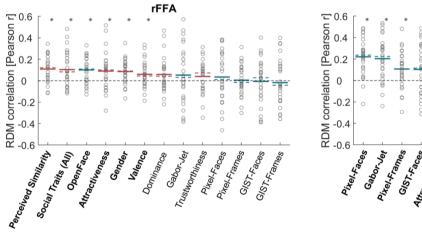

FFA and OFA encode distinct types of face identity information Supplementary Information

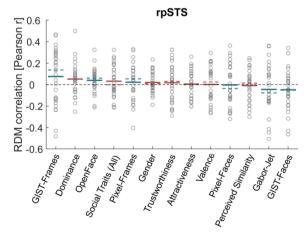
Supplementary Information 1

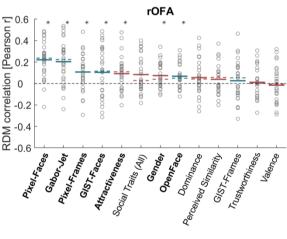
- Matrices of image-computable models per image (i.e. before averaging across identity)

Supplementary Information 2

- Full results for individual model analysis


Table S2-1: Results of individual model analysis. For each ROI, we show the mean correlations between brain RDMs with each model, standard error (SE), Z statistics from two-sided one-sample Wilcoxon signed-rank tests, and whether correlations were significantly higher than zero. We also show the estimated lower and upper bounds of the noise ceiling for each ROI. Models are ordered by effect size.


Pearson correlation between RDMs Noise ceiling


		Mean <i>r</i>	SE	Ζ	p < .05 (FDR corrected)	[Lower bound Upper bound]
rFFA						[0.135 0.262]
	Perceived Similarity	0.109	0.023	3.689	yes	
	Social Traits (All)	0.104	0.031	2.710	yes	
	Open Face	0.101	0.023	3.461	yes	
	Attractiveness	0.090	0.033	2.687	yes	
	Gender	0.086	0.021	3.302	yes	
	Valence	0.060	0.023	2.391	yes	
	Dominance	0.058	0.030	1.640	no	
	Gabor-Jet	0.052	0.049	0.956	no	
	Trustworthiness	0.040	0.029	1.594	no	
	Pixel-Faces	0.035	0.044	0.865	no	
	Pixel-Frames	0.005	0.027	0.159	no	
	GIST-Faces	-0.006	0.040	0.114	no	
	Pixel-Frames	-0.018	0.041	-0.478	no	
rOFA						[0.337 0.408]
	Pixel-Faces	0.221	0.031	4.357	yes	
	Gabor-Jet	0.204	0.037	3.968	yes	
	Pixel-Frames	0.107	0.031	3.016	yes	
	GIST-Faces	0.104	0.043	2.216	yes	
	Attractiveness	0.092	0.029	2.843	yes	
	Social Traits (All)	0.083	0.031	1.979	no	
	Gender	0.074	0.021	2.757	yes	
	OpenFace	0.067	0.020	2.952	yes	
	Dominance	0.055	0.031	1.546	no	
	Perceived Similarity	0.039	0.026	1.416	no	
	GIST-Frames	0.025	0.034	0.746	no	
	Trustworthiness	0.011	0.025	0.400	no	
	Valence	-0.016	0.031	-0.573	no	

[0.126 0.252]

GIST-Frames	0.075	0.047	1.800	no
Dominance	0.052	0.027	1.800	no
OpenFace	0.040	0.020	2.129	no
Social Traits (All)	0.032	0.026	1.018	no
Pixel-Frames	0.022	0.030	0.956	no
Gender	0.020	0.017	0.956	no
Trustworthiness	0.017	0.032	0.524	no
Attractiveness	0.005	0.024	0.134	no
Valence	0.002	0.031	0.051	no
Pixel-Faces	-0.003	0.035	-0.113	no
Perceived Similarity	-0.008	0.026	-0.072	no
Gabor-Jet	-0.045	0.040	-1.100	no
GIST-Faces	-0.048	0.036	-1.368	no

Figure S2-1. Similarity between brain RDMs (in FFA, OFA, and pSTS) and each of the candidate models. Circles show correlations for individual participants. Coloured lines show mean (full lines) and median (dotted lines) correlations across participants. Correlations with models based on perceived-property models are in pink, and correlations with image-computable models are in blue. Horizontal black dotted lines mark the zero correlation point. An asterisk above a bar and the name of the model in bold indicate correlations that were significantly higher than zero. Correlations with individual models are sorted from highest to lowest based on the mean correlation across participants to match the format of Figure 3 in the main manuscript.

