
Establishing a transcriptome-based drug discovery paradigm for 
neurodevelopmental disorders 

 

Ryan S. Dhindsa1,2*, Anthony W. Zoghbi1,3, Daniel K. Krizay1,4, Chirag Vasavda5, David B. 
Goldstein1,4* 

  
1 Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, USA 

2 Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving 
Medical Center, New York, NY 10032, USA  
3 Department of Psychiatry, Columbia University Irving Medical Center, New York, USA; New York State 
Psychiatric Institute, New York, USA 
4 Department of Genetics & Development, Columbia University Irving Medical Center, New York, USA 
5 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 
Baltimore, Maryland, USA 
 
*Correspondence: rsd2135@cumc.columbia.edu (R.S.D.), dg2875@cumc.columbia.edu (D.B.G.) 

 

Abstract 

Advances in genetic discoveries have created substantial opportunities for precision medicine in 

neurodevelopmental disorders. Many of the genes implicated in these diseases encode proteins 

that regulate gene expression, such as chromatin associated proteins, transcription factors, and 

RNA-binding proteins. The identification of targeted therapeutics for individuals carrying 

mutations in these genes remains a challenge, as the encoded proteins can theoretically 

regulate thousands of downstream targets in a considerable number of cell types. Here, we 

propose the application of a drug discovery approach called “transcriptome reversal” for these 

disorders. This approach, originally developed for cancer, attempts to identify compounds that 

reverse gene-expression signatures associated with disease states.  
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Introduction  

The introduction of whole-exome sequencing has led to genetic discoveries that have 

dramatically improved our understanding of mechanisms underlying neurodevelopmental 

disorders1. Some of these discoveries have translated to the development of targeted 

treatments2, including enzyme replacement therapies in deficiency disorders3, antisense 

oligonucleotide therapies for spinal muscle atrophy4,5, and channel modulators for gain-of-

function channelopathies6. Despite these important achievements, the development of precision 

therapeutics has lagged far behind the rapid progress in gene discovery. 

One of the major challenges facing precision medicine in neurodevelopmental 

disorders—including autism spectrum disorder (ASD), developmental epileptic encephalopathy 

(EE), developmental delay with cognitive manifestations (DD), and schizophrenia—is the 

tremendous genetic heterogeneity underlying these conditions. Implicated genes have revealed 

a wide range of etiologies for each of these diseases, such as abnormal synaptic transmission, 

chromatin remodeling, transcription regulation, and ion channel function7-11. It is likely that this 

heterogeneity will require different drug discovery paradigms for each functional class of genes.  

We argue that neurodevelopmental disorder associated genes that directly influence the 

transcriptome—namely chromatin modifiers, transcription factors and co-factors, and RNA-

binding proteins—represent one particular group of genes amenable to drug discovery efforts 

that are well-developed in cancer but largely unexplored in neurology. This strategy, termed 

transcriptome reversal, posits that if gene expression changes underlie the pathophysiology of a 

particular disease, then correcting this transcriptomic signature toward a normal state may have 

therapeutic potential12,13.  

Here, we outline a strategy for the development of a systematic program for 

transcriptome-guided drug discovery in neurodevelopmental disease. We first provide an 

overview of the transcriptomic signature reversal approach and its successes in other disease 

areas. We next discuss opportunities for analogous approaches in neurodevelopmental 

disorders by focusing on transcriptional regulators that have been implicated in EE, ASD, DD, 

and schizophrenia. Finally, we propose immediate next steps that would be required to 

systematically implement this drug discovery strategy. 

 

The transcriptome reversal paradigm 

In theory, many different classes of molecules can reverse transcriptomic signatures toward a 

healthy state, including small-interfering RNAs, antisense oligonucleotides, peptides, and 

classical small molecules. Here we focus on small molecules because they are especially 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2020. ; https://doi.org/10.1101/2020.05.13.093468doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.093468
http://creativecommons.org/licenses/by-nc-nd/4.0/


pharmacologically versatile and have been the focus of most transcriptome reversal efforts to 

date. Broadly speaking, this approach requires three steps: identification of the disease gene 

expression signature, in silico or experimental screening to prioritize compounds most likely to 

reverse this disease signature, and targeted experimental validation of candidate compounds 

(Figure 1). 

