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Abstract 

Neuroendocrine prostate cancer is one of the most aggressive subtypes of 

prostate tumor. Although much progress has been made in understanding the 

development of neuroendocrine prostate cancer, the cellular architecture as-

sociated with neuroendocrine differentiation in human prostate cancer remain 

incompletely understood. Here, we use single-cell RNA sequencing to profile 

the transcriptomes of 21,292 cells from needle biopsies of 6 castra-

tion-resistant prostate cancers. Our analyses reveal that all neuroendocrine 

tumor cells display a luminal-like epithelial phenotype. In particular, lineage 

trajectory analysis suggests that focal neuroendocrine differentiation exclu-

sively originate from luminal-like malignant cells rather than basal compart-

ment. Further tissue microarray analysis validates the generality of the luminal 

phenotype of neuroendocrine cells. Moreover, we uncover neuroendocrine 

differentiation-associated gene signatures that may help us to further explore 

novel intrinsic molecular mechanisms deriving neuroendocrine prostate cancer. 

In summary, our single-cell study provides direct evidence into the cellular 

states underlying neuroendocrine transdifferentiation in human prostate can-

cer.  
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Introduction 

Lineage plasticity endows cancer cells with the ability to switch their cellular 

phenotype [1] and is often associated with more aggressive stages of cancers 

[2]. In prostate cancer, lineage plasticity contributes to the acquisition of the 

neuroendocrine (NE) phenotype [3–5], with the emergence of a highly ag-

gressive variant, termed neuroendocrine prostate cancer (NEPC) [6]. Current 

studies support that NEPC tumors arise clonally from prostate adenocarcino-

ma (PCA) [7], accompanying with a phenotypic transition from acini epithelial 

tumor cells to NE-like tumor cells [8]. This lineage transition enables tumor 

cells to evade androgen receptor (AR) pathway inhibitors such as enzalutam-

ide by shedding their dependence on the AR pathway [4,9]. Consequently, 

tumors develop resistant to the traditional androgen dependent therapy (ADT) 

and thus became one subtype of castration-resistant prostate cancer (CRPC), 

leading to the most lethal stages of this disease [10,11]. Therefore, under-

standing the cellular and molecular basis underlying neuroendocrine differen-

tiation (NED) of prostatic tumor cells is of important clinical significance. 

In the last decade, the molecular features of NEPC have gradually come to 

light, including genomic loss of RB1 and TP53 [12], and amplification of MYCN 

[9,13,14]. In addition, reprogramming to an NEPC state is also linked to over-

expression of neural progenitor-associated genes such as SOX2 [5,15], MYCN 

[9,13,14], EZH2 [16], POU3F2 [17], FOXA2 [18,19] and SIAH2 [19]. Many 

NEPC drivers such as SOX2 and MYCN have also been reported to be es-
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sential for maintaining cell stemness [20,21], raising the possibility that the 

emergence of NEPC is associated with acquisition of stem-like properties. In-

terestingly, we previously showed that SOX2 is normally expressed in prostatic 

basal epithelial cells and a small population of luminal cells [22], highlighting a 

potential role of normal SOX2-expressing epithelial cells in deriving NED. 

Other findings also suggest that acquisition of NE phenotype of the prostate 

cancer cell is likely to link with epithelial-to-mesenchymal transition (EMT) 

state that could be both induced upon down-regulation of AR signalling [4,23]. 

On the other hand, several groups have attempted to uncover the cell of ori-

gins of focal NED and even NEPC. The normal prostate gland consists pre-

dominantly of cells of the luminal and the basal compartment with a small mi-

nority of NE cells that are scattered between the luminal and the basal cell 

compartment [24]. As normal NE cells share many features with malignant NE 

cells (for example, expressing SYP and CHGA), it has been proposed that 

NEPC might arise from transformed NE cells [25]. However, genomic studies 

seem move supportive of an epithelial origin of NEPC, given that NEPC 

showed significant genomic overlap with PCA, such as TMPRSS2-ERG fusion 

[26,27]. Within the prostatic epithelial cell compartments, both luminal and 

basal epithelial cells have been shown to be capable of generating prostate 

cancer and even NEPC. For example, Zou et. al. [28] have demonstrated that 

focal NED, as well as eventual well-differentiated neuroendocrine disease di-

rectly arises via transdifferentiation from luminal adenocarcinoma cells. In 
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contrast, Lee et. al. [29] have recently reported that basal cells can directly 

give rise to NE cells during prostatic tumorigenesis without undergoing an in-

termediate luminal state. In addition, there are some studies have suggested 

that NE cells derived from basal cells exhibit a loss of basal features and up-

regulation of luminal features during NED [13,30]. Overall, there is no con-

sensus on the cellular characteristics during the transition from epithelial tumor 

cells to neuroendocrine (NE) tumor cells.  

Gene expression is a key determinant of cellular phenotypes. Previous 

population-based RNA sequencing (RNA-seq) method has been performed to 

compare the transcriptional similarity between prostatic basal and luminal ep-

ithelial cells and suggested that metastatic NEPC molecularly resembled stem 

cell in basal compartment [31,32]. Recent advance in single-cell RNA se-

quencing (scRNA-seq) technology has greatly empowered us to gain a more 

comprehensive understanding of the transcriptional signatures of distinct 

subpopulations of epithelial cells in human and mouse prostate [33–36]. 

However, a detailed analysis of the cellular states of NED in primary human 

prostate cancer at single-cell resolution is still lacking. Herein, we apply 

scRNA-seq technology to determine the cellular identity associated with NED 

in human prostate cancer. Our datasets reveal that a luminal epithelial state is 

highly linked with of NED of prostate cancer cells. Furthermore, we show by 

intra-tumoral RNA velocity analysis that the NE cells are directly generated by 

luminal-like adenocarcinoma cells. Finally, we dissect the transcriptomic 
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landscape underlying NED and validate single-cell derived NED-related gene 

signatures in bulk RNA samples. Altogether, our results support the epitheli-

al-NE transdifferentiation model regarding the NED in human prostate cancer 

and offer fresh insights into cellular states and molecular features associated 

with this process.  

Results 

Single-cell transcriptional profiling of biopsies from 6 CRPC 

Given that focal NED can be more frequently detected in patients with ad-

vanced prostate cancer undergoing ADT but not in primary prostatic adeno-

carcinoma [37–39], we sought to perform scRNA-seq on tumor biopsies from 

CRPC patients. In this study, we isolated fresh cells from six CRPC patients, 

four out of whom were found to have low PSA levels (<20 ng/ml; Table 1, Fig. 