Supplementary Information 3

- Correlations between brain RDMs across different ROIs

To further test the hypothesis that the FFA and OFA encode different information about face identities, we computed correlations between each participant's brain RDM for each ROI, and the mean brain RDM for all other participants in each of the other ROIs. We predicted that if specific computations are performed in one ROI, and those computations are generalisable across participants, we should observe higher correlations between individual participants' RDMs and the average RDMs (of all other participants) for that same ROI compared to the average RDMs for other ROIs.

Figure S3-1 shows the average Pearson correlations between each participant's RDM for a specific ROI (rows) and the average of all other participants RDMs for each of the ROIs (columns). S3-1A shows correlations when using RDMs built from brain responses to faces for face-selective ROIs, and S3-1B shows correlations when using RDMs built from brain responses to voices (as control stimulus) in the same ROIs. For example, the correlation between each participant's face RDM for FFA and: (1) the average of all other participants' FFA face RDMs is 0.135, (2) the average of all other participants' of A face RDMs is 0.114, and (3) the average of all other participants' pSTS face RDMs is 0.086. Values in the diagonal correspond to the estimates of the lower bound of noise ceiling that we presented in the main analysis. Asterisks indicate that correlations across participants were significantly higher than zero using two-sided one-sample Wilcoxon signed-rank tests.

The average correlations in each row in Figure S3-1A show that brain RDMs in each faceselective ROI are consistently more similar to other participants' RDMs for the same ROI compared to RDMs from different ROIs. These effects are specific for using RDMs based on face identities, as we do not observe these effects for FFA and OFA when using voice RDMs. We note, however, that these correlations are affected by ROI size and signal-to-noise ratio in each ROI, and that correlation values in each row are not independent from each other. Therefore, we did not carry out inferential statistics to compare correlations across ROIs.

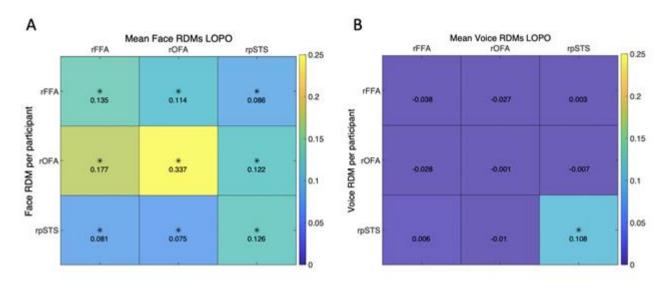


Figure S3-1 Average (Pearson) correlations between each participant's RDM for a specific ROI (rows) and the average of all other participants' RDMs for all ROIs (columns). LOPO: leave-one-participant-out. A shows correlations when using RDMs built from brain responses to faces for face-selective ROIs, and B shows correlations when using RDMs built from brain responses to voices in the same ROIs. Asterisks indicate that correlations across participants were significantly higher than zero.

Supplementary Information 4

- Comparison of correlation measures

To investigate whether the choice of similarity measure affected the results, we repeated the main analysis, but this time using Spearman correlation and Kendall *tau-a* instead of Pearson correlations. These analyses were identical to the analysis using Pearson correlations (see Methods section), with the exception that that noise ceiling was computed after rank-transforming the RDMs (Nili et al., 2014). The pattern of results was similar across all three correlation measures (Figures S4-1 and Figure 3A). Results for correlations that were significantly greater than zero after correcting for multiple comparisons are shown in Table S4-1.

		5	Spearman	I	Ke	Kendall tau-a		
		Mean correlation	Ζ	p	Mean correlation	Ζ	р	
rFFA	Perceived Similarity	.11	3.58	.0004	.08	3.52	.0004	
	Social Traits (All)	.11	3.10	.0020	.07	3.18	.0015	
	OpenFace	.10	3.48	.0005	.07	3.56	.0004	
	Attractiveness	.09	2.50	.0123	.06	2.62	.0088	
	Gender	.08	3.07	.0021	.05	3.07	.0021	
	Valence	.08	2.53	.0115	.05	2.71	.0067	

Table S4-1: Results for individual model analysis using Spearman correlation and Kendall tau-a in rFFA and rOFA. Results are shown only for correlations that were significantly greater than zero (after FDR correction).

