# 1 Chromosome-level genome assembly of the African pike,

# 2 Hepsetus odoe

- 3
- 4 Xiao  $\text{Du}^{1,2,3,*}$ , Xiaoning Hong<sup>1,2,3,4,\*</sup>, Guangyi Fan<sup>1,2,3,\*</sup>, Xiaoyun Huang<sup>1,2,3</sup>, Shuai
- 5 Sun<sup>1,2,3</sup>, Ouyang Bingjie<sup>1,2,3</sup>, He Zhang<sup>1,2,3</sup>, Mengqi Zhang<sup>1,2,3</sup>, Shanshan Liu<sup>1,2,3</sup>, Xin
- 6 Liu<sup>1,2,3,#</sup> & Wenwei Zhang<sup>2,#</sup>
- 7
- <sup>8</sup> <sup>1</sup> BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- 9 <sup>2</sup> BGI-Shenzhen, Shenzhen, 518083, China
- 10 <sup>3</sup> China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
- <sup>4</sup>BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 236009,
- 12 China
- <sup>\*</sup> These authors contributed equally: Xiao Du, Xiaoning Hong, and Guangyi Fan
- 14
- 15
- <sup>#</sup>Correspondence authors: Xin Liu (<u>liuxin@genomics.cn</u>); Wenwei Zhang
- 17 (zhangww@genomics.cn)

#### 18 Abstract

19 The order Characiformes is one of the largest components of the freshwater teleost fauna 20 inhabiting exclusively in South America and Africa with great ecological and economical 21 significance. Yet, quite limited genomic resources are available to study this group and 22 their transatlantic vicariance. In this study we present a chromosome-level genome 23 assembly of the African pike (*Hepsetus odoe*), a representative member of the African 24 Characiformes. To this end, we generated 119, 11, and 67 Gb reads using the single tube 25 long fragment read (stLFR), Oxford Nanopore, and Hi-C sequencing technologies, 26 respectively. We obtained an 862.1 Mb genome assembly with the contig and scaffold 27 N50 of 347.4 kb and 25.8 Mb, respectively. Hi-C sequencing produced 29 chromosomes 28 with 742.5 Mb, representing 86.1% of the genome. 24,314 protein-coding genes were 29 predicted and 23,999 (98.7%) genes were functionally annotated. The chromosomal-scale 30 genome assembly will be useful for functional and evolutionary studies of the African 31 pike and promote the study of Characiformes speciation and evolution.

32

33

#### 34 Background & Summary

35 The order Characiformes is one of the largest components of the freshwater fish fauna 36 worldwide, comprising about 2,000 ecologically and morphologically diverse fish living 37 in rivers and lakes exclusively in Africa and South America. Characiformes are 38 ecologically important by playing crucial roles in energy flux and material cycling in 39 river systems<sup>1</sup>. Moreover, they have great significance for local economy because of diet 40 component of livestock and humans<sup>2</sup>. As Characiformes are exclusively freshwater fishes, 41 their transatlantic distribution was proposed ascribed to the split of South America and 42 Africa in the Early Cretaceous fragmentation of western Gondwana<sup>3</sup>. This distribution 43 across the Atlantic Ocean displays asymmetry in the number of species, with *circa* 220 44 reported species in Africa and over 1,700 species in South America. High fragmentation 45 has been reported in the South American species, compared to the lower fragmentation and variability in African ones<sup>4,5</sup>. However, guite limited genomic information has been 46 available to study the Characiformes vicariance. Despite the large amount and high 47 48 diversity of species, presently only three genomes from two families *Characidae* 

49 (Astyanax mexicanus) and Serrasalmidae (Pygocentrus nattereri, Colossoma

50 *macropomum*) have been released in Characiformes, which all belong to the South

51 American lineages. No genomes of African Characiformes have been reported. Genomic

52 studies of African Characiformes would highly promote the understanding of

53 Characiformes evolution and speciation during the continent fragmentation.

54

55 African pike, *Hepsetus odoe*, is a representative African Characiformes that belongs to 56 the family *Hepsetidae*. It is a torpedo-shaped predatory and piscivorous species distributed in the freshwater basins in central and western Africa<sup>6</sup>, bearing a striking 57 58 resemblance to the European pike. One of the most striking features is their dentition 59 with the lower jaw filled with two rows of sharp point teeth while the upper with only 60 one raw. Due to roles in freshwater food chain and diet component of livestock and 61 humans, *H.odoe* are biologically and economically important<sup>2</sup>. *H.odoe* was reported the 62 only species in the *Hepsetidae* family, until recently five additional species were 63 described by recent studies<sup>6,7</sup>. Despite of the high economic and evolutionary importance, 64 no genome data are available for this group.

65

66 A high-quality genome assembly of the African pike will highly facilitate the study of its 67 functional and evolutional genomics, which also will promote the understanding of other 68 African Characiformes along with their divergence from the South American Characiformes. Therefore, in this study we report a chromosome-scale genome assembly 69 of *H.odoe* using single tube long fragment read (stLFR)<sup>8</sup>, Oxford Nanopore, and Hi-C 70 71 technologies (Additional file 1: Fig. S1). We obtained a genome assembly of 862.1 Mb 72 with the contig and scaffold N50 of 347.4 kb and 25.8 Mb, respectively. With 73 chromosome-level scaffolding, 29 scaffolds were constructed corresponding to 29 74 chromosomes with a total length of 742.5 Mb, representing 86.1% of all genome 75 sequences. 24,314 protein-coding genes were predicted in the assembly, and 98.7% of 76 them were functionally annotated. The chromosomal-level genome assembled here will 77 be useful for functional and evolutionary research of the African pike. It is the first 78 genome assembly in the African Characiformes and will promote the understanding of 79 Characiformes speciation and evolution.