1A and supplementary fig. 1), indicating a higher likelihood of having NED. In 

these patients, three had received the first-line therapy of the LHRH analogue 

goserelin coupled with the AR inhibitor bicalutamide, two had underwent sur-

gical castration coupled with bicalutamide, while the remaining one was diag-

nosed as small-cell NEPC at the beginning and treated with chemotherapeutic 

drug docetaxel. By pathological examination, biopsy tissues from three pa-

tients (#2, #5 and #6) displayed cellular morphology resembling small cell 

carcinoma and biopsies from patient #1 and #4 presented a classical PCA 

phenotype (Fig. 1B). However, biopsy from patient #3 was characterized as 
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prostatic intraepithelial neoplasia, which may due to the inaccuracy of the bi-

opsy procedure. The clinical and pathologic features of the biopsy samples are 

summarized in Table1. 

Then, single-cell suspension from each tissue was subjected to 

scRNA-seq by a 10x Genomics-based single-tube protocol with exclusive 

transcript counting through barcoding with unique molecular identifiers [40]. 

After exclusion of red blood cells as well as cells not passing quality controls, 

we obtained a total of 21,292 high-quality cells at ~2884 genes detected on 

average per cell (Supplementary fig. 2A and supplementary table1). Using an 

unsupervised graph-based clustering strategy, we manually classified different 

cell clusters into eight major cell types with canonical markers curated from the 

literatures, including epithelial cells, immune cells (T cells, B cells, myeloid 

cells and mast cells), stromal cells (fibroblasts and myofibroblasts) and endo-

thelial cells (Supplementary fig. 2A, 2B and supplementary table2).  

NE cells present an epithelial phenotype 

Next, in keeping with our aim to characterize NED, we defined a NE index 

using 14 well-known NE markers that have been previously characterized as 

biomarker or driver genes of NEPC, such as ASCL1, CHGA/B, FOXA2, SOX2 

[4,14,16,18,19,41,42]. We scored each cell using this NE gene set (Supple-

mentary table3). In line with the pathological results, this analysis identified 

obvious NED in three patients (patient #2, #5 and #6; Fig. 1C). Notably, we 

found that NEhigh cell population detected in these three patients all belong to 
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the epithelial cells instead of the non-epithelial cell compartments (Fig. 1C and 

supplementary fig. 2C, 2D), supporting an epithelial origin of NED. In addition, 

we noticed that majority of epithelial cells from patient #2 and #5 were scored 

for a NE phenotype, while only part of epithelial cells from patient #6 have a 

NE phenotype (Fig. 1C), manifesting different extent of NED among these 

three patients. Taken together, single-cell analysis showed that three patients 

likely have NED and suggested an epithelial origin of NED in human prostate 

cancer. 

NE cells present a malignant luminal-like phenotype  

Having characterizing an epithelial phenotype of NED, we next focused on 

epithelial compartment by computationally removing all non-epithelial cells. In 

order to gain more insight into the molecular features of NED in each patient, 

we then scored each cell for epithelial basal/luminal lineage markers [35], AR 

signature genes [41,43,44], EMT as well as stem cell genes expression [45]. 

Pairwise correlation analysis of all epithelial cells revealed that nearly all of 

epithelial cell from two patients (patient #2 and #5) represents an obvious NED 

phenotype (Fig.2A, 2B and supplementary table4). Epithelial cells of patient #6 

were divided into two main groups: a small population of NE-like cells and the 

remaining majority of NE-ARhigh cells, illustrating significant intra-tumoral het-

erogeneity regarding NED (Fig. 2A-2C). By analysing cellular pheno-

types/states, we found that all NE cells prominently exhibited a luminal phe-

notype rather than basal phenotype (Fig.2A, 2B). Of note, AR scores were ex-
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tremely low in NE cells, which is consistent with previous findings that AR 

signalling activity is downregulated in NEPC [46]. As introduced earlier, the 

EMT process and stem cell state have also been proposed to participate in 

NEPC formation [23]. However, our analysis demonstrated that only NE cells 

from patient #5 displayed higher EMT and stemness signature scores.  

We further interrogated malignant identity of NE cells by performing in-

ferred copy number variation (CNV) analysis on the basis of the average ex-

pression of 101 genes in each chromosomal region [47,48]. We used the 

normal prostate epithelial cells from Henry dataset as "reference" cells [35], 

such that their average CNV value was subtracted from all cells. Inferred CNV 

analysis showed that most NE cells exhibited remarkable CNVs, indicating 

their malignant identity (Fig.2D and supplementary fig. 3). Interestingly, most 

basal-like epithelial cells lacked CNVs, and thus likely representing a group of 

normal epithelial cells (Fig. 2E). In addition, we noticed that the epithelial cells 

of patient #3 had very few CNVs consistent with its histologically intraepithelial 

neoplasia characteristic (Supplementary fig. 3). Taken together, preliminary 

analyses revealed a malignant feature of NE cells and suggested a link be-

tween NED and a luminal-like ARlow/- phenotype. 

Intra-tumoral analyses identify different extent of focal NED 

To better understand the extent of NED in each individual tumor, we next in-

vestigated intra-tumoral epithelial diversity. Re-clustering epithelial cells from 

each tumor combined with heatmap analysis showed that epithelial cell 
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sub-clusters from each sample highly expressed luminal cell markers such as 

KRT8 and KRT18, while the expression of basal, NE and AR signature genes 

exhibited significant intra- and inter-tumor heterogeneity (Fig. 3A, 3B and 

supplementary table5). We thus annotated all epithelial clusters into basal, 

luminal and NE subtypes, respectively, according to their transcriptional land-

scapes. For example, in patient #1, we identified a cluster of basal cells 

(KRT17+; cluster 1 and 7), several clusters of luminal cells (KRT5- KRT8+, 

cluster 0, 2, 3, 4, 5, and 6). This analysis also confirmed the NE phenotype of 

patients #2 and #5 and showed that most clusters in these two patients uni-

formly expressed NE markers, manifesting a pure NE phenotype. In addition, 

epithelial cells of patient #6 consisted of a group of NE cells (cluster 4, ex-

pressing ASCL1, CHGA and CHGB), a group of basal cells (cluster 5, ex-

pressing KRT5, KRT14 and KRT15) as well as the remaining ARhigh luminal 

cells, presenting mixed features of both adenocarcinoma and NEPC (Fig. 3B). 

The most interesting observation was from patient #4, a histologically diag-

nosed adenocarcinoma, in which we found that when compared with other 

epithelial clusters, cluster 5 preferentially expressed NE markers CHGA and 

SYP (Fig. 3B), probably representing a population of early NE precursors. 