 
Figure 1. The transcriptome reversal approach. Gene expression profiling (e.g. RNA-
seq or single-cell RNA-seq) is used to derive disease expression signatures. This 
signature is then compared to the signatures of cells treated with small molecules in 
order to identify compounds most likely to reverse disease-associated expression 
changes. Candidate compounds are then screened experimentally to determine whether 
they reverse disease phenotypes. 

 

Generating disease gene expression signatures 

Generating disease expression signatures requires the unbiased assessment of gene 

expression changes in tissue or cells derived from patients or a disease model.  By performing 

RNA-sequencing on disease samples and healthy samples, researchers can then use 

differential gene expression analysis (DGE) to identify quantitative gene expression level 

changes between sample groups. This strategy reveals the sets of genes that are up- and 

down-regulated in the disease state compared to a normal state (i.e. the disease expression 

signature). In addition to being useful for transcriptome reversal, these expression signatures 

can reveal perturbed biological pathways and provide insight into disease mechanisms14.  

Importantly, advances in single-cell RNA-sequencing (scRNA-seq) allow interrogation of 

these expression changes at an unprecedented resolution. Until recently, RNA-seq was 

predominantly performed on bulk tissues. While these studies led to transformative discoveries, 

bulk RNA-sequencing methods cannot resolve specific cell types and only provide an average 
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expression signal for an ensemble of cells. scRNA-seq, on the other hand, can resolve cell type-

specific expression signatures. The most common scRNA-seq methods involve microfluidic 

chips that encapsulate single cells into reagent-filled oil droplets15. Reverse transcription occurs 

within each oil droplet, and the resulting cDNAs receive barcodes that allow for the assignment 

of each resulting sequencing read back to its own single cell of origin. It is important to note that 

performing scRNA-seq necessitates particularly careful experimental design and analyzing the 

resulting data requires statistical rigor14,16.  

  

In silico screening of small molecules 

Once a disease gene expression signature has been identified, the next step is to identify 

compounds that are predicted to reverse these expression changes. This process requires two 

components: (1) a database of gene expression signatures of cells or tissues treated with small 

molecules; and (2) a statistical method to compare the disease signature to these small 

molecule signatures.  

There have been considerable efforts to create publicly available compendia of small 

molecule expression signatures. In 2006, Lamb and colleagues introduced the “Connectivity 

Map” (CMap), which included microarray-derived signatures for roughly 1,300 small molecules 

applied to human cell lines13. More recently, a new version of the Connectivity Map was 

introduced that leverages a novel gene expression profiling technique called L100017. This 

assay measures the expression level of 978 “landmark genes” that were selected to capture a 

large proportion of genome-wide variation in gene expression. The measurements of these 

genes are then used to infer the expression of 11,350 other genes in the transcriptome. 

Because the L1000 assay is far more affordable than typical RNA-sequencing, CMap 

investigators were able to use this platform to profile roughly 20,000 small molecules in a 

variable number of human cell lines. This resource has not only facilitated drug discovery in 

cancer18-20, but also in other non-neurological diseases too, including diabetes21, inflammatory 

bowel disease22, and osteoporosis23 (reviewed by Keenan et al.24).  

Investigators have introduced several statistical methods that compare disease and 

compound signatures to predict which compounds are most likely to invert the disease 

signature. For example, the CMap uses the Connectivity Score: a normalized similarity metric 

based on the weighted Kolmogorov-Smirnov enrichment statistic. Other methods rely on the 

organization of expression data into networks to infer disease- and drug-induced changes in 

master regulator activity18,25. Computational algorithms, such as OncoTreat19, can be used to 

identify individual or combinations of compounds that are expected to reverse master regulator 
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activity in the disease state. Importantly, as discussed below, the success of this in silico 

screening step relies on the availability of cell type-specific perturbation data.  

