T5 fit multfitUnif 0.99999
### Recombination rate
# Values are interpreted as a "rate".
# For centimorgan, use "cM", instead of "rate"
--r rate unif 1e-7
### Number of generations
--nbGens 1e5
```

SimBit also comes with an R wrapper that is particularly useful for building numerous input simulations. Without going into explaining the detail working of the wrapper, let's consider a complete example of code that will test how different migration rates and number of patches in an island model affect F_{ST} . The first step is to create a grid of parameters (a "data.frame"), where each row contains information for a single simulation. We will use a full factorial design with three distinct migration rates and seven distinct number of patches. We will run 20 replicates for each of these $3\times7=21$ combinations resulting in a grid of parameters of 420 rows. The argument

"outputFilePrefix" sets a column called "outputFile" with the prefix given followed by the row

number. This column will be used to set the where outputs should be directed.

279

280

281

282

283

284

285

286

287

```
############################
## Load SimBitWrapper ##
##############################
# devtools::install github("RemiMattheyDoret/SimBitWrapper")
require(SimBitWrapper)
## Create grid of parameters ##
parameterGrid = fullFactorial(
   PatchNumber = c(2,3,4,5,6,7,8),
   migrationRate = c(0.001, 0.003, 0.01),
   N = 1e3,
   nbLoci = 1e4,
   nbGenerations = 5e4,
   recRate = 1e-4,
   mu = 1e-5,
   replicate = 1:20,
   outputFilePrefix = "/Users/Remi/mySims/output "
)
```

The second step is to loop through the rows of the parameter grid in order to run the simulations (or to create the input file to run them later on). For this, we use the function GetParameterGridData, which, for each column of the grid of parameters, sets a variable with name equal to the column name and value equal to the value of this column at the specified row of the specified parameter grid given in input.

```
## Create inputs and run simulations ##
for (row in 1:nrow(parameterGrid))
   ### Get data for the row
   GetParameterGridData(parameterGrid, row)
   ### Initialize the input
   input = Input$new()
   ### Set the values
   input$set("PatchNumber", PatchNumber)
   input$set("m","island", migrationRate)
   input$set("N", "unif", N)
   input$set("nbGenerations", nbGenerations)
   input$set("L", "T1", nbLoci)
   input$set("T1 mu", "unif", mu)
   input$set("r", "rate", "unif", recRate)
   input$set("T1 FST file", outputFile, nbGenerations)
   ### Run the simulation
   input$run(maxNbThreads=24)
}
```

The argument maxNbThreads is an easy way to parallelize the simulations. maxNbThreads=24 does not mean that a given simulation will use 24 threads (each simulation takes one thread) but that the run method will start 24 simulations in the background and will then wait that one of them finishes before starting a 25th simulation. Please see manual for further information about the run method. It is sometimes more practical to print the input command into a file either and run the simulations from the shell at a later time. This can be achieved with input\$print("/path/to/input.txt"). Finally, the last step is to gather the outputs and graph the results. In order to gather the outputs, we use the function gatherData. This function

288

289

290

291

292

293

294

295

296

297

uses a number of optional parameters (see manual) but default parameters work fine for our simple example.

In this simple example, the entire study (defining the parameters, creating the inputs, running the simulations, gathering and graphing the results) takes 16 lines of code (16 expressions; including loading packages, excluding the curly braces; and it could be reduced to 7 lines only)! The column "FST_WeirCockerham_ratioOfAverages" used for plotting corresponds to Weir & Cockerham (1984) estimator of F_{ST} . The resulting graph is displayed in figure S5 on which is added the theoretical expected F_{ST} values from Charlesworth (1998) for comparison.

Program comparison – Performance

It is often hard for a user to know which program to use for a given study. Indeed, few articles compare program's features (but see Hoban, 2014, who compares software flexibility), and when authors publish a new program, they do not always compare its performance to other similar programs (but see performance comparisons between SLiM, SFS_CODE and fwdpp in Haller & Messer, 2017).