80

#### 81 Methods

#### 82 Sampling and sequencing

83 Long genomic DNA (gDNA) from muscle tissue of a male African pike was isolated 84 using a conventional approach for sufficient DNA quality<sup>9</sup>. DNA integrity was checked using agarose gel electrophoresis. The sequencing libraries were constructed via stLFR 85 86 technology according to the standard protocol via the MGIEasy stLFR library preparation kit (PN:1000005622)<sup>10</sup> and were sequenced on BGISEQ-500 platform. To overcome the 87 88 gaps (long ambiguous sequences) induced by repeats, library preparation and sequencing 89 were performed on the MinION nanopore sequencer (Oxford Nanopore Technologies, 90 Oxford, UK) for generating long reads, following the base protocols of Oxford Nanopore. 91 To get a high-resolution genome contact map, we used *in situ* Hi-C according to the protocol of previous study with some modifications<sup>11</sup>. The restriction endonuclease MboI 92 93 was used to digest DNA, followed by biotinylated residue labeling. The Hi-C library was 94 sequenced on BGISEQ-500 platform with 100 bp pair-end sequencing.

95

### 96 Ethics statement

97 The adult male African pike was purchased from the fish and aquarium market in

98 Guangzhou, Guangdong Province, China in May 2018. The experimental procedures

followed the guidelines approved by the institutional review board on bioethics and

100 biosafety of BGI (IRB-BGI). The experiment was authorized by the IRB-BGI (under NO.

FT17007). The review procedures in IRB-BGI meet good clinical practice (GCP)principles.

103

#### 104 De novo assembly, and chromosome construction

105 The k-mer frequency distribution analysis<sup>12</sup> was used to estimate the African pike

106 genome size. According to the 17-mer analysis, the genome size of African pike was

107 estimated to be 995 Mb (Table 2; Additional file 1: Fig. S2).

108

109 We obtained 118.6 Gb (~141X; Table 1) raw sequencing reads from stLFR. We used

110 SOAPfilter v.2.2, a package in SOAPdenovo $2^{13}$  to filter reads with low quality reads (>

#### 111 40% low-quality bases, Q <7), PCR duplication, or adapter contamination. After filtering,

- 112 60.4 Gb (~72X; Table 1) clean reads were obtained for genome assembly. Supernova
- assembler v2.0.1 (10X Genomics, Pleasanton, CA) was used to build contigs and
- scaffolds, and gaps were closed by GapCloser  $(v1.2)^{13}$ . With stLFR data, the generated
- 115 African pike assembly was 859.2 Mb. The contig and scaffold N50 were 43.9 kb and 5.1
- 116 Mb, respectively (Table 3). On basis of that, we generated a total of 11.0 Gb (~13X;
- 117 Table 1) long reads on the MinION nanopore sequencer to further fill the gaps using
- 118 TGSGapFiller<sup>14</sup> with default parameters. After gap filling, the contig length was highly
- elevated with contig N50 of 352.1 kb (Table 3).
- 120

Reads from Hi-C library<sup>15</sup> were used to generate a chromosomal-level genome assembly. 121 122 First, we obtained 65.8 Gb (~76X, Table 1) clean sequencing data from the Hi-C library 123 by removing reads containing more than 1% unidentified (N) bases and low-quality bases (quality value < 10) using SOAPnuke (v1.5.4)<sup>16</sup> with parameters "-1 10 -q 0.1 -n 0.01 -Q 124 125 2". Next, we used HiC-Pro pipeline  $(v2.8.0)^{17}$  for quality control to generate valid reads. 126 Of all 658,260,000 raw pair-end reads, there were 22.78% valid (149,912,370) paired Hi-C reads suitable for following analysis. We used Juicer  $(v.1.5)^{18}$ , an open-source and 127 128 fully-automated pipeline for pretreatment of Hi-C datasets, for analyzing valid Hi-C 129 datasets and producing the alignment result. Lastly, we applied 3D-DNA workflow (3D *de novo* assembly, v.170123)<sup>19</sup> to create the ordered-and-oriented genome sequences in 130 chromosome level with the main parameter "-m haploid -s 4 -c 29". We assembled 29 131 132 chromosomes of *H. odoe* ranging from 8.03 Mb to 34.85 Mb with the total length of 133 742.5 Mb (Table 4; Fig. 1), which possessed 86.1% of all genome sequences. The final 134 African pike genome assembly spanned 862.1 Mb and 29 chromosomes, accounting for 135 86.6 % of the estimated genome size, with contig and scaffold N50 of 347.4 kb and 25.8 136 Mb, respectively. The constructed 29 chromosomes agreed with the previous karyotype analysis of *H. odoe*<sup>6</sup>. 137

138

#### 139 Gene prediction and functional annotation

140 To facilitate gene prediction in the genome, repetitive elements were identified first. Two

141 methods (*de novo* and homology-based predictions) were performed in the repeat

142 annotation of the African pike genome. In the *de novo* method, a *de novo* library was built via running RepeatModeler  $(v1.0.8)^{20}$  and LTR-FINDER  $(v1.0.6)^{21}$ , and the 143 144 predicted model was applied to identify interspersed repetitive elements by 145 RepeatMasker (v4.0.5). In the homology-based prediction, detection of interspersed repeats was realized by aligning the genome against the Repbase database<sup>22</sup> at DNA and 146 protein levels using RepeatMasker and RepeatProteinMask (v4.0.5)<sup>23</sup>. Tandem repeats 147 148 were predicted by TRF (v4.07). By integrating results of above approaches, 317.3 Mb 149 repetitive sequences were predicted, representing 36.7% of the genome assembly (Table 150 5). Finally, 284.1 Mb TEs were identified, accounting for 32.9% of the genome assembly. 151 The repetitive element annotations were summarized in Table 6. Those repetitive 152 sequences were masked to reduce the interference for the following gene predictions. 153 154 Next, we conducted structural and functional annotation for the assembled genome. For 155 structural annotation, both homology-based and *de novo* prediction approaches were applied. In *de novo* prediction, AUGUSTUS (v3.1)<sup>24</sup> and GENSCAN (v2009)<sup>25</sup> were 156 157 utilized to predict the gene model with zebrafish data as a training set, and 23,163 and 158 29,084 protein-coding genes were predicted, respectively (Table 7). The homology-based 159 prediction of genome assembly was realized by referring to the NCBI protein repertoires 160 of six homologous species including Mexican tetra (Astyanax mexicanus), red-bellied 161 piranha (*Pygocentrus nattereri*), channel catfish (*Ictalurus punctatus*), common carp 162 (Cyprinus carpio), iridescent shark (Pangasianodon hypophthalmus), and zebrafish 163 (Danio rerio). After mapping the protein sequences to the repeat-masked African pike genome using BLAST<sup>26</sup> (*E*-value cutoff of  $1xE^{-5}$ ), GeneWise  $(v2.4.1)^{27}$  was used to 164 165 predict gene models by aligning homologous genome sequences against the matched 166 proteins. Lastly, we preformed GLEAN to integrate all above gene models and obtained a 167 non-redundant gene set consisting of 24,314 protein-coding genes (Table 7). There were 168 9.77 exons per gene and the average length of coding sequences (CDS) was 1,712 bp (Table 7). Gene function was annotated with TrEMBL<sup>28</sup>, Swissprot<sup>28</sup>, InterPro<sup>29</sup>, Gene 169 Ontology<sup>30</sup>, and Kyoto Encyclopedia of Genes and Genomes (KEGG)<sup>31</sup> databases. 170 171 Ultimately, 23,999 genes (98.7% of the total) in African pike were functionally annotated 172 (Table 8).