These observations were further validated by IHC assays for two NE markers 

(SYP and SOX2) and AR in sections from five samples (Fig. 3C). For instance, 

we detected a minority of scattered SYP+ NE cells in section from patient #4，

which may corresponded to the cells of cluster 4 revealed by single-cell anal-
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ysis. In addition, IHC analyses of patient #5 samples also showed an overall 

good concordance with the single-cell transcriptional profiles that SOX2 was 

intensively expressed, while another NE marker SYP was almost undetectable 

(Fig. 3C). Thus, intra-tumoral analysis confirmed NED in three patients (patient 

#2, #5 and #6) and enabled us to detect NE cells in a PCA (patient #4). 

Epithelial cellular relationships in patient #4 

We next paid specific attention to patient #4, given that the NE-subpopulation 

detected in this PCA may represent an early state of transdifferentiation from 

epithelial towards NE fate. Epithelial cells in patient #4 were partitioned into 

four main subtypes: basal cells (cluster 6, expressing KRT5 and TP63), 

urothelial-like cells (cluster 4, expressing UPK1A and GATA3), NE cells (clus-

ter 5, expressing SYP and EZH2) and luminal cells with a 

KRT5-UPK1A-SYP-KRT8+ feature (clusters 0-3; Fig. 4A, 4B). Uniform Manifold 

Approximation and Projection (UMAP) visualization suggested that NE cells 

were transcriptionally closer to luminal cells than basal or urothelial-like cells. 

Immunofluorescence analysis of SYP and KRT8 further validated a luminal 

phenotype of SYP-expressing cells (Fig. 4C). Interestingly, the early NED cells 

and luminal cells shared almost the same CNV pattern, indicating that they 

had a common clonal origin (Fig. 4A and supplementary fig. 4A). In contrast, 

basal cells in this sample displayed very few CNVs. Thus, the separation of 

different epithelial subtypes may reflect their marked genomic differences. 

A closer relationship between NE cells and luminal-like malignant cells was 
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further supported by visualization using Partition-based approximate graph 

abstraction (PAGA) [49] (Fig. 4D). To deepen our understanding of the dy-

namics of epithelial to NE transition, we next applied RNA velocity analysis that 

predicts the future state of an individual cell by leveraging the fact that newly 

transcribed, unspliced pre-mRNAs and mature, spliced mRNAs can be dis-

tinguished in common single-cell RNA-seq protocols [50]. Notably, unlike many 

other existing computational methods [51], RNA velocity analysis doesn’t rely 

upon a priori knowledge to set up the starting cell for inferring the trajectory 

and thus enable us to more unbiasedly and accurately predict the cellular dif-

ferentiation trajectory. Given the heterogeneous epithelial composition, we uti-

lized scVelo, a likelihood-based dynamical model that has recently be intro-

duced to solves the full gene-wise transcriptional dynamics [52]. This analysis 

clearly showed positive velocity from luminal malignant cells (cluster 3) to-

wards early NED cells (cluster 5; Fig. 4E). In contrast, KRT5+ basal and 

UPK1A+ urothelial-like cells were clustered far from NED cells and did not 

show a tendency to progress into SYP+ cells. Therefore, this finding suggested 

that luminal-like malignant cells may serve as the direct progenitor cells re-

sponsible for early NED in this patient we analysed here. 

TMA analysis confirms the prevalence of luminal-like NED phenotype 

We next validated the generality of this observation in a large population using 

clinical PC TMAs, which contained 297 cancer tissues (280 PCA, 10 CRPC 

and 7 NEPC) (Supplementary Table6). We carried out triple IF staining for K18, 
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K5 and SYP to evaluate the basal/luminal phenotypes of NE cells (Fig. 4F). 

Consequently, we detected SYP-positive cells in 102 tumors, of which 81% 

were K18+K5-SYP+, and 5% exhibited both K18+K5-SYP+ and K18-K5-SYP+ 

characteristics (Fig. 4G). Notably, no K18-K5+SYP+ cells were found in any of 

the 297 cancer tissues. This analysis therefore verified that NED precursors in 

human prostate cancer had a prevalent luminal phenotype. Of interest, a sub-

stantial number of the SYP-expressing tumor specimens came from patients 

who had not received any therapy (96/102), demonstrating that NED in fact 

occurred much earlier than the development of castration resistance, which is 

in line with previous findings that neuroendocrine differentiation is present in 

10% to 100% of localized PCAs and increases with disease progression 

[53,54]. Taken together, TMA analysis confirmed the single-cell results, 

demonstrating that NED in human prostate cancer was primarily presented as 

a luminal feature. 

Epithelial cellular relationships in patient #6 

Similar to patient #4, epithelial cells of patient #6 also showed intra-tumoral 

NED heterogeneity, which was composed of a small population of NE cells 

(cluster 4), a small population of basal cells (cluster 8) and the vast majority of 

luminal epithelial cells (Fig. 5A, 5B). Interestingly, like patient #4, basal epithe-

lial cells in patient #6 epithelial cells also displayed relatively fewer CNVs 

compared with luminal compartment as well as NE cells (Fig. 5A and supple-

mentary fig. 4B), indicating that basal epithelial cells were less likely to be the 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.091132doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.12.091132


direct progenitors of NE cells. The cellular relationship was further indicated by 

PAGA (Fig. 5C), showing that NE cells in this sample still connected with lu-

minal-like tumor cells. We next inferred cellular dynamics using RNA velocity, 

which predicated similar cellular processes that NED in this sample was ex-

clusively branched from luminal cells (Fig. 5D). We further sought to identify 

genes that display pronounced dynamic expression patterns linked to the 

transition state toward a NE fate (Supplementary table7). As expected, signa-

tures of AR signalling such as KLK2 and KLK3 were notably downregulated 

along with the emergence of NE phenotype (Fig. 5E). We then paid particular 

attention to genes that were positively correlated with NED. Within the 

top-ranked likelihood genes, we found ASCL1, a key transcription factor for 

neuronal differentiation [55], which has also been associated with NED in 

prostate cancer [56] (Fig. 5E). In addition, this analysis also illustrated many 

unknown genes that might serve as the potential drivers or biomarkers of the 

NED transdifferentiation, for example, VGF, SCGN and PAPPA2, the roles of 

which in NEPC have not been reported. Altogether, deeper analyses of epithe-

lial cell relationships in this sample also suggested that malignant cells with a 

luminal phenotype fuels the development of NE cells.  