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

In this article, I compared performance of SimBit to three forward-in-time programs; SFS CODE (Hernandez, 2008; Hernandez & Uricchio, 2015), SLiM (Haller et al., 2019; Haller & Messer, 2017, 2019; Messer, 2013) and Nemo (Guillaume & Rougemont, 2006). I chose these three programs because they are all forward-in-time simulation platforms, they can all simulate selection, they are all popular (392 citations among the articles announcing SLiM, SLiM2, SLiM3 and the implementation of tree recording sequences in SLiM; 127 citations for Nemo; 216 citations for SFS CODE; as of 23rd April 2020 on Google Scholar) and are generally considered the highest performing software available. SimBit contains a number of options that are meant to refine its performance (see section "Performance options" in the manual). In practice though, most users will probably only need to choose the type of loci to simulate, and SimBit will do a decent job to figure out how best to simulate it. In order to best represent the performance that a new user ought to expect from SimBit, however, all simulation performances (CPU time and memory usage) presented below are made with the default parameters of SimBit. In order to compare program performance, I ran basic simulations with a single Wright-Fisher population, uniform mutation rate and a uniform recombination rate. All loci experienced a selection coefficient of s=0.00001 and h=0.5. Low selection coefficients were chosen to 1) prevent any software from throwing an error stating that it might suffer from round-off errors caused by low mean fitness and 2) reduce the effects of assuming multiplicative fitness among haplotypes on the simulated scenario (fitness differences between simulations that take advantage of the assumption of multiplicative fitness and the ones that do not is of the order of 10⁻¹¹). Note that

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

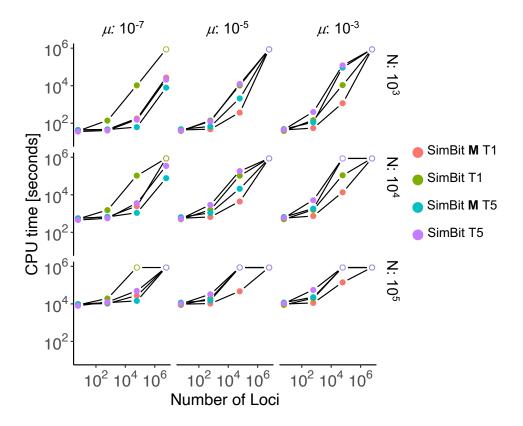
359

360

while SimBit can take advantage of this assumption of multiplicative fitness on demand, SFS CODE is forced to make this assumption and Nemo and SLiM cannot take advantage of this assumption. I varied the mutation rate (taking values 10⁻⁷, 10⁻⁵ and 10⁻³ per locus), the recombination rate (taking values 0, 10⁻⁹ and 10⁻⁷ and 10⁻⁵ per adjacent locus), the carrying capacity (taking values 10², 10³, 10⁴, 10⁵ and 10⁶ diploid individuals), and the number of loci (taking values $6, 6 \times 10^2, 6 \times 10^4$ and 6×10^6) in a full factorial design. All simulations ran for 10,000 generations. I ran these simulations with Nemo (version 2.3.46), SLiM (version 3.1), SFS CODE (version 20150910) and SimBit (version 4.11.0). Because using Nemo's full potential is not trivial, for Nemo, the input files used for these benchmarks were directly created by Frederic Guillaume. In order to compare the behaviour of different types of loci and selection scenarios in SimBit, I ran all simulations four times in SimBit with T1 and T5 types of loci with and without making use of the assumption of multiplicative fitness among haplotypes. CPU time and peak in Resident Set Size (RSS; memory) usage are reported. Simulations that exceeded 10 days (240 hours) of simulation time or 20GB of memory usage were killed and are reported below with a dot at 240 hours $(8.64 \times 10^5 \text{ seconds in the units used on the figures})$ and at 20GB $(2 \times 10^7 \text{ kb in the