 

Experimental validation 

Once small molecules are prioritized via in silico screening, the next step is to verify that the top-

scoring compounds in fact reverse the disease profile. In cases where the small molecule 

signatures were generated in cell types not related to the disease of interest, it is critical to 

appreciate that the compounds identified may not be the best compounds in cell types relevant 

to the disease. Therefore, validation requires the administration of candidate compounds to 

patient cells or cells derived from the disease model followed by gene expression profiling. The 

most promising compounds should reverse disease-related expression changes, such that the 

signature more closely resembles the wildtype signature. Furthermore, candidate compounds 

should be administered at multiple doses and timepoints to pinpoint the biological conditions 

that lead to the strongest restoration of the transcriptome. When possible, these compounds 

should then be evaluated for their ability to rescue disease phenotypes in a relevant disease 

model.  

  

Transcriptome reversal opportunities in neurodevelopmental disorders 

Despite the promise of this approach, there are relatively few examples of transcriptome 

reversal studies in neurodevelopmental disorders. Most attempts have focused on non-genetic 

disease models or tissue derived from patients who lack a clear Mendelian diagnosis. For 

example, Readhead and colleagues recently used L1000 to identify compounds that reverse 

transcriptomic signatures of post-mortem tissue derived from 12 individuals with 

schizophrenia26. Other studies have identified compounds that reverse disease signatures 

identified in mouse models of acquired epilepsy27,28 and in surgical tissue derived from patients 

with unilateral mesial temporal lobe epilepsy29.  

 These studies have provided preliminary proofs of concept, but when the underlying 

cause of disease is unknown, it can be challenging to decipher whether the observed disease 

signatures reflect causal versus compensatory gene expression changes. Thus, we argue that 

an important path forward is to focus on genetic models in which gene expression dysregulation 

represents the primary mechanism of pathogenicity. Here, we define primary transcriptomic 

regulators as transcription factors/co-factors, chromatin-associated proteins, and RNA-binding 

proteins. Strikingly, these genes encompass a substantial proportion of the genes implicated in 
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developmental delay with cognitive impairment (13%), autism spectrum disorder (45%), 

developmental and epileptic encephalopathy (18%), and schizophrenia (20%) (Figure 2). We 

briefly review the functions of these gene expression regulators below and provide select 

examples of disease-related genes that fall into each of these classes. 

 

Figure 2. Transcriptomic regulators implicated in neurodevelopmental disorders. 
Table of genes encoding transcription factors, chromatin-associated proteins, and RNA-
binding proteins in developmental delay with intellectual disability, autism spectrum 
disorder, epileptic encephalopathy, and schizophrenia. Bar charts depict the percentage 
of transcriptomic regulators amongst the total number of genes implicated in each 
disease area. 

 

Transcription factors 

Transcription factors (TFs) bind to specific DNA motifs to recruit and regulate the transcription 

machinery. These proteins can be broadly separated into two classes based on their regulatory 

function: control of transcription initiation and control of transcription elongation30. This 

distinction is not absolute, however, as some TFs mediate both of these processes. 
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Furthermore, TFs can work alone or with other proteins (e.g. co-factors) in a complex to activate 

or repress the recruitment of RNA polymerase. Unsurprisingly, pathogenic mutations in TFs 

associated with neurodevelopmental disorders cause widespread transcriptomic defects in the 

brain.  

 Mutations in the transcription factor-encoding gene MEF2C are associated with 

autosomal dominant intellectual disability, autism spectrum disorder, and epilepsy31,32. 

Specifically deleting MEF2C in forebrain excitatory neurons in mice leads to broad changes in 

genes that influence neuronal specification and synapse development, leading to a dramatic 

increase in inhibitory synaptic transmission33. The FOXO (forkhead box) family of transcription 

factors also influences a wide network of genes important in neurodevelopment, and patients 

with mutations in FOXG1 present with autism spectrum disorder34. Sequencing chromatin 

immunoprecipitation of Foxg1 identified thousands of loci in the mouse genome where this 

protein binds, suggesting that Foxg1 regulates hundreds of targets in vivo35.  

 

Chromatin-associated proteins 

In eukaryotes, DNA resides in the nucleus where it is packaged into a highly condensed 

structure called chromatin. The primary unit of chromatin is the nucleosome, which consists of 

DNA wrapped around eight histone proteins. Chromatin remodelers, which move histone 

proteins to make DNA accessible to transcription machinery, have been implicated in 

neurodevelopmental disorders. Additionally, each of these histone proteins has a peptide tail 

that is post-translationally modified (e.g. acetylated or methylated) to activate or repress 

transcription. Mutations in chromatin regulators that create, remove, and recognize these 

chemical modifications can also result in neurodevelopmental disorders. DNA nucleotides can 

also be chemically modified themselves in ways that influence gene expression. The most well-

studied chemical modification is DNA methylation, in which cytosines in the context of CpG 

dinucleotides receive methyl groups to regulate gene expression.  