Identifying NED-associated gene meta-programs  

We next sought to understand the underlying molecular features associated 

with NED. For this purpose, we applied non-negative matrix factorization (NMF) 

to define underlying transcriptional programs specific to the epithelial cells 
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from each tumor [57,58] (Fig. 6A and supplementary table8). To relate these 

meta-programs to cell phenotypes, we scored these ordered cells according to 

basal, luminal, NE, EMT, AR and cell cycle marker genes (Fig. 6B). This 

analysis revealed three meta-programs highly associated with NED (P1, P2, 

P4). For example, meta-program P1 was characterized by neuroendocrine 

markers such as CHGB and CHGA and meta-program P2 contained 

NE-related transcriptional factor (TF) EZH2 and DLX5, a homeobox transcrip-

tion factor gene. DLX5 has been recently reported to mark delaminating neural 

crest cells during development [59]. Of note, neural crest cells can differentiate 

into numerous derivatives including neuroendocrine cells [60,61], implying a 

potential role of this gene in participating NED of prostate cancer cells. More-

over, we identified a cell cycle-related meta-program (P3) that was obviously 

upregulated in NE cells of patient #2 and #5) ， likely reflecting 

well-differentiated NE state of these two tumors. More interestingly, me-

ta-program P2 was specifically associated with patient #2, while meta-program 

P4 was preferentially expressed in patient #5, suggesting two kinds of NED 

features. 

We next asked whether the NE-related gene meta-programs derived from 

single-cell data could robustly reflect the NED in bulk expression profiles. Thus, 

we used three bulk transcriptomic datasets [7,41,62] , which included both 

CRPC and NEPC patients. We first performed correlation analysis between 

the expression of all genes from three meta-programs (P1, P2 and P4) and the 
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NE score defined by the average expression of well-established NE markers to 

screen out genes that were most relevant to NED. This analysis identified 121 

genes highly correlated with the NE score (Pearson R ≥ 0.3; Fig. 6C and sup-

plementary table9). Consistently, we found that by plotting their expression in 

the 5 groups of samples that was defined by the expression patterns of NE and 

AR activity genes [41], most genes displayed significantly higher expression in 

the AR-NE+ group than in NE- groups (Fig. 6D). Thus, NED-associated gene 

signatures derived from single-cell data can provide reliable clues for distin-

guishing human NEPC and searching for new drivers involved in NED. 

Identifying NED-associated transcription factor regulatory network  

The above NMF analysis revealed that two well-differentiated NEPC displayed 

distinct NED signatures. To explore the underlying molecular mechanisms 

driving the distinct NE differentiation phenotypes, we next used single-cell 

regulatory network inference and clustering (SCENIC) to identify the 

co-expressed transcription factors and their putative target genes, as an indi-

cator of transcription factor regulatory activity [63]. SCENIC analysis showed 

that NED from different patients could upregulate the expression of different 

transcription-factor networks (Fig. 7A). For instance, DLX6 and ASCL1 regu-

lons were highly active in NE cell of patient #2, whereas expression of FOXA2 

and SOX21 network was restricted in NE cells of patient #5. In line with reports 

that SOX2 are essential for NED in prostate cancer, we found that SOX2 reg-

ulon was upregulated across almost all NE cells from patient #2 and #5 (Fig. 
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7A). Thus, single-cell regulatory network analysis provided an explanation for 

the divergence of NED from our patient cohort. In addition to many 

well-established NE-related TFs identified in this analysis (such as SOX2 and 

ASCL1), it also predicted many neuronal differentiation related TFs that might 

also be involved in NED. For instance, expression of LHX2 has previously 

been showed to confer neuronal competency for activity-dependent dendritic 

development of cortical neurons [64], but its role in NED of prostate cancer 

remains undetermined and need future studies to clarify their specific roles. 

Next, we analysed TF regulons of epithelial cells from two patients with in-

tra-tumoral NED heterogeneity. Analysis of patient #4 revealed that NE sub-

population specifically up-regulated transcriptional activities of NKX2-2, HES6, 

FOXA2 and ASCL1, all of which have been previously reported to be essential 

for a variety of neural cell types’ differentiation (Fig. 7B, 7C). The intra-tumoral 

heterogeneity in term of TF activity was also observed in patient #6, showing 

that NE subpopulation have obviously higher TF activities of SOX2 and 

FOXA2 (Fig. 7D, 7E). In addition, NE subpopulation strongly upregulated ac-

tivities of UNCX and CELF5 regulatory networks, which have been both re-

ported to involve in maintaining neural cells survive or promoting some neuron 

diseases [65,66]. Overall, TF network analysis revealed both known and un-

known NED-associated TFs and offered more insight into both inter-tumoral 

and intra-tumoral heterogeneity regarding NED. 
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Discussion 

In this study, we generated 21,292 single-cell transcriptomes from 6 CRPC 

patients with a focus on the cellular phenotypes associated with NED. We 

detected NED in four tumors, in which all of the NE cells exhibited a luminal 

rather than basal epithelial phenotype. It is important to note that in two tumors 

that contain both NE cells and non-NE epithelial cells (patient #4 and #6), there 

is clear cell fate transition tendency from luminal-like adenocarcinoma cells 

towards NE cells (Fig. 4E and Fig. 5D). Thus, our finding has identified the 

transdifferentiation process that has been proposed for a long time in explain-

ing NED in prostate cancer. Although previous genomic analyses have sug-

gested that NEPC are clonally derived from PCA that usually present lu-

minal-like phenotype [7,26,27], this is the first study to our knowledge that has 

shown the cellular diversity in human CPRC as well as the cellular phenotypes 

associated with NED at single-cell resolution. 

Our current study is limited regarding the total number of samples that con-

tain NED for analyses. To unbiasedly evaluate the cellular phenotypes asso-

ciated with NED, we next performed triple IF staining against KRT5, KRT8 and 

SYP on our large cohort of PC TMAs. We found that the luminal-like malignant 

phenotype of NE cells (K5-K18+SYP+) is mainly detected in adenocarcinomas 

(Fig. 4G). Therefore, this results further confirmed a closer relationship be-

tween NED and a luminal state rather than basal state in human prostate 

cancer. It should be noted that our results don’t exclude the probability that 
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basal cells serve as cell of origin of NEPC. According to in vivo cell lineage 