units})$ used on the figures). All these simulations were run on an Intel Xeon X5650 processor and codes were compiled with gcc-4.8.2rev203690. I ensured that the number of SNPs were not significantly different between all four programs for three of the simulation scenarios benchmarked. For brevity and because changing the recombination rate has very little effect on the results (only SFS CODE appears to significantly slow down with higher recombination rates), I am showing only the recombination rate 10⁻⁷ and only the carrying capacities 10³, 10⁴ and, 10⁵ in the main figures. The other benchmarks are found in supplementary material. Figure 1 compares the CPU time among SimBit simulations (T1 vs. T5 and with vs. without taking advantage of the

assumption of multiplicative fitness among haplotypes) for a subset of scenarios. Figure S1 and S2 compare, respectively, the CPU time and the memory usage among SimBit simulations for all scenarios. Figure 2 compares CPU time among Nemo, SLiM, SFS_CODE and SimBit for a subset of scenarios. Figure S3 and S4 compare, respectively, the CPU time and the memory usage among Nemo, SLiM, SFS_CODE and SimBit.

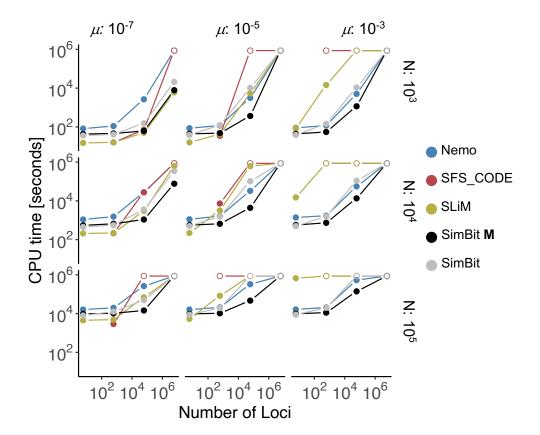
Figure 1: Comparison of computational time among the four different ways to simulate the same evolutionary scenario using SimBit. Results here are only for a subset of parameters (excluding N=100, $N=10^6$ and all scenarios where the recombination rate among adjacent loci differs from 10^{-7}). Other scenarios are in figure S1. Comparisons of memory usage (max Resident Set Size) are found in figure S2. Simulations that exceeded 10 days (240 hours) of simulation time or 20GB of memory were killed and are reported below with an empty dot at 240 hours (8.64 × 10^5 second). The bold **M** signifies the usage of the assumption of multiplicative fitness.



As expected, T1 loci perform best at high per locus genetic diversity, while T5 loci perform best at moderate to low per locus genetic diversity (figure 1). This is because with T5 loci, SimBit tracks the mutated loci, while with T1 loci, SimBit tracks every locus whether mutated or not (see above section "Representations of the genetic architecture").

Simulations taking advantage of the assumption of multiplicative fitness generally performed better. This advantage decreases as recombination gets higher. For the range of recombination rates explored (up to 10⁻⁵ among adjacent loci), simulations taking advantage of the assumption of multiplicative fitness always outperformed the simulations that did not make this assumption. The reason why recombination rate matters for performance is because, as explained in section "Types of loci and selection", SimBit needs to recompute fitness for a fitness block only if a recombination event happens within this block when using the multiplicative fitness assumption.

Figure 2: Comparison of computational time among the four different simulation programs Nemo, SFS_CODE, SLiM and SimBit. For SimBit, two lines are displayed showing the best performing between T1 and T5 loci from figure 1, once taking advantage of the assumption of multiplicative fitness, once without taking advantage of this assumption. For comparison, SLiM and Nemo are unable to take advantage of this assumption while SFS_CODE is forced to make this assumption. Other scenarios are in figure S3. Comparisons of memory usage (max Resident Set Size) are found in figure S4. See figure 1 for more details.