Loss-of-function mutations in the gene MECP2 (methyl CpG binding protein 2), which 

encodes a methyl CpG binding protein, cause Rett Syndrome36. Conditionally ablating MECP2 

from the mouse brain recapitulates several findings in patients with Rett Syndrome, such as 

uncoordinated gait and repetitive movements37,38. Gene expression profiling of mouse models 
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as well as human brain tissue has revealed widespread changes in gene expression across 

brain regions39-41, consistent with MECP2’s role in modulating chromatin topology.  

 

RNA-binding proteins 

RNA-binding proteins play a key role in the post-transcriptional control of RNAs42. They regulate 

nearly all aspects of RNA biogenesis, including RNA splicing, polyadenylation, mRNA 

localization and degradation, and translation. There are hundreds of RNA-binding proteins with 

diverse functions, each with different RNA-sequence specificities and affinities. Many of these 

proteins seem to bind to thousands of transcripts per cell. Indeed, pathogenic mutations in these 

genes can lead to the dysregulation of hundreds or thousands of genes. For example, mutations 

in HNRNPU, an RNA- and DNA-binding protein, is associated with epileptic encephalopathy 

and autism spectrum disorder7,43,44. We recently reported that a mouse model of HNRNPU 

haploinsufficiency exhibits neuroanatomical abnormalities, global developmental delay, and 

increased seizure susceptibility45. Single-cell RNA-sequencing of mutant hippocampal and 

neocortical cells revealed thousands of dysregulated genes across neuronal subtypes that 

converged on biological pathways important to neurodevelopment45.  

 

Other gene expression regulators 

Although we focus here on transcription factors/co-factors, chromatin-associated proteins, and 

RNA-binding proteins, we note that other genes implicated in neurodevelopmental disorders 

may also affect gene expression. Some examples include kinases, G-protein subunits, and 

ubiquitin ligases. Many of these proteins, however, are also directly involved in many alternate 

signaling pathways, making it less clear that the primary cause of disease is the associated 

transcriptomic dysregulation. 

   

A systematic transcriptomic signature reversal program for 
neurodevelopmental disorders 

The substantial contribution of transcriptomic regulators to genetic neurodevelopmental 

diseases highlights the enormous potential for developing a transcriptomic reversal program for 

these diseases. However, this undertaking will require a concerted, community-based effort. 
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Here, we outline concrete steps and special considerations required to facilitate the successful 

implementation of this approach.  

 

Generating mouse and organoid models of disease 

Except in rare cases, it is not possible to acquire brain tissue from individuals with 

neurodevelopmental disorders. Therefore, generating disease expression signatures for these 

diseases requires robust model systems. Ideal pre-clinical models for this approach need to 

express the disease-associated gene in the same cell type as in loco, recapitulate perturbations 

to the regulatory network and disease phenotypes, and enable high-throughput screening of 

compounds46. No single model satisfies all of these criteria. For example, in vitro models offer 

the most potential for high-throughput screening and can be developed for human cells, but of 

course cannot represent developmental or behavioral consequences of neurodevelopmental 

disease-causing mutations46. We therefore suggest an integrated approach that includes both 

human organoids of brain regions and mouse models.  

 Genetically engineered mouse lines have contributed to significant advances in   

neurodevelopmental disease gene research. Importantly, mouse models can provide important 

behavioral and electrophysiological phenotypic endpoints for small molecule screening47,48. 

Mouse models of genetic epilepsies, for example, may display spontaneous seizures or altered 

seizure thresholds. Additionally, while mouse models cannot fully capture the entirety of 

symptoms associated with ASD and schizophrenia, they can model certain aspects of these 

disorders that may manifest in an equivalent manner in rodents49. For example, mouse models 

of schizophrenia-causing mutations in SETD1A and ASD-causing mutations in CHD8, display 

cognitive impairments that overlap with human pathology50,51.  