rOFA	Pixel-Faces	.22	4.40	0.0001	.14	4.30	.0001
	Gabor-Jet	.18	3.84	0.0001	.12	3.88	.0001
	Pixel-Frames	.13	3.49	0.0005	.08	3.38	.0007
	Gender	.07	2.85	0.0043	.04	2.85	.0043
	OpenFace	.07	3.02	0.0026	.05	2.89	.0039
	Attractiveness	.06	2.39	0.0169	-	-	-

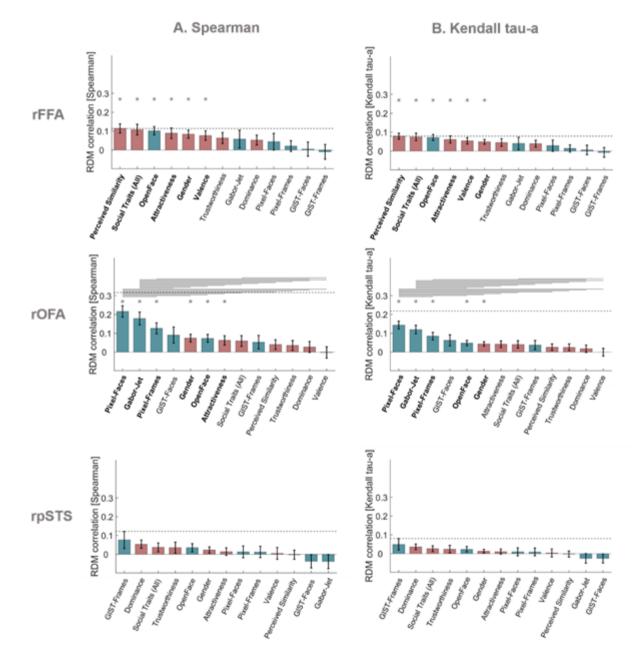


Figure S4-1. Similarity between brain RDMs (in FFA, OFA, and pSTS) and each of the candidate models using Spearman correlation (A) and Kendall tau-a (B). Bars show mean correlations across participants and error bars show standard error. Correlations with models based on perceived-property models are in pink,

and correlations with Image-computable models are in blue. Horizontal dashed lines show the lower bound of the noise ceiling. An asterisk above a bar and the name of the model in bold indicate correlations that were significantly higher than zero. Correlations with individual models are sorted from highest to lowest. Horizontal lines above bars show significant differences between the correlations of the two end points (FDR corrected for multiple comparisons).

Supplementary Information 5

- Control analysis based on responses to voices in face-selective regions

As a control analysis, we computed representational dissimilarity matrices (RDMs) from response patterns to voices in the rFFA, rOFA, and rpSTS, and compared them with our model RDMs for faces. The voice stimuli belonged to the same 12 identities as the face stimuli and were presented interspersed among the face videos in the same runs (see Methods section). RDMs for voice identities were computed using the same procedure as for face identities (see Methods section) and were compared to model RDMs for faces using Pearson correlation. None of the correlations were significantly greater than zero after correction for multiple comparisons in the rFFA (all p > .040), rOFA (all p > .103), or rpSTS (all p > .063) (Figure S5-1). Pairwise comparisons showed no significant differences between the correlations of any pairs of models (all p > .034). The estimated lower bounds of noise ceilings were very low for rFFA (r = .038) and rOFA (r = .001), and higher for rpSTS (r = .108).

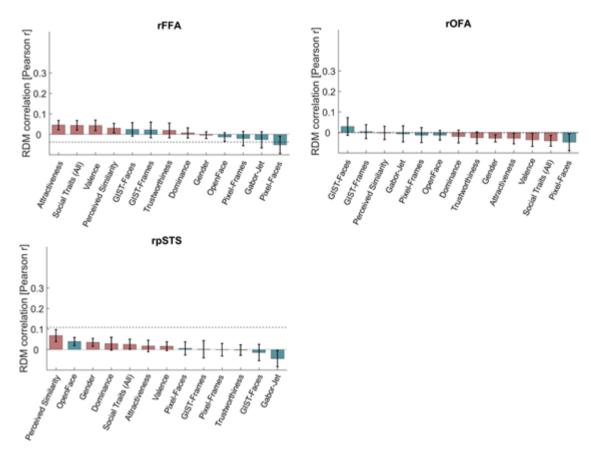


Figure S5-1. Similarity (Pearson correlations) between brain RDMs for voices (in FFA, OFA, and pSTS) and each of the candidate models. Bars show mean correlations across participants and error bars show standard error. Correlations with models based on perceived-property models are in pink, and correlations with image-computable models are in blue. Horizontal dashed lines show the lower bound of the noise ceiling. Correlations with individual models are sorted from highest to lowest. None of the correlations were significantly higher than zero.