tracing studies, both basal and luminal cells are capable of initiating prostate 

tumorigenesis [67]. In particular, prostate cancer originated from human basal 

cells gradually loss basal features and upregulation of luminal hallmarks 

[13,68]. Based on these findings and our current results, we propose a model 

that PCA can be initiated from both basal and luminal cells, while focal and 

eventual NEPC is more likely to be made by NE precursors with luminal phe-

notype (Fig. 8). We also consider the possibility that a direct basal-NE trans-

differentiation may happen. If NE cells are directly transdifferentiated from 

basal cells, we would expect to see hybrid cells with both basal and NE phe-

notypes more frequently. However, our analysis in PC TMAs reveals that only 

about 1% of patients (1/102) contain SYP+ cells that express both K8 and K5 in 

adenocarcinoma tissues argue strong for the notion that such direct basal-NE 

transdifferentiation is likely rare in human prostate cancer, but rather lu-

minal-NE transdifferentiation is fundamentally responsible for phenotypic tran-

sition from acinar adenocarcinomas towards NEPC. Interestingly, a recent cell 

lineage tracing study using TRAMP mouse models 

(p63-CreERT2;Rosa-LoxP-STOP-LoxP-tdRFP;TRAMP and 

K8-CreERT2;Rosa-LoxP-STOP-LoxP-tdRFP;TRAMP) has demonstrated that 

NEPC is directly originated from basal progenitor cells but not luminal cells or 

pre-existing KRT8+ adenocarcinoma cells [29]. This observation is different 

from the results obtained from the double p53 and Pten knockout-induced PCA 
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mouse model in which all NEPC cells were transdifferentiated from 

NKX3.1-expressing luminal cells. According to our results, we are inclined to 

think that a transformed basal cell would firstly differentiate to a luminal-like 

tumor cells and then execute NED process. Nevertheless, future single-cell 

studies of serial tumor samples from individuals will be needed in principle to 

map the cellular dynamic involved in NED process as much as possible. 

Our next aim is to explore the signature genes driving NE transdifferentiation. 

By performing NMF analysis, we further identified three gene meta-programs 

consisting of many genes highly correlated with NED (Fig. 6A). The bulk da-

tasets analysis has validated the robustness of this result, showing that most 

genes are significantly expressed in patients with NED (Fig. 6D). Interestingly, 

we found that two well-differentiated NEPCs (patient #2 and #5) seem to have 

distinct NED programs. SCENIC analysis highlighted that the heterogenous 

NED might be determined by distinct TF networks. Nevertheless, the exact 

role of many identified genes in prostate cancer, especially NEPC, is unknown 

and needs further comprehensive investigation.  

In summary, our single-cell study has disentangled both intra- and inter-

tumoral heterogeneity regarding to NED in human prostate cancer and char-

acterized both cellular phenotypes and molecular features linked with the lu-

minal to NE transdifferentiation. Understanding the progressive trajectory of 

NED will benefit the development of early diagnosis and even therapeutic 

treatments for human NEPC. 
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Methods & materials 

Patient selection 

With a focus on neuroendocrine prostate cancer, the participating patients 

were required to meet the following requirements: 1) the patients must have 

developed resistance to castration therapy; 2) CT imaging showed an appar-

ent prostate tumor (Supplementary fig. 1A). In addition, we preferentially se-

lected patients whose circulating PSA level was lower than 20 ng/ml. The pa-

tient information is described in detail in Table 1. The present study was ap-

proved by the Institutional Ethics Review Board of Ren Ji Hospital, Shanghai 

Jiao Tong University School of Medicine, and written informed consent was 

obtained from every patient. 

Isolation of single cells 

Prostate biopsies were transported to the research laboratory on ice in 

DMEM/F12 (Gibco, 11320033) with 3% FBS (Gibco, 10099-141) within 30 min 

of collection. Each specimen was equally separated into two fragments. One 

fragment was processed for histopathological assessment, and the remainder 

of the provided tissues was processed for scRNA-seq. In brief, fresh tumor 

samples were minced and place in a 1.5 ml Eppendorf tube, where they were 

enzymatically digested with collagenase IV (Gibco) and DNase I (Sigma) for 1 

h at 37 °C with agitation. After digestion, samples were sieved through a 

70-μm cell strainer, washed with 1% BSA and 2 mM EDTA in PBS, and cen-
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trifuged for 5 min at 350×g. Single cell suspensions were subjected to Lym-

pholyte-H separation (Cedarlane, CL5020) to remove RBCs and debris ac-

cording to the manufacturer’s specifications. Pelleted cells were then resus-

pended in DMEM/F12 with 3% BSA and were assessed for viability and size 

using a Countess instrument (Thermo).  

Single-cell library preparation and sequencing 

A total of 5,000 cells per sample were targeted for capture. Then, the cell 

suspension of each sample was run in the Chromium Controller with appro-

priate reagents to generate single cell gel bead-in-emulsions (GEMs) for 

sample and cell barcoding. The libraries were then pooled and sequenced on 

a NovaSeq 6000 (Illumina) at a depth of ~400 M reads per sample. 

Single-cell data preprocessing and quality control (QC) 

Raw sequencing data were converted to FASTQ files with Illumina bcl2fastq, 

version 2.19.1, and data were aligned to the human genome reference se-

quence (GRCH38). The CellRanger (10X Genomics, 2.1.1 version) analysis 

pipeline was used for sample demultiplexing, barcode processing and sin-

gle-cell 3′ gene counting to generate a digital gene-cell matrix from these data. 

Of note, Cell Ranger filters any barcode that contains less than 10% of the 

99th percentile of total UMI counts per barcode, as these are considered to be 

associated with low quality cell barcodes. This processing resulted in an av-

erage of 160,233 reads per cell, and an average of 2,884 genes were detected 
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per cell (Supplementary table1). The gene expression matrix was then pro-

cessed and analysed by Seurat (version 3.0) and an R toolkit 

(https://github.com/satijalab/seurat), using the software R (version 3.6.0). We 

performed Seurat-based filtering of cells based on the number of detected 

genes per cell (500 to 7000) and the percentage of mitochondrial genes ex-

pressed (<10%). The mitochondrial genes and ribosomal genes were also 

removed from the gene expression matrix. Following quality control, 21,292 

high-quality cells were retained with an average of 2419 genes were detected 

per cell (Supplementary table1). Each single-cell dataset was then processed 

by SCTransform from the Seurat package, which contained the function of 

normalization, regression and identification of variable genes. 