#### 173

#### 174 Genome features of the African pike

| 175 | CpG islands (CGIs), which are a significant group of CpG dinucleotide repeats in                    |
|-----|-----------------------------------------------------------------------------------------------------|
| 176 | genome regions, are functionally important for genomic studies. The CGIs were                       |
| 177 | identified across the genome using CpGIScan <sup>32</sup> . Ultimately, 24,297 CGIs were identified |
| 178 | with a total length of 15.5 Mb. A range of genome features including gene density, repeat           |
| 179 | content, GC content, and GGI content were summarized and depicted in Fig. 2a. The                   |
| 180 | CpG density was found positively correlated with GC content, gene density, and repeat               |
| 181 | content (Fig. 2b), following a similar pattern observed in other published fish and                 |
| 182 | mammals genomes <sup>33-35</sup> .                                                                  |

183

#### 184 Gene family identification

185 Gene family analysis among species provides significant insights into phylogenetic and

186 evolutionary studies. The protein-coding genes from the African pike assembly, two

187 sequenced species in order Characiformes (A. mexicanus and P. nattereri), and five other

188 sequenced species including Atlantic salmon (Salmo salar), yellow catfish (*Tachysurus* 

189 *fulvidraco*), northern pike (*Esox lucius*), electric eel (*Electrophorus electricus*), and

190 zebrafish (Danio rerio) were downloaded from NCBI database and analyzed. All-versus-

all protein similarities were computed using  $BLASTP^{26}$  and the alignment results were

192 used by TreeFam  $(v4.0)^{36}$  to deduce homologous gene sequences and identify gene

193 families. Orthologue clustering analysis of predicted genes was conducted using MCL

algorithm (Fig. 3a). Finally, we identified 9,661 gene families in the African pike genome

195 (Additional file 1: Table S1). Compared to the two South American Characiformes (A.

196 *mexicanus* and *P. nattereri*) and the zebrafish (*D. rerio*), 221 gene families were unique

197 in African pike (Fig. 3b).

198

#### 199 **Phylogenetic analysis**

200 To study the evolutionary position of African pike, 3,106 single-copy genes from the

above seven species were used for constructing phylogenetic tree and estimating

202 divergence time. Protein sequences of single-copy gene families were aligned by

203 MUSCLE  $(v3.8.31)^{37}$  and then were concatenated into a supergene matrix for each

| 204 | species. The alignment results were processed into PhyML (v $3.0$ ) <sup>37,38</sup> to construct a ML      |
|-----|-------------------------------------------------------------------------------------------------------------|
| 205 | phylogenetic tree. Divergence time was inferred using the MCMCTree from the PAML                            |
| 206 | package <sup>39</sup> . Divergence times from TimeTree database <sup>40</sup> were applied for calibration, |
| 207 | which include splits between E. lucius and D. rerio (198-211 Mya), between D. rerio and                     |
| 208 | T. fulvidraco (170-183 Mya), and between T. fulvidraco and E. electricus (122-136 Mya).                     |
| 209 | The phylogenetic tree showed that <i>H. odoe</i> was most closely related to <i>P. nattereri</i> with a     |
| 210 | divergence time around 73.8 Mya, and together the clade formed the sister group to $A$ .                    |
| 211 | mexicanus (Fig. 4a). The African family (H. odoe) was dispersed among the South                             |
| 212 | American families (P. nattereri than A. mexicanus). Although sharing similar pike-like                      |
| 213 | forms, the African pike was distantly related to the northern pike (E. lucius) with a                       |
| 214 | divergence time around 205 Mya.                                                                             |
| 215 |                                                                                                             |
| 216 |                                                                                                             |
| 217 | Expansion and contraction of gene families                                                                  |
| 218 | Based on the gene family clustering results and divergence time estimation, we used Café                    |
| 219 | $(v2.1)^{41}$ to estimate the gene family expansion and contraction events during speciation.               |
| 220 | Results showed that in African pike genome 769 gene families were found expanded and                        |
| 221 | 1,346 gene families were contracted (Fig. 4a). The 284 significantly expanded and 81                        |
| 222 | significantly contracted gene families (p< 0.05; Additional file 1: Table S2) in African                    |
| 223 | pike were annotated with KEGG ortholog functions. Among that 93 (32.7%) gene                                |
| 224 | families were strikingly expanded in immune system (Fig. 4b).                                               |
| 225 |                                                                                                             |

# 226 Data Records

The sequencing data and genome assembly of the African pike were deposited in NCBI
under BioProject accession PRJNA625402. The datasets reported in this study are also
available in the CNGB Nucleotide Sequence Archive (CNSA: <a href="https://db.cngb.org/cnsa">https://db.cngb.org/cnsa</a>;
accession number CNP0001012).

231

## 232 Technical Validation

233 Assessment of genome assembly

The contig and scaffold N50 of the African pike genome were 347.4 kb and 25.8 Mb

- respectively, with the longest scaffold 34,852,849 bp. We assessed the quality of the
- assembled genome using the Benchmarking Universal Single-copy Orthologs (BUSCO
- $v_{3.0.2}^{42}$ . The assembly reached 90.7% ~92.4% completeness compared to single-copy
- ortholog gene sets from atinopterygii, metazoans, and vertebrates in BUSCOs (Table 9).
- 239 This demonstrates the high completeness of our genome assembly.
- 240

Next, we evaluated the assembly of the twenty-nine chromosomes. The genome assembly was divided into 100kb bins. The signal for the interaction between any two bins was defined by the count of Hi-C reads covered by those bins, and the signal intensities were depicted in a heat map. The Hi-C heat map clearly split the bins into 29 blocks, and bins within the same chromosome showed substantially larger signal intensities than bins distributed on different chromosomes (Fig. 1). This demonstrates the high quality of the chromosome assembly.