401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

Comparisons between different programs highlight that there is no one program that always performs best (figure 2; figure S3). However, unlike all other software tested, SimBit perform highly in all simulation scenarios considered. SFS CODE's CPU time and peak RSS increases exponentially with increase in mutation rate and population size (see also simulations performed SFS_CODE Hernandez websites; by the Ryan on sfscode.sourceforge.net/SFS CODE/Performance.htlm). Hence, SFS CODE performs well for simulations that have very low genetic diversity, but it quickly becomes very slow as genetic diversity increases. Nemo is most competitive when there is high genetic diversity per locus (high mutation rate and high population size). This was expected because Nemo tracks every single locus for each haplotype whether or not it is mutated. In fact, with high genetic diversity, Nemo sometimes runs in less time than SimBit when SimBit did not take advantage of the multiplicative fitness assumptions (the grey dots in figures 2 and S3). Nemo never outperformed SimBit in terms of memory usage though (Figure S4) or in terms of CPU time when SimBit takes advantage of the multiplicative assumption. SLiM, just like SFS CODE, performs best at very low genetic diversity. SLiM computational time is however not as exponential as SFS CODE, which makes SLiM fast for a wider range of simulation scenarios. SLiM tends to perform better than SimBit when there is little genetic diversity, while SimBit tends to perform better when there is moderate to high genetic diversity. In general, performance comparison in terms of memory usage (figures S2, S4) mirrors well the performance comparisons in terms of CPU time (figures S1, S3). A difference in performance is not just a question of whether a user will have to wait a little longer to get their output; often it is the difference between a research project that is feasible or not. The

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

log scale on figures S1 and S2 (and supp. figures) might give the reader a false impression of the importance of an observed difference. Consider for example the simulation scenario where r=10⁻¹ ⁷, N=10³, μ =10⁻⁷ and 6 loci where SLiM outperforms SimBit. SLiM runs in 16 seconds while SimBit runs in 37 seconds. Let's now consider the simulation scenario where $r=10^{-7}$, $N=10^{5}$, $\mu=10^{-1}$ ⁷ and 6×10⁴ loci. SimBit (with multiplicative fitness assumption) runs in ~4 hours, while SLiM runs in ~19 hours, Nemo runs in more than 3 days and SFS CODE does not manage to finish within the 10-day limit. To further consider comparisons between SLiM and SimBit as example, from figure 2, the simulation scenario where SLiM is comparably the fastest, SLiM is 2.56 times faster than SimBit; SimBit took 41 seconds while SLiM took only 16 seconds. For the simulation scenario where SimBit is comparably the fastest, SimBit is (at least) 1169 times faster than SLiM; SimBit took ~12.3 minutes while SLiM was killed after overpassing the 240 hours walltime. These performance differences can translate into a major determinant of what can be achieved for a research project. These very simple simulation scenarios benchmarked above might not be representative of what people really want to simulate. I therefore performed further benchmarking by comparing the performance of Nemo, SLiM, SFS CODE and SimBit for simulations inspired by recent papers. I sampled three papers, one that performed simulations with SFS CODE (O'Neill et al., 2019), one that performed simulations with Nemo (Gilbert et al. 2017) and one that performed simulations with SLiM (Booker & Keightley, 2018). To simplify the writing of the commands and make sure that the comparison is fair, I simplified the Booker and Keightley (2017) simulations by assuming a constant mutation rate and recombination rate and used the gamma distribution of fitness effects with a mean of 0.05 and an alpha parameter of 0.111. For the Gilbert et al. (2017) paper, the