UMAP visualization and cell type annotation  

We used UMAP [69] to visualize the clusters of cells that passed quality control 

for each sample. Clusters were associated with cell types based on the scores 

of differential expression of well-established marker genes for each cell type: T 

cells (CD2, CD3D, CD3E and CD3G), B cells (CD79A, CD79B, CD19 and 

MS4A1), myeloid cells (CD14, CD68, AIF1 and CSF1R), mast cells (MS4A2, 

ENPP3, PCER1A and KIT), fibroblasts (DCN, TNFAIP6, APOD and FBLN1), 

myofibroblasts (MYH11, GJA4, RGS5 and MT1A), endothelial cells (ENG, 

CLDN5, VWF and CDH5) and epithelial cells (EPCAM, KRT8, KRT5 and 

CDH1 [35,70–74]. 
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Defining Cell Scores  

We used cell scores to evaluate the degree to which individual cells express a 

certain pre-defined expression program as described previously [74]. We de-

fined gene sets corresponding to basal, luminal, NE, AR pathway, EMT state 

and cell stemness from previous literatures [4,14,16,18,19,35,41–45]. The 

detailed gene list can be found in Supplementary table2. Given a set of 

pre-defined genes (Gj), we calculate for each cell i, a score, SCj(i), quantifying 

the relative expression of Gj in cell i, as the average relative expression (Er) of 

the genes in Gj. To control for this effect we also add a control gene-set 

(Gjcont); we calculate a similar cell score with the control gene-set and sub-

tract it from the initial cell scores: SCj(i) = average[Er(Gj,i)] – aver-

age[Er(Gjcont,i)]. The control gene set contains 100 genes with the most sim-

ilar aggregate expression level.  

Inferred CNV analysis from scRNA-seq 

Large-scale CNVs inferred from single-cell gene expression profiles using a 

previously described approach (https://github.com/broadinstitute/inferCNV/wiki) 

[47,48]. To identify the distinct chromosomal gene expression pattern of epi-

thelial cells in comparison to putative noncarcinoma cells, we set normal 

prostate epithelial cells from a dataset which contains 78,286 prostate epithe-

lial cells of 3 health men, which were captured by Henry et. Al. [35], as the 

reference "normal" cells. In addition, those genes expressed in fewer than 200 

cells were removed from the count matrix. Average expression was calculated 
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using the log transformed data (log2[1 + UMI]), and absolute values of fold 

change were bound by 3. All genes were sorted by their chromosome number 

and start position. The chromosomal expression patterns were estimated from 

the moving averages of 101 genes to determine the window size, and they 

were adjusted as central values across genes. The average CNV signal was 

estimated by averaging the CNV modification for 22 autosomes. 

Multiple datasets integration and Batch correcting 

For merging multiple datasets, we applied Harmony integration [75], which has 

been showed to reduce technical batch effects while preserving biological 

variation for multiple batch integration. RunHarmony returns a Seurat object, 

updated with the corrected Harmony coordinates. The manifold was subjected 

to re-clustering use the corrected Harmony embeddings rather than principal 

components (PCs), set reduction = 'harmony', with parameters of Seurat 

analysis. 

Differential gene expression analysis 

DEGs in a given cell type compared with all other cell types were determined 

with the FindAllMarkers function from the Seurat package (one-tailed Wilcoxon 

rank sum test, P values adjusted for multiple testing using the Bonferroni cor-

rection). For computing DEGs, all genes were probed provided they were ex-

pressed in at least 25% of cells in either of the two populations compared and 

the expression difference on a natural log scale was at least 0.25. 
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RNA velocity 

RNA velocities were predicted using velocyto in R program (http://velocyto.org, 

version 0.6) [50,52]. Briefly, spliced/unspliced reads were annotated by velo-

cyto.py with CellRanger (version 2.2.0), generating BAM files and an accom-

panying GTF; then, they were saved in .loom files. The .loom files were then 

loaded to R (version 3.6.0) using the read.loom.matrices function, and they 

generated count matrices for spliced and unspliced reads. Next, the count 

matrices were size-normalized to the median of total molecules across cells. 

The top 3,000 highly variable genes are selected out of those that pass a 

minimum threshold of 10 expressed counts commonly for spliced and 

unspliced mRNA. For velocity estimation, we use the default procedures in 

scVelo (n_neighbors=30, n_pcs=30). In consideration that the assumptions of 

a common splicing rate and the observation of the full splicing dynamics with 

steady-state mRNA levels were often violated, we used the function recov-

er_dynamics, a likelihood-based dynamical model, to break these restrictions. 

Finally, the directional flow is visualized as single-cell velocities or streamlines 

in the UMAP embedding with the Seurat cluster annotations.  

Connectivity of cell clusters 

To identify potential developmental relationships of cell clusters in patient #4 

and #6, we utilized the partition-based graph abstraction (PAGA) [49] to esti-
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mate any potential developmental relationships among the three prostate lin-

eages. The computations were performed on the same subset of variable 

genes as for clustering, using the default parameters. 

Identification of epithelial gene meta-programs 

Transcriptional programs were determined by applying NMF as previously 

described [57,58]. Analysis was performed for the epithelial cells only. We set 

the number of factors to 10 for each tumor. For each of the resulting factors, 

we considered the 30 genes with the highest NMF scores as characteristics of 

that given factor (Supplementary table8). All single cells were then scored 

according to these NMF programs. Hierarchical clustering of the scores for 

each program using Pearson correlation coefficients as the distance metric 

and Ward's linkage revealed four correlated sets of programs with our focus. 

SCENIC 

In order to further investigate the gene regulatory networks (GRNs) in process 

of NED, we applied SCENIC [63] workflow to reconstruction the GRNs. The 

input matrices for SCENIC of every single sample was the corrected UMI 

counts in “SCT assay” of Seurat, in which we removed the variation of mito-

chondrial mapping percentage. For the combined sample (epithelial cells of 6 

patients), Combat [76] were run to correct for “patient of origin” as source of 

batch effect. Following the standard procedure of SCENIC, we used GENIE3 

(for single sample) and GRNBoost (for combined sample) to identify potential 
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TF targets. Besides, the activity of each regulon in each cell is evaluated using 

AUCell, which calculates the Area Under the recovery Curve, integrating the 

expression ranks across all genes in a regulon. Finally, we used the default 

“AUCCellThreshholds” for each regulon as the threshold to binarize the regu-

lon activity scores and created the “Binary regulon activity matrix”. The motifs 

database for Homo sapiens was downloaded from the website 

https://pyscenic.readthedocs.io/en/latest/. 

Bulk dataset analysis 

Bulk-transcriptomic data were collected from Morrissey et. al. 

(GEO:GSE126078) [41], Beltran et. al. 

(https://www.cbioportal.org/study/summary?id=nepc_wcm_2016) [7] and 

Charles L. Sawyers et. al.  

(https://github.com/cBioPortal/datahub/tree/master/public/prad_su2c_2019) 

[62]. To estimate the correlation of the P1, P2 and P4 meta-program with NED, 

we first defined an NE score by gene set variation analysis (GSVA) [77,78] for 

every sample in these bulk RNA-Seq data, and the NE markers we used are 

listed in the Supplementary materials. Then, we filtered cell cycle-related 

genes from the gene list of the three meta-program and performed Pearson 

correlation coefficient analysis of the remaining genes.  