248

#### 249 Gene prediction and annotation validation

250 Repetitive sequences in the assembly were masked before gene annotation. Gene model 251 prediction in the African pike was realized by using a combination of *de novo* and 252 homology-based approaches. Then the gene prediction results were integrated into a 253 consensus gene set by GLEAN. Annotation completeness of the African pike gene set 254 was assessed by BUSCO, reaching 92.5%~96.4% completeness (Table 9). In addition, 255 functional annotation of the predicted genes showed that 98.7% of them could be 256 assigned into at least one functional term (Table 8). These results clearly indicate the 257 annotated gene set is quite complete.

258

## 259 Code Availability

All commands used in the analysis were executed by following the manual of the

- 261 corresponding bioinformatics tools. There were no any custom specific codes.
- 262

#### 263 Acknowledgements

- 264 This work was supported by the special funding of "Blue granary" scientific and
- technological innovation of China (2018YFD0900301-05). We also thank for the
- technical supports from China National Genebank in stLFR library construction and
- sequencing.
- 268

### 269 Author Contributions

- 270 G. F., H. Z., and X. L. designed the study. G. F., X. L., and W. Z. supervised the study.
- 271 M. Z. and S. L. contributed to sample collection and sequencing experiments. X. D., X.
- Hong, S. S., X. Huang and B.O. performed bioinformatics analyses. X. D., X. Hong, and
- 273 G. F. wrote the manuscript.
- 274

### 275 Competing interests

276 The authors declare no competing interests.

# 277 **References**

| 278 | 1 | Taylor, B. W., Flecker, A. S. & Hall, R. O., Jr. Loss of a harvested fish species  |
|-----|---|------------------------------------------------------------------------------------|
| 279 |   | disrupts carbon flow in a diverse tropical river. Science 313, 833-836,            |
| 280 |   | doi:10.1126/science.1128223 (2006).                                                |
| 281 | 2 | Ogunola, O. S., Onada, O. A. & Falaye, A. E. Preliminary evaluation of some        |
| 282 |   | aspects of the ecology (growth pattern, condition factor and reproductive biology) |
| 283 |   | of African pike, Hepsetus odoe (Bloch 1794), in Lake Eleiyele, Ibadan, Nigeria.    |
| 284 |   | Fisheries & Aquatic Science 21, 12.                                                |
| 285 | 3 | Calcagnotto, D., Schaefer, S. A. & DeSalle, R. Relationships among characiform     |
| 286 |   | fishes inferred from analysis of nuclear and mitochondrial gene sequences.         |
| 287 |   | Molecular phylogenetics and evolution <b>36</b> , 135-153,                         |
| 288 |   | doi:10.1016/j.ympev.2005.01.004 (2005).                                            |
| 289 | 4 | Orti, G. & Meyer, A. The radiation of characiform fishes and the limits of         |
| 290 |   | resolution of mitochondrial ribosomal DNA sequences. Syst Biol 46, 75-100,         |
| 291 |   | doi:10.1093/sysbio/46.1.75 (1997).                                                 |
| 292 | 5 | Carvalho, P. C. et al. First Chromosomal Analysis in Hepsetidae (Actinopterygii,   |
| 293 |   | Characiformes): Insights into Relationship between African and Neotropical Fish    |
| 294 |   | Groups. Frontiers in genetics 8, doi:10.3389/fgene.2017.00203 (2017).              |
| 295 | 6 | Carvalho, P. C. et al. First Chromosomal Analysis in Hepsetidae (Actinopterygii,   |
| 296 |   | Characiformes): Insights into Relationship between African and Neotropical Fish    |
| 297 |   | Groups. Frontiers in genetics 8, 203, doi:10.3389/fgene.2017.00203 (2017).         |
| 298 | 7 | Decru, E., Vreven, E. & Snoeks, J. A revision of the Lower Guinean Hepsetus        |
| 299 |   | species (Characiformes; Hepsetidae) with the description of Hepsetus kingsleyae    |
| 300 |   | sp. nov. Journal of fish biology 82, 1351-1375, doi:10.1111/jfb.12079 (2013).      |
| 301 | 8 | Wang, O. et al. Efficient and unique cobarcoding of second-generation              |
| 302 |   | sequencing reads from long DNA molecules enabling cost-effective and accurate      |
| 303 |   | sequencing, haplotyping, and de novo assembly. Genome Research 29, 798-808,        |
| 304 |   | doi:10.1101/gr.245126.118 (2019).                                                  |
| 305 | 9 | Panova, M. et al. in Marine genomics (ed S. Bourlat) 13-44 (Humana Press,          |
| 306 |   | 2016).                                                                             |
|     |   |                                                                                    |