 Despite the utility of mouse models, there are inherent differences between the 

development, architecture, and function of the mouse and human brain52. Therefore, mouse 

studies should be compared with models based on human cells that capture as much of human 

brain development as is currently possible. Cortical organoids, which are self-organizing three-

dimensional structures that resemble features of human cortical development, have emerged as 

one such model53-55. Although reductionist in nature, this system is amenable to genetic 

engineering and high-throughput screening. Because organoids are derived from human cells, 

they also overcome potential species-specific differences in gene expression regulation. In fact, 

investigators have successfully used organoids to identify molecular phenotypes in various 

neurodevelopmental conditions that have been difficult to study in mice, such as lissencephaly56 

and periventricular nodular heterotopia57. Organoids can be developed directly using human 
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cells from individuals with the disease of interest, reprogramming those cells into induced 

pluripotent stem cells (iPSCs), and then differentiating them into cortical organoids. 

Alternatively, genome-editing can be used to introduce a disease-causing mutation in a control 

iPSC line. While organoids perhaps bring us closer to human biology, this model system has its 

own limitations. Most notably, recent work has shown that these artificial systems ectopically 

activate cellular stress pathways, which can impact cell type specification58.  Moreover, 

organoids are now known to show substantial variability from one batch to another, making it 

challenging to uncover consistent transcriptomic, morphological, or functional phenotypes.   

 Clearly, neither model is perfect. Mice lack human-specific features of development, 

while organoids are subject to artificial conditions that impact cellular development. We do not 

yet know how often gene expression signatures in mouse models will be reflected in organoids 

of the same model, and vice versa. When mouse and organoid models are congruent, we can 

be more confident in the relevance of the disease signatures. However, when the expression 

changes between models differ, we must attempt to elucidate the source of this divergence. For 

example, if organoids are differentiated with unrelated protocols but retain the same 

transcriptomic signatures, those signatures are likely relevant to the underlying biology than an 

experimental artifact. It would be similarly worthwhile to compare transcriptomes of global 

knockout mice with either targeted knockouts or knock-ins. Both targeted knockouts and knock-

ins should presumably recapitulate the global knockout, while providing granular insight into the 

functions of the gene of interest. If transcriptomes from global knockouts show important 

differences compared with targeted mutants however, peripheral tissues may be playing an 

underappreciated role in the disease biology. Unlike mice, organoids are isolated systems that 

would miss these effects entirely. 

 

Deriving disease gene expression signatures via single-cell RNA-sequencing 

It is becoming increasingly clear that disease-causing mutations in transcriptomic regulators 

have cell type-specific effects. One recent study used in vivo Perturb-Seq (a pooled CRISPR 

screening method) to introduce mutations in 35 ASD associated genes within the developing 

mouse brain in utero and then perform scRNA-seq postnatally59. Many of the edited genes were 

transcriptomic regulators, such as Chd8, Gatad2b, and Set5d, and perturbations of these genes 

led to cell type-specific gene expression changes. For example, loss of Chd8 led to the 

dysregulation of gene expression programs required for oligodendrocyte differentiation and 

maturation. In a separate study, scRNA-seq revealed that haploinsufficiency of the 

schizophrenia-associated gene, Setd1a, led to stronger differential gene expression effects in 
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cortical pyramidal cells than in any other cell type50. We recently reported that a mouse model of 

HNRNPU-mediated EE results in an increased burden of differentially expressed genes in 

pyramidal cells of the subiculum45. Using CMap, we found that the compounds predicted to 

reverse the subiculum signature did not strongly overlap with the compounds predicted to 

reverse the bulk signature45.  

Together, these studies highlight the need for scRNA-seq in generating cell type-specific 

disease expression signatures. We argue that each implicated transcriptomic regulator should 

be modeled and profiled, and the resulting expression data should be made available publicly. 

Although a massive undertaking, this effort would both maximize the number of transcriptomic 

reversal successes and equip investigators to identify potentially convergent disease 

mechanisms among these genes.  