Tissue microarrays 

Tissue specimens from 297 patients who underwent radical prostatectomy 
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were collected for the construction of tumor microarrays (TMAs), and then the 

specimens were cut into 5μm thick sections using a standard microtome. 

These tissue cores were assessed by uropathologists to determine tumor 

stages according to the haematoxylin and eosin staining results (Supplemen-

tary table6). 

Immunohistochemistry (IHC) and immunofluorescence (IF) 

Formalin-fixed and paraffin embedded tissue sections (5μm) were depar-

affinized and rehydrated. Antigen retrieval was carried out using 10 mM so-

dium citrate (pH 6.0) in a microwave oven. For DAB staining, endogenous 

peroxidase activity was blocked with 0.3% hydrogen peroxide for 10 min and 5% 

BSA in PBS for 1 h. Slides were incubated overnight at 4°C with a primary an-

tibody, which was followed by incubation with an HRP-linked secondary anti-

body (CST) at room temperature (30 min). Diaminobenzidine (DAB) was used 

as chromogen, and the sections were counterstained with haematoxylin. For 

immunofluorescence staining, the sections were washed with PBS and trans-

ferred to a blocking solution (10% normal donkey serum in PBS) for 1 h at 

room temperature. After blocking, specimens were incubated overnight at 4°C 

with diluted primary antibodies. The next day, slides were washed with PBS 

three times for 10 min each, and then they were incubated for 1 h at room 

temperature with secondary antibodies conjugated to Alexa-488, -555 or -647, 

which were diluted with PBS containing 1% normal donkey serum (1:1000). 

Then, the secondary antibody was rinsed, and the slides were washed three 
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times with PBS before being mounted with Vector Shield mounting medium 

containing DAPI (Vector Laboratories, H-1200). 

Image acquisition 

IF images were acquired using a Zeiss LSM 710 confocal microscope and 

were processed by ZEN Imaging Software. IHC images were acquired using 

an Olympus BX53 System Microscope. 

Primary antibodies  

The following antibodies were used in these studies: anti-SOX2 (Abcam, 

ab236557), anti-AR (Abcam, EPR1535(2)), anti-KLK3/PSA (Cell Signaling 

Technology, #2475), anti-NKX3-1 (Cell Signaling Technology, #92998), an-

ti-Cytokeratin 5 (Abcam, ab52635; For IHC), anti-P63 (Santa Cruz Biotech-

nology, sc-8431), anti-CK5 (Biolegend, 905904; For IF), anti-SYP (Cell Sig-

naling Technology, #36406), and anti-K18 (ProteinTech, 66187-1-Ig). 

Statistical analysis 

Statistical analysis was performed using R (version 3.6.0) and GraphPad 

Prism (version 8). Wilcoxon rank-sum tests were used in this study and are 

described in each figure. * p< 0.05, ** p< 0.01, *** p< 0.001, **** p< 0.0001 and 

ns, not significant. 

Data availability 

The scRNA-seq data were deposited in the NCBI Gene Expression Omnibus 
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(GEO) database under accession number GSE137829.  
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Figure legends 

Fig. 1 Single-Cell Transcriptomic Profiling of 6 CRPC Tumors 

(A) Workflow for single-cell extraction, sequencing and analysis. (B) Haema-

toxylin and eosin (H&E) staining for 6 CRPC patients. The scale bars repre-

sent 25μm. (C) UMAP plots of cells from 6 patients with cells colored based on 

the cell types (upper row) and NE scores using the well-established NE marker 

genes (lower row). The minimum score is indicated by light grey and the 

maximum score is indicated by blue. The red arrows pointed to high NE score 

cell population. 

Fig.2 NE cells present an epithelial phenotype  

(A) Pairwise correlations between the expression profiles of 12,861 epithelial 

cells (rows, column) from 6 CRPC samples (color bar). (B) Enrichment scores 

for basal, luminal, NE, AR, stemness and EMT pathway associated genes. (C) 

Inferred CNV profiles. Black indicates the CNV (Supplementary fig. 3). (D) 

UMAP visualization of all 12，861 epithelial cells from 6 patients with col-

or-coded for the sample origin. (E) UMAP visualization of all 12,861 epithelial 

cells for the 6 patients with cells colored based on the basal score (left) and 

average CNV signal (right). The minimum score is indicated by light grey and 

the maximum score is indicated by blue (left) or black (right). 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.12.091132doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.12.091132


Fig.3 Intratumor heterogeneity analyses reveal different extents of NE 

differentiation 

(A) UMAP visualization of epithelial cell sub-clusters from each sample. (B) 

Heatmap depicting prostate lineage marker genes and AR pathway gene ex-

pression levels in epithelial cell sub-clusters from each sample. Those high-

lighted in yellow frame showed cluster 5 in patient #4 and cluster 4 in patient 

#6 was NE sub-clusters. (C) Immunohistochemistry (IHC) staining for AR, SYP 

and SOX2 in sections from 5 samples. Scale bars represent 50μm. 

Fig. 4 Epithelial cellular relationships in patient #4 

(A) UMAP visualization of epithelial cells from patient #4 with color-coded for 

the corresponding sub-cluster (left) and the average inferred CNVs signals 

(right; grey to black). (B) Violin plots of the expression level of NE, urotheli-

al-like, basal and luminal lineage markers across the populations shown in Fig 

4A. (C) Immunofluorescence (IF) co-staining for K18 (red) and SYP (green) in 

sections for patient #4. Scale bar represents 100μm. (D) The PAGA graph and 

connectivity scores of the populations shown in Fig. 4A. (E) Velocities of epi-

thelial cells from patient #4 are visualized as streamlines in a UMAP-based 

embedding, in which color-coded for the corresponding populations shown in 

Fig. 4A. (F) Representative confocal fluorescence microscopy of triple 

co-staining of SYP (green), K18 (grey) and K5 (red) in PC TMA sections. The 

SYP+ NE cells have 3 subtypes: K18+K5-SYP+, K18-K5-SYP+ and 

K18+K5+SYP+. Scale bars represent 25μm. (G) Pie chart of statistics for PC 
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TMA co-stainning results showing that the major part of prostate cancers 

contain NE cells with exclusive luminal phnotype (K18+SYP+,83/102). 

Fig. 5 Epithelial cellular relationships in patient #6 

(A) UMAP visualization of epithelial cells from Patient #6 with color-coded for 

the corresponding sub-cluster (top) and the average inferred CNV signal 

(bottom; grey to black). (B) Violin plots of the expression level of NE, basal and 

luminal lineage markers across the populations shown in Fig. 5A. (C) The 

PAGA graph and connectivity scores of the populations shown in Fig. 5A. (D) 

Velocities of epithelial cells from patient #6 are visualized as streamlines in a 

UMAP-based embedding, in which color-coded for the corresponding Seurat 

cluster in Fig. 5A. (E) Phase portraits (upper row) and expression dynamics 

along latent time (lower row) for specific genes selected from top-ranked like-

lihood gene set (gene likelihood >0.2). 