| 307 | 10 | Wang, O. et al. Efficient and unique cobarcoding of second-generation            |
|-----|----|----------------------------------------------------------------------------------|
| 308 |    | sequencing reads from long DNA molecules enabling cost-effective and accurate    |
| 309 |    | sequencing, haplotyping, and de novo assembly. Genome Res 29, 798-808,           |
| 310 |    | doi:10.1101/gr.245126.118 (2019).                                                |
| 311 | 11 | Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals    |
| 312 |    | principles of chromatin looping. Cell 159, 1665-1680,                            |
| 313 |    | doi:10.1016/j.cell.2014.11.021 (2014).                                           |
| 314 | 12 | Li, R. et al. The sequence and de novo assembly of the giant panda genome.       |
| 315 |    | Nature 463, 311-317, doi:10.1038/nature08696 (2010).                             |
| 316 | 13 | Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-      |
| 317 |    | read de novo assembler. Gigascience 1, 18, doi:10.1186/2047-217X-1-18 (2012).    |
| 318 | 14 | Guo, L. & Deng, L. 10.5281/zenodo.3446281 (2019).                                |
| 319 | 15 | Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies   |
| 320 |    | based on chromatin interactions. Nature Biotechnology 31, 1119-1125,             |
| 321 |    | doi:10.1038/nbt.2727 (2013).                                                     |
| 322 | 16 | Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for        |
| 323 |    | integrated quality control and preprocessing of high-throughput sequencing data. |
| 324 |    | <i>Gigascience</i> <b>7</b> , gix120 (2017).                                     |
| 325 | 17 | Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data     |
| 326 |    | processing. Genome Biology 16, 259, doi:10.1186/s13059-015-0831-x (2015).        |
| 327 | 18 | Durand, N. C. et al. Juicer Provides a One-Click System for Analyzing Loop-      |
| 328 |    | Resolution Hi-C Experiments. Cell systems 3, 95-98,                              |
| 329 |    | doi:10.1016/j.cels.2016.07.002 (2016).                                           |
| 330 | 19 | Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C     |
| 331 |    | yields chromosome-length scaffolds. Science 356, 92-95,                          |
| 332 |    | doi:10.1126/science.aal3327 (2017).                                              |
| 333 | 20 | Smith, A. & Hubley, R. (2008-2015).                                              |
| 334 | 21 | Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-      |
| 335 |    | length LTR retrotransposons. Nucleic Acids Res. 35, W265-W268,                   |
| 336 |    | doi:10.1093/nar/gkm286 (2007).                                                   |
|     |    |                                                                                  |

| 337<br>338<br>339 | 22 | Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. <i>Mobile DNA</i> <b>6</b> , 11, doi:10.1186/s13100-015-0041-9 (2015). |
|-------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 340               | 23 | Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive                                                                                                            |
| 341               |    | elements in genomic sequences. Current protocols in bioinformatics 25, 4-10                                                                                                         |
| 342               |    | (2009).                                                                                                                                                                             |
| 343               | 24 | Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts.                                                                                                        |
| 344               |    | Nucleic Acids Research 34, W435-W439, doi:10.1093/nar/gkl200 (2006).                                                                                                                |
| 345               | 25 | Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic                                                                                                      |
| 346               |    | DNA. Journal of Molecular Biology 268, 78-94, doi:10.1006/jmbi.1997.0951                                                                                                            |
| 347               |    | (1997).                                                                                                                                                                             |
| 348               | 26 | Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local                                                                                                     |
| 349               |    | alignment search tool. Journal of Molecular Biology 215, 403-410,                                                                                                                   |
| 350               |    | doi:10.1016/S0022-2836(05)80360-2 (1990).                                                                                                                                           |
| 351               | 27 | Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome                                                                                                                  |
| 352               |    | Research 14, 988-995, doi:10.1101/gr.1865504 (2004).                                                                                                                                |
| 353               | 28 | Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its                                                                                                         |
| 354               |    | supplement TrEMBL in 2000. Nucleic Acids Res 28, 45-48,                                                                                                                             |
| 355               |    | doi:10.1093/nar/28.1.45 (2000).                                                                                                                                                     |
| 356               | 29 | Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids                                                                                               |
| 357               |    | Res 37, D211-215, doi:10.1093/nar/gkn785 (2009).                                                                                                                                    |
| 358               | 30 | Harris, M. A. et al. The Gene Ontology (GO) database and informatics resource.                                                                                                      |
| 359               |    | Nucleic Acids Res 32, D258-261, doi:10.1093/nar/gkh036 (2004).                                                                                                                      |
| 360               | 31 | Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes.                                                                                                              |
| 361               |    | Nucleic Acids Res 28, 27-30, doi:10.1093/nar/28.1.27 (2000).                                                                                                                        |
| 362               | 32 | Fan, Z., Yue, B., Zhang, X., Du, L. & Jian, Z. CpGIScan: an ultrafast tool for                                                                                                      |
| 363               |    | CpG islands identification from genome sequence. Current Bioinformatics 12,                                                                                                         |
| 364               |    | 181-184 (2017).                                                                                                                                                                     |
| 365               | 33 | Barazandeh, A., Mohammadabadi, M., Ghaderi-Zefrehei, M. & Nezamabadi-                                                                                                               |
| 366               |    | Pour, H. Genome-wide analysis of CpG islands in some livestock genomes and                                                                                                          |
|                   |    |                                                                                                                                                                                     |

| 367 |    | their relationship with genomic features. Czech Journal of Animal Science 61,      |
|-----|----|------------------------------------------------------------------------------------|
| 368 |    | 487-495 (2016).                                                                    |
| 369 | 34 | Han, L., Su, B., Li, W. H. & Zhao, Z. CpG island density and its correlations with |
| 370 |    | genomic features in mammalian genomes. Genome Biology 9, R79,                      |
| 371 |    | doi:10.1186/gb-2008-9-5-r79 (2008).                                                |
| 372 | 35 | Wright, S. I., Agrawal, N. & Bureau, T. E. Effects of recombination rate and gene  |
| 373 |    | density on transposable element distributions in Arabidopsis thaliana. Genome      |
| 374 |    | Research 13, 1897-1903, doi:10.1101/gr.1281503 (2003).                             |
| 375 | 36 | Li, H. et al. TreeFam: a curated database of phylogenetic trees of animal gene     |
| 376 |    | families. Nucleic Acids Research 34, D572-D580, doi:10.1093/nar/gkj118 (2006).     |
| 377 | 37 | Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high       |
| 378 |    | throughput. Nucleic Acids Res 32, 1792-1797, doi:10.1093/nar/gkh340 (2004).        |
| 379 | 38 | Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood       |
| 380 |    | phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59, 307-321,        |
| 381 |    | doi:10.1093/sysbio/syq010 (2010).                                                  |
| 382 | 39 | Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Molecular            |
| 383 |    | Biology and Evolution 24, 1586-1591, doi:10.1093/molbev/msm088 (2007).             |
| 384 | 40 | Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: a public knowledge-base of         |
| 385 |    | divergence times among organisms. Bioinformatics 22, 2971-2972,                    |
| 386 |    | doi:10.1093/bioinformatics/bt1505 (2006).                                          |
| 387 | 41 | Hahn, M. W., Demuth, J. P. & Han, S. G. Accelerated rate of gene gain and loss     |
| 388 |    | in primates. Genetics 177, 1941-1949, doi:10.1534/genetics.107.080077 (2007).      |
| 389 | 42 | Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E.   |
| 390 |    | M. BUSCO: assessing genome assembly and annotation completeness with               |
| 391 |    | single-copy orthologs. Bioinformatics 31, 3210-3212 (2015).                        |
| 392 |    |                                                                                    |