 

Developing a compendium of compound signatures 

Although the CMap provides thousands of compound signatures, most of these signatures were 

derived from cancer cell lines. A small proportion of compounds (n = 768) were also profiled in 

iPSC-derived neural progenitor cells (NPCs) and neurons. Using these data, we performed a 

cluster analysis to compare the differential gene expression responses between neurons, 

NPCs, and the two most commonly assayed cancer cell lines, MCF7 and PC3. Perhaps 

unsurprisingly, NPCs and neuron signatures clustered separately from the cancer cell line 

signatures (Figure 3A). Consistent with other reports, these results suggest cell type-dependent 

gene expression responses26. Therefore, compound signatures generated in cancer cell lines 

may have limited utility in identifying transcriptomic reversal candidates for neurological 

diseases.  

 Small molecule-induced gene expression changes not only vary between cancer cell 

lines and neural cells, but also between subtypes of neural cells. To demonstrate this point, we 

performed single-cell RNA-sequencing of cultured mouse primary cortical neurons treated with 

seven different FDA-approved compounds with known pharmacological effects on the central 

nervous system (naloxone, perphenazine, trazodone, trimipramine, risperidone, epirizole, and 

carbamazepine). These seven compounds were chosen because they elicited the most 

orthogonal signatures in the CMap NPC data, suggesting they represent the transcriptomic 

landscape of FDA-approved blood-brain penetrant compounds. We dosed each compound at its 

reported maximum serum concentration for 24 hours on the 10th day in vitro (DIV 10). We then 
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compared expression responses in four major cell types: astrocytes, oligodendrocytes, 

excitatory neurons, and inhibitory neurons (Figure 3B). Interestingly, both the number of 

differentially expressed genes and magnitude of expression changes varied by markedly cell 

type and by drug (Figure 3C).  

The availability of cell type-specific signatures for both drugs and disease models would 

allow for comparisons in matched cell types. This approach should theoretically reduce the 

number of false positive transcriptomic reversal candidates. The current per-sample costs of 

conventional scRNA-seq approaches, however, preclude the generation of even a modestly 

sized compendium of signatures. Fortunately, emerging multiplexing techniques, such as Cell 

Hashing60, MULTI-seq61, and sci-Plex62, dramatically reduce costs and increase the feasibility of 

generating cell type-specific signatures. Ideally, these signatures should be generated in both 

organoids and cultured primary mouse neurons. Compounds should be dosed at physiologically 

relevant concentrations, which can be estimated from a compound’s reported maximum serum 

concentration or maximum therapeutic dose if known.  
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Figure 3. Cell type-specific gene expression responses to small molecules. (A) 
UMAP plot representing differential gene expression responses to roughly 800 small 
molecules in cancer cell lines (MCF7 and PC3) versus iPSC-derived neurons and neural 
progenitor cells (NPCs). Gene expression was measured via the L1000 assay. (B) UMAP 
plot representing clusters of major cell types detected via scRNA-seq of cultured primary 
mouse cortical neurons (47,494 cells). Cells were dosed with one of seven compounds or 
with DMSO (control). (C) Violin plots representing the average effect size per cell type of 
differentially expressed genes (FDR < .01 and expression change > 10%) in each 
treatment condition.  

 

Compound prioritization and validation 

In any transcriptomic reversal approach, candidate compounds need to be administered to cells

containing the mutated gene to verify that they in fact restore the transcriptome toward normal.

Once validated, these compounds need to be tested for the functional consequence of this

restoration. We do not yet know to what extent the transcriptome must be normalized to rescue

molecular and behavioral phenotypes, and this will only be learned through experience of such
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studies. Furthermore, it will be crucial to determine whether compounds elicit the same 

transcriptomic effects in vivo as they do in vitro through experimental comparisons. 

The cell type-specific transcriptomic reversal approach offers unique opportunities during 

the validation phase. Consider the case in which more than one cell type emerges as 

particularly vulnerable to a disease-causing mutation. In this instance, it is possible that drugs 

that reverse the signature in one cell type may not reverse the signature in another. While this 

scenario would require the interrogation of more compounds, it also offers the ability to probe 

the contribution of each cell type to the disease phenotype and to identify potential combination 

therapies. For example, administering compounds that revert the transcriptome in one cell type 

may rescue some phenotypes, whereas compounds that revert the transcriptome of another cell 

type could rescue others. Finally, the prioritization of compounds should also consider the safety 

profile of disease-signature reversing compounds. Ideally, a compound would reverse the 

disease signature while having minimal impact on the rest of the transcriptome. In reality, this 

ideal is unlikely to be often achievable. Approaches will need to be developed to assess 

whether expression changes beyond the disease-signature reversal are likely to be harmful. For 

example, one potential approach would be to consider how many genes that are genetically 

intolerant63-65 and that are intolerant to expression variation66 have been perturbed.   