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

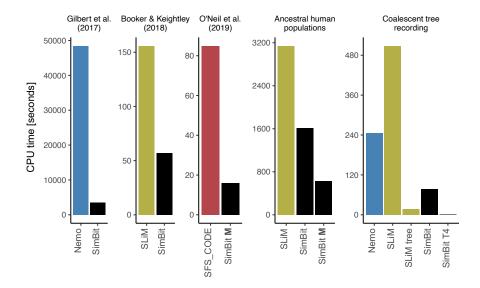
467

468

simulations have also been slightly modified from the original. The original paper's specified a "breeding kernel" that can only run on a modified version of Nemo that is not directly published on Nemo's official website. Hence, for the Gilbert et al. (2017) simulation, I removed the breeding kernel and modified the size of the dispersal kernel appropriately. For simplicity (because the original input file was 390Mb large), I also used a linear stepping stone model of 8000 patches starting with the 1000 left-most patches at carrying capacity and the others empty. I made sure the expansion speed was similar among the two programs. For fairness, I compared the Nemo and SLiM that cannot take advantage of the assumption of multiplicative fitness with SimBit that does not make this assumption, while I compared SFS CODE that is forced to make this assumption with SimBit that makes this assumption. I also performed a benchmark inspired from human genome and human ancestral demography. I simulate 500 patches of 100 individuals each in a linear stepping stone model with a migration rate to either of the two neighboring patch of 0.2. The genome contained 2×10^8 sites with a uniform mutation rate of 2×10^{-8} and a uniform recombination rate of 10⁻⁸. For simplicity, all loci were under purifying selection with a constant selection coefficient of 0.0001 and a dominance coefficient of 0.5. Finally, I added a benchmark of a simple Wright-Fisher simulation scenario (N=1000, μ =10⁻⁵, 10⁶ loci, r=0; 5000 generations) without selection. Neutral loci can be tracked through a coalescent tree for both SLiM (with Tree Recording and subsequent analysis of the outputted binary file in Python) and SimBit (with T4 loci). These simulations were run on an Intel i7-8559u processor, and codes were compiled with clang-800.0.42.1. SimBit systematically outperforms the software used in the original papers (figure 3). For the simulation inspired from human genetics and ancestral human population, SimBit outperformed SLiM whether it made use of the multiplicative fitness assumption or not. Finally, for the "Neutral

simulation example", the coalescent tree recording technique of both SLiM and SimBit vastly outperform more traditional techniques (figure 3). With "traditional techniques", SLiM, Nemo and SimBit took 8m29s, 4m05s and 1m18s, respectively, while using coalescent tree recording methods, SLiM and SimBit only took 16.6 seconds and 1.2 seconds, respectively. Here, I only considered an extreme scenario to exemplify the possible advantage of tree recording techniques. For example, I used a recombination rate of zero. With higher recombination rates, the computational time of tree recording techniques would become slower, while it would not have much impact on the runs that did not use a tree recording technique.

Figure 3: Comparison of CPU time among the four programs to reproduce simulations inspired from three recent papers as well as for a neutral simulation scenario with extreme parameters chosen to highlight the possible advantage of T4 loci (Tree recording). The bold **M** signifies the use of the assumption of multiplicative fitness. SFS_CODE simulation from the "Neutral simulation example" as well as both SFS_CODE and Nemo simulations from the "Human ancestral populations" were purposely killed after overpassing 50 times SimBit's CPU time for the same simulation.