# 393 Tables and figures

|           | Raw         | v data              | High-quality data |                  |  |
|-----------|-------------|---------------------|-------------------|------------------|--|
| Libraries | Total bases | Sequencing<br>depth | Total bases       | Sequencing depth |  |
|           | (Gb)        | (×)                 | (Gb)              | (x)              |  |
| stLFR     | 118.6       | 141.2               | 60.38             | 71.88            |  |
| Nanopore  | NA          | NA                  | 11.02             | 13.12            |  |
| Hi-C      | 66.86       | 77.47               | 65.82             | 76.25            |  |

#### **Table 1 Sequencing results for African pike genome assembly.**

#### 397 Table 2 K-mer analysis for African pike genome.

|     | Κ  | K-mer Number   | K-mer Depth | Genome Size (bp) | Used Bases     | Used Reads  |
|-----|----|----------------|-------------|------------------|----------------|-------------|
|     | 17 | 47,775,728,489 | 48          | 995,327,676      | 57,662,825,000 | 576,628,250 |
| 398 |    |                |             |                  |                |             |

#### **Table 3 Assembly statistics for the African pike.**

|                        | stLFR       |             | stLFR+ Nanopore |             | stLFR+ Nanopore+ HiC |             |  |
|------------------------|-------------|-------------|-----------------|-------------|----------------------|-------------|--|
|                        | Contig      | Scaffold    | Contig          | Scaffold    | Contig               | Scaffold    |  |
| Number                 | 52,742      | 26,897      | 31,798          | 26,897      | 31,612               | 25,653      |  |
| Length (bp)            | 793,428,541 | 859,230,819 | 848,265,930     | 864,075,354 | 846,590,441          | 862,056,730 |  |
| Maximum length<br>(bp) | 520,087     | 20,559,849  | 2,339,471       | 20,475,446  | 2,339,471            | 34,852,849  |  |
| Average length (bp)    | 15,043      | 31,945      | 26,676          | 32,125      | 26,250               | 32,805      |  |
| N50                    | 43,947      | 5,131,134   | 352,135         | 5,146,741   | 347,381              | 25,843,955  |  |
| N90                    | 6,949       | 9,946       | 9,400           | 10,077      | 9,250                | 9,853       |  |
| N rate (%)             | 0.00        | 7.65        | 0.00            | 1.82        | 0.00                 | 1.79        |  |
| GC content (%)         | 41.30       | 41.30       | 41.37           | 41.37       | 41.37                | 41.37       |  |

| Chromosome | Number of contigs | Length of contigs(bp) |
|------------|-------------------|-----------------------|
| 1          | 174               | 34,852,849            |
| 2          | 155               | 33,370,094            |
| 3          | 191               | 32,320,846            |
| 4          | 163               | 31,998,173            |
| 5          | 169               | 31,241,732            |
| 6          | 150               | 30,610,121            |
| 7          | 231               | 30,524,172            |
| 8          | 175               | 29,799,086            |
| 9          | 132               | 29,196,192            |
| 10         | 157               | 29,175,684            |
| 11         | 145               | 27,911,487            |
| 12         | 133               | 27,279,904            |
| 13         | 104               | 26,912,730            |
| 14         | 144               | 26,647,357            |
| 15         | 118               | 25,843,488            |
| 16         | 137               | 25,843,955            |
| 17         | 130               | 25,569,178            |
| 18         | 131               | 25,245,420            |
| 19         | 122               | 24,922,465            |
| 20         | 153               | 24,594,709            |
| 21         | 216               | 23,062,401            |
| 22         | 116               | 22,653,434            |
| 23         | 166               | 22,465,777            |
| 24         | 82                | 21,478,618            |
| 25         | 168               | 21,151,346            |
| 26         | 121               | 19,748,208            |
| 27         | 135               | 18,283,571            |
| 28         | 48                | 11,790,282            |
| 29         | 76                | 8,027,360             |
| Total      | 4,142             | 742,520,639 (86.1%    |

#### **Table 4 Summary of the assembled 29 chromosomes in the African pike.**

# **Table 5 Prediction of repetitive sequences in African pike.**

| Туре              | Repeat Size (bp) | % of genome |
|-------------------|------------------|-------------|
| TRF               | 42,227,324       | 4.89        |
| RepeatMasker      | 140,715,741      | 16.30       |
| RepeatProteinMask | 36,712,306       | 4.25        |
| De novo           | 292,061,790      | 33.81       |
| Total             | 317,311,789      | 36.73       |

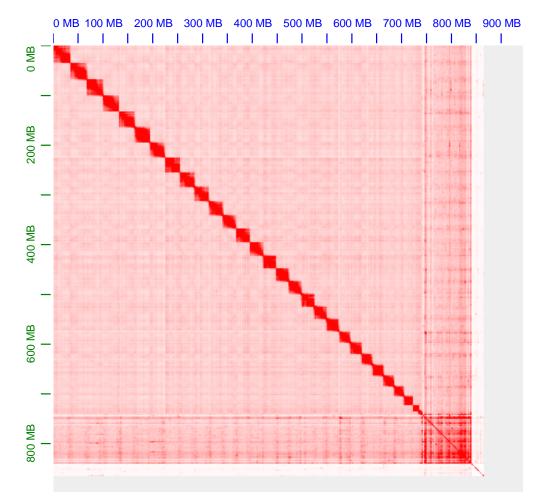
| Туре    | RepBase TEs |             | TE Proteins    |             | De novo     |             | Combined TEs |             |
|---------|-------------|-------------|----------------|-------------|-------------|-------------|--------------|-------------|
|         | Length (bp) | % in genome | Length<br>(bp) | % in genome | Length (bp) | % in genome | Length (bp)  | % in genome |
| DNA     | 64,714,586  | 7.49        | 2,115,720      | 0.25        | 106,985,346 | 12.39       | 140,841,144  | 16.30       |
| LINE    | 49,378,300  | 5.72        | 31,164,294     | 3.61        | 134,752,407 | 15.6        | 153,325,343  | 17.75       |
| SINE    | 25,662,188  | 2.80        | 0.00           | 0.00        | 10,933,947  | 1.27        | 34,624,631   | 4.00        |
| LTR     | 15,943,766  | 1.85        | 3,844,230      | 0.45        | 67,207,893  | 7.78        | 77,013,770   | 8.92        |
| Other   | 17,549      | 0.002       | 0.00           | 0.00        | 0.00        | 0.00        | 17,549       | 0.002       |
| Unknown | 0.00        | 0.00        | 0.00           | 0.00        | 3,180,101   | 0.37        | 3,180,101    | 0.37        |
| Total   | 140,715,741 | 16.30       | 36,712,306     | 4.25        | 268,746,546 | 31.12       | 284,106,647  | 32.89       |