 

Conclusions 

We have outlined a precision medicine paradigm that could lead to the discovery of numerous 

treatment options for neurodevelopmental disorders caused by mutations in transcriptomic 

regulators. We argue that the paradigm can be most easily refined by working on these 

Mendelian conditions, in which we can be confident of the causal consequences of 

transcriptomic alterations. Once the key aspects of this paradigm are better understood in the 

context of neurological disorders, such as how much restoration of the altered transcriptome is 

required, it will be possible to extend the paradigm to conditions with more complex genetics, 

such as the more common forms of the aforementioned diseases.  

 Establishing such a systematic program would require a community-based effort and 

substantial data sharing. As demonstrated by the CMap, publicly accessible drug signatures can 

open the floodgates for identifying novel therapies. Furthermore, meeting the goals outlined 

here, including the establishment of robust disease models, implementation of large-scale 

scRNA-seq analyses, and the evaluation of candidate compounds, will require the collaborative 

efforts between researchers with biological, clinical, and computational expertise. Given the 

remarkable importance of genes with transcriptomic effects in neurodevelopmental disorders we 
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believe that careful implementation of a paradigm of transcriptomic-reversal has the potential to 

identify effective treatments for many genetic diseases.   

 

Methods 

Connectivity Map analysis 
We compared Connectivity Map17 L1000 data for 2,103 compounds that were dosed in MCF7 
cells, PC3 cells, iPSC-derived neurons, and iPSC-derived neural progenitor cells (NPCs). Data 
were downloaded from the Gene Expression Omnibus (accession number GSE92742). We only 
considered gene expression values for the 978 genes directly assessed by the L1000 assay. 
We then created a UMAP plot to visualize clustering patterns for gene expression signatures 
elicited by these 2,103 compounds.  
 To find compounds that elicited orthogonal gene expression signatures in neural cells, 
we considered the L1000 data for blood-brain barrier penetrant compounds that were assayed 
in NPCs. We opted to use the NPC signatures rather than neuron signatures as there were 
more compounds assayed in NPCs (141 versus 53). We performed clustering using affinity 
propagation67, which resulted in 7 clusters with the following examplars (i.e. cluster members 
that are representative of the group): naloxone, perphenazine, trazodone, trimipramine, 
risperidone, epirizole, and carbamazepine. These compounds were chosen for dosing in mouse 
cortical neurons. 
 
Mouse husbandry 
Experiments were performed on the inbred background C57BL/6NJ (005304 JAX stock). All 
mice were maintained in ventilated cages with controlled humidity at ~60%, 12h:12h light:dark 
cycles (lights on at 7:00AM, off 7:00PM) and controlled temperature of 22–23°C. Mice had 
access to regular chow and water, ad libitum. Breeding cages were fed a high fat breeder chow. 
Mice were maintained and all procedures were performed within the Columbia University 
Institute of Comparative Medicine, which is fully accredited by the Association for Assessment 
and Accreditation of Laboratory Animal Care. All protocols were approved by the Columbia 
Institutional Animal Care and Use Committee.  
 
Primary cortical culture  
Prior to use, 24-well TC Treated plates (Corning) were coated overnight with 50 µg/mL poly-
D-lysine (Sigma) in 0.1M borate buffer (pH 8.5). Cortices acquired from multiple sets of male 
littermates were incubated in activated 20 U/mL Papain/DNase (Worthington) for 15 minutes 
at 37°C, centrifuged at 300 x g for 5 min, and washed in 1X PBS. Cell pellets were 
suspended in NBA/B27 [consisting of Neurobasal-A (Life Technologies), 1X B27 (Life 
Technologies), 1X GlutaMax (Life Technologies), 1% HEPES, and 1X 
Penicillin/Streptomycin], supplemented with 1% fetal bovine serum (Gibco) and 5 µg/mL 
laminin. Five hundred thousand cells were plated per well. The day after plating, media was 
removed and replaced with pre-warmed NBA/B27. Cultures were maintained at 37°C in 5% 
CO2. 50% of the medium was changed every other day with NBA/B27 starting on DIV3. On 
DIV10, seven compounds and the control media were introduced to the appropriate wells in 
duplicate at their reported maximum serum concentrations68:  
 