Supplementary Information 6

- Results of weighted representational modelling analysis

Full results of the weighted representational modelling analysis are in Table S6-1. The values in this table correspond to the results presented in Figure 3B. We also compared the correlations between all pairs of models, and the only significant difference (p < .05, Bonferroni corrected) was between Pixel-Faces and Valence in the OFA.

Table S6-1: Results of weighted representational modelling analysis. Within each ROI, we show the mean correlations between brain RDMs with each model (individual models and combined models), and whether correlations were significantly higher than zero. We also show the estimated lower and upper bounds of the noise ceiling for each ROI, and whether correlations were significantly below the noise ceiling. Models are ordered by effect size and grouped first by image-computable models, then perceived-property models, and then models that combined both types of properties. RW refers to combined and reweighted models.

		Pearson correlation between RDMs			Noise ceiling	
		Mean <i>r</i>	SE	p < .05 (Bonferroni corrected)	[Lower bound Upper bound]	p < .05 (Bonferroni corrected)
rFFA					[0.089 0.286]	
	Open Face	0.105	0.032	yes		no
	Gabor-Jet	0.041	0.042	no		no
	Pixel-Faces	0.027	0.040	no		no
	Pixel-Frames	0.019	0.036	no		no
	GIST-Faces	0.007	0.037	no		no
	GIST-Frames	-0.010	0.037	no		no
	RW Image- Computable	0.063	0.037	no		no
	Perceived Similarity	0.118	0.031	yes		no
	Social Traits (All)	0.102	0.035	yes		no
	Gender	0.094	0.033	yes		no
	Attractiveness	0.091	0.035	no		no
	Valence	0.059	0.031	no		no
	Trustworthiness	0.049	0.033	no		no
	Dominance	0.048	0.034	no		no
	RW Social Traits	0.074	0.034	no		no

	RW Perceived	0.100	0.033	yes		no
	RW Low-Level	-0.006	0.035	no		no
	RW High-Level	0.096	0.033	yes		no
	RW ALL	0.086	0.035	no		no
rOFA					[0.237 0.372]	
	Pixel-Faces	0.158	0.041	yes		no
	Gabor-Jet	0.138	0.047	yes		no
	Pixel-Frames	0.108	0.039	no		yes
	GIST-Faces	0.087	0.047	no		no
	OpenFace	0.066	0.041	no		yes
	GIST-Frames	0.050	0.042	no		yes
	RW Image Computable	0.089	0.044	no		no
	Gender	0.082	0.041	no		no
	Attractiveness	0.075	0.039	no		yes
	Social Traits (All)	0.067	0.040	no		yes
	Perceived Similarity	0.055	0.039	no		yes
	Dominance	0.039	0.038	no		yes
	Trustworthiness	0.031	0.040	no		yes
	Valence	-0.010	0.041	no		yes
	RW Social Traits	0.037	0.040	no		yes
	RW Perceived	0.033	0.040	no		yes
	RW Low-Level	0.103	0.046	no		no
	RW High-Level	0.019	0.040	no		yes
	RW ALL	0.059	0.041	no		yes
rpSTS					[0.091 0.277]	
	GIST-Frames	0.051	0.040	no		no
	OpenFace	0.034	0.030	no		no
	Pixel-Faces	0.009	0.034	no		no
	Pixel-Frames	0.006	0.032	no		no
	GIST-Faces	-0.031	0.034	no		no

Gabor-Jet	-0.038	0.037	no	no
RW Image- Computable	0.013	0.036	no	no
Dominance	0.054	0.030	no	no
Social Traits (All)	0.035	0.030	no	no
Trustworthiness	0.026	0.033	no	no
Gender	0.023	0.029	no	no
Valence	0.005	0.033	no	no
Attractiveness	0.003	0.029	no	no
Perceived Similarity	-0.003	0.032	no	no
RW Social Traits	0.026	0.033	no	no
RW Perceived	0.031	0.032	no	no
RW Low-Level	0.010	0.038	no	no
RW High-Level	0.033	0.031	no	no
RW ALL	0.025	0.030	no	no

Supplementary Information 7

- Individual differences and idiosyncratic representations

It could be that the lower bound of the noise ceiling and the correlations between brain and model RDMs were relatively low because of substantial individual differences in brain representations. Brain and behavioural representations of face identities could instead be idiosyncratic and thus characteristic of each individual. We considered below three ways in which we could test this hypothesis.