#### **Table 6 Repeat annotation of the African pike assembly.**

#### 411 Table 7 Statistics of gene annotations in African pike assembly.

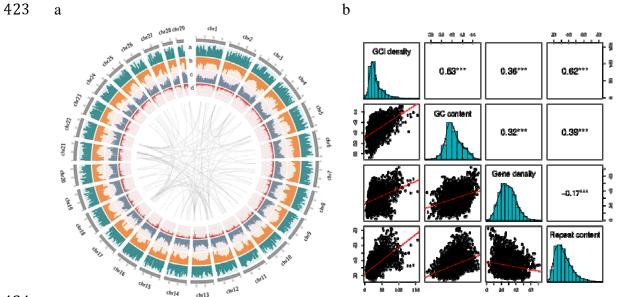
| Ge       | ene set     | Number | Average<br>transcript<br>length (bp) | Average<br>CDS<br>length (bp) | Average<br>exon per<br>gene | Average<br>exon length<br>(bp) | Average<br>intron<br>length (bp) |
|----------|-------------|--------|--------------------------------------|-------------------------------|-----------------------------|--------------------------------|----------------------------------|
| De novo  | Augustus    | 23,163 | 14,343                               | 1,392                         | 7.95                        | 175                            | 1,862                            |
|          | Genscan     | 29,084 | 18,389                               | 1,461                         | 8.06                        | 181                            | 2,398                            |
| Homolog  | I.punctatus | 45,520 | 27,590                               | 2,021                         | 11.57                       | 175                            | 2,418                            |
|          | D.rerio     | 26,485 | 15,268                               | 25,114                        | 8.68                        | 185                            | 3,060                            |
|          | P.nattereri | 45,066 | 29,558                               | 1,968                         | 11.22                       | 175                            | 2,699                            |
|          | P.hyp       | 37,334 | 29,021                               | 2,084                         | 11.95                       | 175                            | 2,461                            |
|          | A.mexicanus | 41,543 | 32,069                               | 1,991                         | 11.54                       | 173                            | 2,855                            |
|          | C.carpio    | 55,544 | 13,199                               | 1,176                         | 6,72                        | 175                            | 2,100                            |
| Combined | GLEAN       | 24,314 | 15,835                               | 1,712                         | 9.77                        | 175                            | 1,610                            |

## 


#### **Table 8 Functional annotations of predicted genes in African pike assembly.**

|             | Database  | Number | Percentage (%) |
|-------------|-----------|--------|----------------|
| Total       |           | 24,314 | 100            |
|             | InterPro  | 23,989 | 96.35          |
|             | GO        | 17,227 | 70.85          |
|             | KEGG      | 21,824 | 89.76          |
|             | Swissprot | 23,012 | 94.65          |
|             | TrEMBL    | 22,970 | 94.47          |
| unannotated |           | 315    | 1.30           |

#### **Table 9 Statistics of the BUSCO assessment.**


|                             | Gene Set                           |                             |                                | Assembly                           |                             |                                   |
|-----------------------------|------------------------------------|-----------------------------|--------------------------------|------------------------------------|-----------------------------|-----------------------------------|
| Types of BUSCOs             | Number of<br>actinopterygii<br>(%) | Number of<br>metazoa<br>(%) | Number of<br>vertebrata<br>(%) | Number of<br>actinopterygii<br>(%) | Number of<br>metazoa<br>(%) | Number<br>of<br>vertebrata<br>(%) |
| Complete BUSCOs             | 4,241<br>(92.5%)                   | 943<br>(96.4%)              | 2,433<br>(94.1%)               | 4,160<br>(90.7%)                   | 901<br>(92.1%)              | 2,531<br>(90.6%)                  |
| Fragmented BUSCOs           | 222 (4.8%)                         | 26 (2.7%)                   | 110 (4.3%)                     | 252 (5.5%)                         | 14 (1.4%)                   | 169<br>(6.5%)                     |
| Missing BUSCOs              | 121 (2.7%)                         | 9 (0.9%)                    | 43 (1.6%)                      | 173 (3.8%)                         | 63 (6.5%)                   | 66 (2.6%)                         |
| Total BUSCO groups searched | 4,584 (100%)                       | 978<br>(100%)               | 2,586<br>(100%)                | 4,584 (100%)                       | 978<br>(100%)               | 2,586<br>(100%)                   |

# 417 Figures



419 Fig. 1 Hi-C chromosome heat map of African pike genome. Each block represents a Hi-C
420 contact between two genomic loci within a 100kb bin. Darker color represents higher

- 421 contact intensity.
- 422



424

425 Fig. 2 Genome features of the African pike. (a) The circos plot of 29 chromosomes in 426 African pike. The tracks from outside to inside are: (1) Gene density, defined as gene 427 counts per million base pairs. (2) Repeat content, defined as the proportion of repetitive 428 elements within 1-Mb windows. It was presented in ratio as divided by the highest value. 429 The axis ranges from 0 to 1. (3) GC content, quantified by the proportion of GC in 430 unambiguous bases in 1-Mb window. It was presented in ratio as divided by the highest 431 value. The axis ranges from 0 to 1. (4) CGI content, defined as CGI counts per million 432 base pairs. The axis ranges from 0 to 200. (b) Correlation matrix among four genome 433 features. The diagonal presents the distributions by histogram for corresponding genome 434 features. The lower triangular matrix presents the bivariate scatter plots with a fitted 435 linear model for each pair of genome features. The upper triangular matrix displays the 436 Pearson correlation results plus significance level for the corresponding genome features. 437 Different asterisks represent different significance levels: *p*-values 0.001 (\*\*\*), 0.01 (\*\*), 438 0.05 (\*).