Fig.6 Intra-tumoral meta-programs underlying NED 

(A) Heatmap showing scores of 12861 epithelial cells (column, from 6 CRPC 

patients) for each of 60 programs (rows) derived from NMF analysis of indi-

vidual sample. Cells and programs are hierarchically clustered, and 3 

NE-related meta-programs (P1, P2 and P4) and a cell cycle-related me-

ta-program (P3) are highlighted. (B) Enrichment scores of prostate lineages: 

basal, luminal, NE marker genes and AR, stemness, EMT and cell cycle 

pathway genes in cells ordered as in Fig. 6A, with the color-coding for the 
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corresponding CRPC sample. (C) Pearson correlation between the expression 

of genes of P1, P2 and P4 and the NE score, as measured by the average 

expression of 14 known NE markers. Three previously published bulk 

RNA-Seq datasets were used in this analysis, as described in method part. 

Highlighted in red are some known NED genes. (D) Heatmap depicting strong 

expression of 120 genes (Pearson R ≥ 0.3, as measured by Pearson correla-

tion analysis shown in Fig. 6C) in AR-NE+ group of Morrissey dataset. Total 

samples are divided into five groups as previously suggested in ref.40.  

Fig.7 Transcription factor regulatory networks underlying NED 

(A) Heatmap of SCENIC binary regulon activities (row) and NE scores (row) of 

12,861 epithelial cells (column). Three TF regulatory networks with high activi-

ties in NE cells were highlighted. (B) Heatmap of the mean regulon activities 

(row) that differentially expressed on epithelial clusters (column) of patient #4. 

(C) t-SNE on the SCENIC regulon activity matrix and the representative regu-

lon activities on epithelial cells from patient #4. Cells are colored by the cor-

responding cluster and gradient of regulon activity (grey to red). (D) Heatmap 

of the mean regulon activities (row) that differentially expressed on epithelial 

clusters (column) of patient #6. (E) t-SNE on the SCENIC regulon activity ma-

trix and the representative regulon activities on epithelial cells from patient #6. 

Cells are colored by the corresponding cluster and gradient of regulon activity 

(grey to red). 
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Fig.8 Cellular relationship and disease progression model of NEPC  

Schematic illustration of tumor evolution toward the neuroendocrine phenotype, 

in which dotted arrows indicate the potential relationship between cell lineages 

and the solid arrows indicate that NEPC is directly originated from 

AR-dependent tumor cells. In this model, we suppose that the NE precursor, 

AR-independent tumor cell, is directly transdifferentiate from the luminal-like 

tumor cell, and that is the precursor, which will next evolve in forming the focal 

NEPC and finally progress to small-cell (pure) NEPC. The extent of AR and NE 

signature scores vary over the spectrum of adenocarcinoma to neuroendo-

crine transdifferentiation (orange indicates a high level of AR signal and green 

indicates a high level of NE signal). 

Fig.S1 CT images of 5 prostate tumors  

CT images showing the tumor sites of five CRPC patients. Red arrows indicate 

the biopsy sites in each patient. 

Fig.S2 Single-Cell Transcriptomic Profiling of 6 CRPC Tumors  

(A) UMAP visualization of the 21,292 cells from 6 CRPC patients colored by 

clusters and sample origin, respectively. (B) UMAP plots of the 21,291 cells 

from 6 patients with cells colored by the score of marker gene sets for partic-

ular cell types (marker genes and associated cell types are indicated next to 

each plot). The minimum score is indicated by light grey and the maximum 

score is indicated by red. (C) Heatmap shows the expression level of epithelial 
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lineage markers and NE markers. (D) Bar plot for NE index in cells that 

grouped by cell type (Data are mean ± SD). 

Fig.S3 Cell identity determination by inferred copy number variation 

(CNV) analysis  

Chromosomal landscape of inferred large-scale CNVs for tumor cells from 6 

patients, in which epithelial cells from 3 healthy men were set as the reference 

"normal" cells. The color bar in row indicates for 22 chromosomes while which 

in column indicates for corresponding patient.  

Fig.S4 Clonal analysis of patient #4 and #6 by inferred copy number 

variation (CNV) analysis 

(A and B) Chromosomal landscape (left) of inferred large-scale CNVs for epi-

thelial cells from patient #4 (A) and #6 (B), in which epithelial cells from 3 

healthy men were set as the reference "normal" cells. The color bar in row in-

dicates for 22 chromosomes while which in column indicates for corresponding 

Seurat cluster. UMAP visualization of average inferred CNV signals (right). 
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Table 1 - Clinical characteristics of the 6 CRPC patients 

Patient ID Age 

PSA level at 

diagnosis of 

Pca (ng/ml) 

The 

Gleason 

score at 

diagnosis of 

Pca 

The TNM 

stage at di-

agnosis of 

Pca 

First-line ther-

apy 

Second-line 

therapy 

Time from 

treatment 

start to 

CRPC (mo) 

Time from 

CRPC to 

now (mo) 

PSA level 

at present 

(ng/ml) 

The TNM 

stage at 

present 

Patient #1 82 8.88 4+5=9 cT2cN0M0 
Goserelin, bi-

calutamide 
None 9 0.5 5.85 cT4N0M0 

Patient #2 82 56.53 4+3=7 cT3bN1M0 
Goserelin, bi-

calutamide 
None 15.9 3.2 18.57 cT3bN0M0 

Patient #3 86 55.16 4+4=8 cT2cN0M0 
Goserelin, bi-

calutamide 
None 15.9 3.7 11.76 cT2cN0M0 

Patient #4 78 ＞149 4+3=7 cT4N0M0 

Bilateral or-

chidectomy, 

bicalutamide 

Docetaxel, 

Abiraterone 
12.5 18.6 117.95 cT4N0M1 

Patient #5 65 15.6 4+4=8 cT3bN1M1a 

Bilateral or-

chidectomy, 

bicalutamide 

None 27.8 2.6 0.9 cT4N1M1 

Patient #6 70 72.72 
small-cell 

NEPC 
cT4N1M1 Docetaxel None 14.8 3.7 7.18 cT3bN0M1 

PSA, prostate specific antigen; Pca, prostate cancer; TNM, tumor node metastasis; CRPC, castration-resistant prostate cancer; NEPC, 

neuroendocrine prostate cancer. 
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