First, we considered the reliabilities of brain RDMs. To estimate the lower-bound of the noise ceiling, we had computed inter-subject reliabilities of brain RDMs. If, however, there are substantial individual differences in the brain RDMs, we expect that representational distances in each of the face-selective ROIs could be highly reliable within each participant but not across participants. We thus computed intra-subject reliabilities of brain RDMs by correlating the brain RDMs calculated independently from two separate testing sessions for each participant, and then averaging the correlations across participants. We note that in all other analyses in the present manuscript, the brain RDMs for each participant corresponded to the average of these two sessions. Table S7-1 shows both the inter-subject reliabilities as computed before, and the intra-subject reliabilities. For all three face-selective ROIs, we observed intra-subject reliabilities that were on average lower than the inter-subject reliabilities, suggesting that in fact, in this case, the brain RDMs are not more reliable within each individual. It is important to note, however, that there is much less data to compute intra-subject reliabilities than inter-subject reliabilities.

Table S7-1: Inter-subject reliabilities and intra-subject reliabilities for brain RDMs. Inter-subject reliabilities were computed as the correlation between each participant's RDM for each ROI and the mean of all other participants' RDMs for the same ROI. These correlations were then averaged across participants, and these values correspond also to our estimates of the lower bound of noise ceiling. Intra-subject reliabilities were computed as the correlation between two brain RDMs from each participant (from two separate scanning sessions, separately for each ROI). These correlations were then averaged across participants.

	Mean inter-subject reliability	Mean intra-subject reliability
rFFA	0.135	0.063
rOFA	0.337	0.079
rpSTS	0.126	0.094

Second, idiosyncratic brain representations could also result in higher correlations between each participant's brain RDM and behavioural RDMs based on their own ratings, compared to the average behavioural RDMs that we used in the main analyses. We thus repeated the main analysis using each individual's own RDMs for the rating-based perceived-property models, namely Perceived Similarity, Trustworthiness, Dominance, Attractiveness, Valence, and Social Traits (All). Figure S7-1 shows the results of this analysis. The results do not reveal higher correlations when using the individual behavioural models. In contrast, correlations with the participants' individual behavioural models are slightly lower than when using average behavioural models.

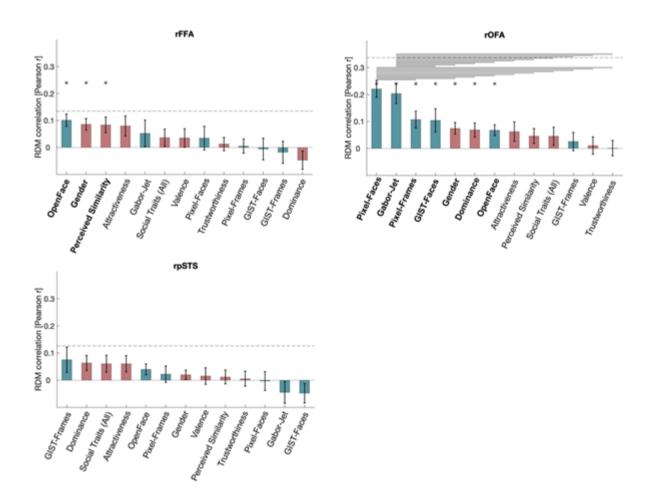


Figure S7-1: Pearson correlations between brain RDMs (in FFA, OFA, and pSTS) and each of the individual candidate models, using behavioural models based on individual participant ratings. Data is the same as Figure 3A, but instead of using average behavioural RDMs, each participant's brain RDM was correlated to their own behavioural RDMS for Perceived Similarity, Trustworthiness, Dominance, Attractiveness, Valence, and Social Traits (All). Bars show mean correlations across participants and error bars show standard error. Correlations with image-computable models are in blue and with perceived-property models are in pink. Horizontal dashed lines show the lower bound of the noise ceiling. An asterisk above a bar and the name of the model in bold indicate that correlations with that model were significantly higher than zero. Correlations with individual models are sorted from highest to lowest. Horizontal lines above bars show significant differences between the correlations of the two end points (FDR corrected for multiple comparisons).

A third possibility is that idiosyncratic representational geometries could result in the variance of each participant's brain RDMs being best explained by a uniquely weighted combination of candidate models (even if no set of weightings would perform well for all participants). However, we do not have sufficient data per participant to test this hypothesis here.