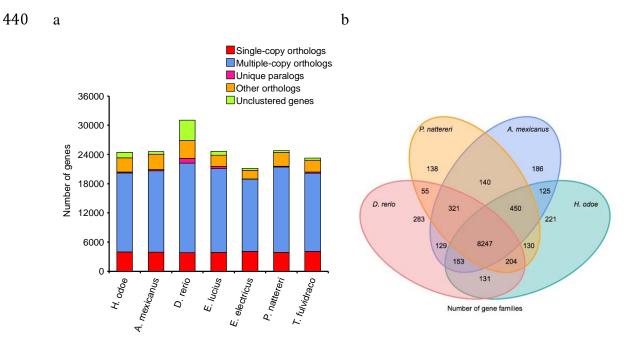
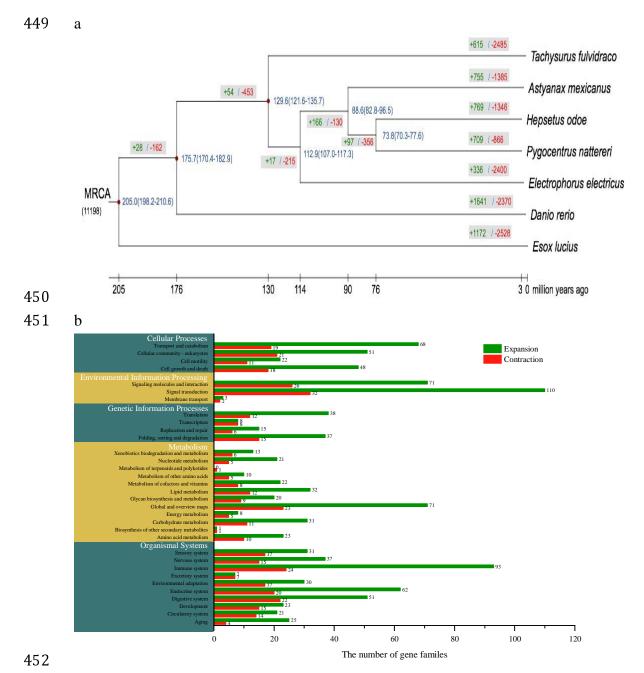
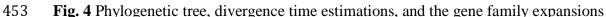
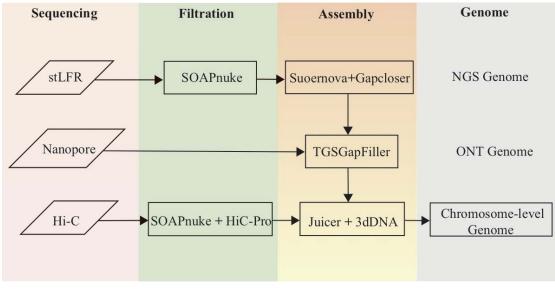
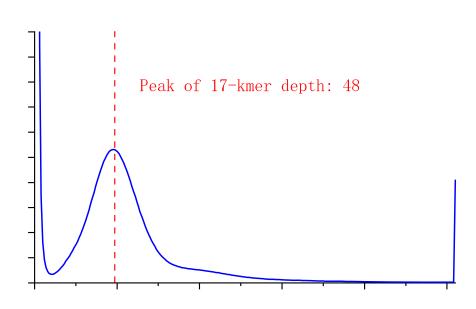







Fig. 3 Comparative genome analysis. (a) Orthologue clustering analysis for African pike and other species. The x-axis displays the seven species and the y-axis presents the gene counts. Red refers to single-copy orthologs, blue refers to multiple-copy orthologs, pink refers to unique orthologs for corresponding species, orange stands for other orthologs, and green represents unclustered genes. (b) Venn diagram. Shared and unique gene families among the four species were shown in numbers in corresponding regions.







- 454 and contractions for African pike and other species from different fish orders. (a) The
- 455 phylogenetic tree. Blue values represent the divergence time. Red nodes in the
- 456 phylogenetic tree represent the reference divergence times. Green and red values
- 457 represent expanded and contracted gene families for corresponding lineages, respectively.
- 458 (b) KEGG functional enrichment of the significantly expanded and contracted gene
- 459 families in the African pike.

# 460 Supplementary materials

#### 461 Additional file 1: Supplementary figures and tables.



- **Fig. S1** The assembly workflow.



- **Fig. S2** Distribution of k-mer frequency.

| Species       | Genes<br>number | Genes in families | Unclustered genes | Family number | Unique<br>families | Average<br>genes per<br>family |
|---------------|-----------------|-------------------|-------------------|---------------|--------------------|--------------------------------|
| H.odoe        | 24,314          | 23,300            | 1,014             | 9,661         | 103                | 2.47                           |
| A.mexicanus   | 24,612          | 24,043            | 569               | 9,751         | 73                 | 2.82                           |
| D.rerio       | 31,056          | 26,849            | 4,207             | 9,523         | 155                | 2.82                           |
| E. lucius     | 24,657          | 23,851            | 806               | 9,358         | 119                | 2.55                           |
| E. electricus | 21,162          | 20,761            | 401               | 9,243         | 18                 | 2.25                           |
| P. nattereri  | 24,796          | 24,380            | 416               | 9,685         | 57                 | 2.52                           |
| T. fulvidraco | 23,258          | 22,796            | 462               | 9,389         | 78                 | 2.43                           |

#### 470 Table S1 Statistics of gene family clustering.

471

#### 472 Table S2 Gene family expansion and contraction statistics in African pike genome.

|             | Family<br>number | Family number (p <0.05) | Genes<br>Number | KEGG<br>Number |
|-------------|------------------|-------------------------|-----------------|----------------|
| Expansion   | 769              | 284                     | 1,548           | 1,384          |
| Contraction | 1,364            | 81                      | 707             | 627            |