Drug Maximum serum 

concentration 

(nM) 

Dose 

(nM) 

Naloxone 91.7 100 
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Perphenazine 49.4 50 

Trazodone hyrochloride 4302.7 4000 

Trimipramine maleate 

salt 
1018.9 1000 

Risperidone 48.7 50 
Epirizole Unknown 1000 
Carbamazepine 84.6 100 

DMSO (negative 

control) 

- - 

 
After 24 hours of compound exposure, the cells were dissociated with activated 20 U/mL 
Papain, strained through 40 um cell strainers (MTC Bio) to remove cell clumps and collected 
for single-cell RNA-sequencing (scRNA-seq) on the 10X Chromium in two batches. scRNA-
seq libraries were constructed using the 10X Chromium Single Cell 3′ Reagent Kits v2 
according to manufacturer descriptions, and samples were sequenced on a NovaSeq 6000. 
Reads were aligned to the mm10 genome using the 10X CellRanger pipeline with default 
parameters to generate the feature-barcode matrix. 
 
scRNA-seq analysis 
We used Seurat v3 to perform downstream QC and analyses on feature-barcode matrices37,38. 
We removed all genes that were not detected in at least 4 cells. We further removed cells with 
fewer than 200 genes or more than 2,500 genes detected. We further removed all cells with 
greater than 25% of reads mapping to mitochondrial genes. 47,494 cells remained after filtering: 
 

Drug Batch 1 Batch 2 Total 

Naloxone 2203 3360 5563 

Perphenazine 2457 4254 6711 

Trazodone 2298 3482 5780 

Trimipramine 3516 3299 6815 

Risperidone 2367 2757 5124 

Epirizole 3051 2982 6033 

Carbamazepine 3189 3021 6210 

DMSO 

(control) 

1770 3488 5258 

 
The filtered matrices were log-normalized and scaled to 10,000 transcripts per cell. We 

used the variance-stabilizing transformation implemented in the FindVariableFeatures function 
in order to identify the top 2,000 most variable genes per sample. We used Seurat’s data 
integration method to harmonize gene expression across datasets prior to clustering. We first 
identified anchors between samples in each dataset using the FindIntegrationAnchors function, 
which uses canonical correlation analysis (CCA) to identify pairwise cell correspondences 
between samples. We then computed an integrated expression matrix using these anchors as 
input to the IntegrateData function.  
 Next, we used linear regression to regress out the number of UMIs per cell and 
percentage of mitochondrial reads using the ScaleData function on the integrated expression 
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matrices. We then performed dimensionality reduction using PCA. For each dataset, we 
selected the top 30 dimensions to compute a cellular distance matrix, which was used to 
generate a K-nearest neighbor graph. The KNN was used as input to the Louvain Clustering 
algorithm implemented in the FindClusters function. For clustering via Louvain, we chose a 
resolution parameter of 0.8. We visualized the cells using UMAP via the RunUMAP function. To 
annotate and merge clusters, we performed differential gene expression analysis on the 
integrated expression values between each cluster using the default parameters in the 
FindMarkers function, which implements a Wilcoxon test and corrects p-values via Bonferroni 
correction. Additionally, we visualized the expression of canonical marker genes aggregated 
from previous single-cell publications71–74.  
 
Differential gene expression analysis 
We performed cell-type-specific differential gene expression analysis using MAST75, as 
implemented in Seurat’s FindMarkers function, in order to identify genes dysregulated between 
drug-treated and DMSO-treated cells. We excluded all non-coding genes, genes encoding 
ribosomal proteins, and pseudogenes from our analysis to reduce the multiple testing burden. 
For each cell type, we fit a linear mixed model that included the gene detection rate (ngeneson) 
and sequencing batch as latent variables. We corrected the p-values using the Benjamini-
Hochberg FDR method, and considered genes with an FDR < 0.01 as differentially expressed.  
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