Conclusion

There is no perfect way to compare program performance, and one must always be careful when making conclusions from such a benchmark. First, the parameter space considered is, of course, finite. For example, my benchmark does not include any single-locus simulations, simulations with high selfing rates or with males and females instead of hermaphrodites, or any simulations with a very high recombination rate. Also, different programs mean different things by a locus. SFS_CODE simulate triplets of loci as a codon. This means that many mutations that are happening in SFS_CODE are synonymous mutations that don't affect fitness. Consequently, the

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

performance comparisons shown here are unfairly favourable to SFS CODE compared to Nemo, SLiM and SimBit, but it would not be any fairer either to run all SFS CODE simulations with three times as many loci. Nemo uses a byte to represent each neutral locus (but only a single bit for loci under selection) hence allowing for the representation of up to 256 possible alleles at neutral loci. SimBit on the other hand represent each locus with a single bit (whether the locus is under selection or not), hence allowing for only two possible alleles. SLiM's mutations "stack" (no reverse mutations) at a given locus, hence simulating a pseudo infinite allele type of model **SLiM** "mutation (see manual on stacking" for more information; http://benhaller.com/slim/SLiM Manual.pdf). As explained above, SimBit contains a number of performance tweaks a user can take advantage of to improve the performance above the default run mode (compression of T5 data in memory, allowing inversion of the meaning of T5 loci depending on their frequency, turning on/off the swapping of pointers for haplotypes that do not recombine or mutate during reproduction, setting manually the positions of blocks for the multiplicative fitness assumption). However, the above simulations were all performed with SimBit default values for these performance tweaks, which is somewhat unfair to SimBit. SimBit has already been used in a number of projects. It has been used for simulations that require very high performance, simulating the effect of background selection of large stretch of DNA in structured populations (Matthey-Doret & Whitlock, 2019). SimBit has also been used for two projects on genetic rescue, one requiring habitat-specific epistatic interactions (Nietlisbach et al., forthcoming) and one requiring complex metapopulation initialization and introduction of predefined individuals during the simulation (Whitlock lab consortium, forthcoming). SimBit is

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

under permissive license available free program and is at https://github.com/RemiMattheyDoret/SimBit. Acknowledgment Thank you to Michael C. Whitlock for his help through discussions in designing SimBit. Thank you to both Michael C. Whitlock and Kimberly J. Gilbert for helpful comments on the manuscript. Thank you to Pirmin Nietlisbach for being the main beta tester and for his advice on how to improve the user interface and the manual. Thank you also to Ben Haller and Frédéric Guillaume for their feedback on how to make a fair comparison among programs. Special thanks to Frédéric Guillaume for his help at creating the input files for Nemo and for his feedback about how to display the benchmark results in a way that is fair. Finally, thank you to ComputeCanada for the computational resources used for benchmarking. **Funding** The work was partially funded by a Swiss National Science Foundation (SNF) Doc. Mobility fellowship P1SKP3 168393 and partially funded by Natural Science and Engineering Research Canada (NSERC) Discovery Grant RGPIN-2016-03779.

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

Beaumont, M. A. (2010). Approximate Bayesian Computation in Evolution and Ecology. Annual *Review of Ecology, Evolution, and Systematics*, 41(1), 379–406. https://doi.org/10.1146/annurev-ecolsys-102209-144621 Booker, T. R., & Keightley, P. D. (2018). Understanding the Factors That Shape Patterns of Nucleotide Diversity in the House Mouse Genome. *Molecular Ecology*, 18. https://doi.org/10.1093 Celik, C., & Duman, O. (2009). Allee effect in a discrete-time predator-prey system. Chaos, Solitons & Fractals, 40(4), 1956–1962. https://doi.org/10.1016/j.chaos.2007.09.077 Charlesworth, B. (1998). Measures of divergence between populations and the effect of forces that reduce variability. *Molecular Biology and Evolution*, 15(5), 538–543. https://doi.org/10.1093/oxfordjournals.molbev.a025953 Cowley, D. E. (2008). Estimating required habitat size for fish conservation in streams. *Aquatic* Conservation: Marine and Freshwater Ecosystems, 18(4), 418–431. https://doi.org/10.1002/aqc.845 Gilbert, K. J., Sharp, N. P., Angert, A. L., Conte, G. L., Draghi, J. A., Guillaume, F., Hargreaves, A. L., Matthey-Doret, R., & Whitlock, M. C. (2017). Local Adaptation Interacts with Expansion Load during Range Expansion: Maladaptation Reduces Expansion Load. The American Naturalist, 189(4), 368–380. https://doi.org/10.1086/690673 Guillaume, F., & Rougemont, J. (2006). Nemo: An evolutionary and population genetics programming framework. *Bioinformatics*, 22(20), 2556–2557.

https://doi.org/10.1093/bioinformatics/btl415

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

Haller, B. C., Galloway, J., Kelleher, J., Messer, P. W., & Ralph, P. L. (2019). Tree-sequence recording in SLiM opens new horizons for forward-time simulation of whole genomes. Molecular Ecology Resources, 19(2), 552–566. https://doi.org/10.1111/1755-0998.12968 Haller, B. C., & Messer, P. W. (2017). SLiM 2: Flexible, Interactive Forward Genetic Simulations. *Molecular Biology and Evolution*, 34(1), 230–240. https://doi.org/10.1093/molbev/msw211 Haller, B. C., & Messer, P. W. (2019). SLiM 3: Forward Genetic Simulations Beyond the Wright–Fisher Model. *Molecular Biology and Evolution*, 36(3), 632–637. https://doi.org/10.1093/molbev/msy228 Halls, A. S., & Welcomme, R. L. (2004). Dynamics of river fish populations in response to hydrological conditions: A simulation study. River Research and Applications, 20(8), 985–1000. https://doi.org/10.1002/rra.804 Hernandez, R. D. (2008). A flexible forward simulator for populations subject to selection and demography. *Bioinformatics*, 24(23), 2786–2787. https://doi.org/10.1093/bioinformatics/btn522 Hernandez, Ryan D., & Uricchio, L. H. (2015). SFS CODE: More Efficient and Flexible Forward Simulations [Preprint]. Bioinformatics. https://doi.org/10.1101/025064 Hoban, S. (2014). An overview of the utility of population simulation software in molecular ecology. Molecular Ecology, 23(10), 2383–2401. https://doi.org/10.1111/mec.12741 Hoban, S., Bertorelle, G., & Gaggiotti, O. E. (2012). Computer simulations: Tools for population and evolutionary genetics. *Nature Reviews Genetics*, 13(2), 110–122. https://doi.org/10.1038/nrg3130

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

Kelleher, J., Thornton, K. R., Ashander, J., & Ralph, P. L. (2018). Efficient pedigree recording for fast population genetics simulation. PLOS Computational Biology, 14(11), e1006581. https://doi.org/10.1371/journal.pcbi.1006581 Matthey-Doret, R., & Whitlock, M. C. (2019). Background selection and F ST: Consequences for detecting local adaptation. *Molecular Ecology*, 28(17), 3902–3914. https://doi.org/10.1111/mec.15197 Messer, P. W. (2013). SLiM: Simulating Evolution with Selection and Linkage. *Genetics*, 194(4), 1037–1039. https://doi.org/10.1534/genetics.113.152181 O'Neill, M. B., Shockey, A., Zarley, A., Aylward, W., Eldholm, V., Kitchen, A., & Pepperell, C. S. (2019). Lineage specific histories of Mycobacterium tuberculosis dispersal in Africa and Eurasia. Molecular Ecology, mec.15120. https://doi.org/10.1111/mec.15120 Otto, S. P., & Day, T. (2007). A biologist's guide to Mathematical Modeling in Ecology and Evolution. Princeton University Press. Schrider, D. R., & Kern, A. D. (2018). Supervised Machine Learning for Population Genetics: A New Paradigm. *Trends in Genetics*, 34(4), 301–312. https://doi.org/10.1016/j.tig.2017.12.005 Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of Population Structure. *Evolution*, 38(6), 1358–1370. Yeaman, S., & Whitlock, M. C. (2011). THE GENETIC ARCHITECTURE OF ADAPTATION UNDER MIGRATION-SELECTION BALANCE: THE GENETIC ARCHITECTURE OF LOCAL ADAPTATION. Evolution, 65(7), 1897–1911. https://doi.org/10.1111/j.1558-5646.2011.01269.x