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Abstract 

Collaboration in neuroscience is impeded by the difficulty of sharing primary data, 

results, and software across labs. Here we introduce Neuroscience Data Interface 

(NDI), a platform-independent standard that allows an analyst to use and create 

software that functions independently from the format of the raw data or the manner in 

which the data is organized into files. The interface is rooted in a simple vocabulary 

that describes common apparatus and storage devices used in neuroscience 

experiments. Results of analyses – and analyses of analyses – are stored as 

documents in a scalable, queryable database that stores the relationships and history 

among the experiment elements and documents. The interface allows the development 

of an application ecosystem where applications can focus on calculation rather than 

data format or organization. This tool can be used by individual labs to exchange and 

analyze data, and it can serve to curate neuroscience data for searchable archives.
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Introduction 

At the present time, neuroscience physiology experiments are usually performed on 
custom experimental rigs that acquire data in unique, creative, and idiosyncratic ways. 
Neurophysiology or neuroimaging rigs often employ several pieces of equipment from 
different eras of time and with vastly different degrees of engineering refinement. Each 
data acquisition (DAQ) device on a rig usually has its own sampling rate, clock, and 
means of storing data to disk. On top of this physical heterogeneity are at least 2 types 
of digital heterogeneity: the digital format of the data, that typically varies from device 
to device, and the organization of data and metadata into files or folders, that differs 
greatly from device to device and from lab to lab. 


While the current state of affairs allows for significant creativity on the measurement 
side of experiments, it presents substantial challenges for data analysis and its 
reproducibility. Most laboratories cannot analyze the data of other laboratories without 
perhaps a month or more of effort writing conversion software (Teeters et al., 2008; 
Garcia et al., 2014; Wiener et al., 2016; Rübel et al., 2019; Sprenger et al., 2019). This 
barrier has meant that most labs or investigators write their own analysis software that 
they test themselves in only a limited manner. Further, this barrier impedes the 
development and utility of common, best-of-breed analysis packages that are 
dedicated to analyzing certain classes of data (Wiener et al., 2016). There are some 
important efforts to develop file format standards (Teeters et al., 2015; Rübel et al., 
2019) that, if followed, would allow for the development of these packages. However, 
these standards typically require users to first convert their data into the common 
format, which is itself a barrier to adoption. Heretofore, these packages have been 
used by relatively few labs, although this situation is improving. It would be ideal to 
have a tool that allows an analyst to quickly read and analyze data regardless of 
whether it is organized idiosyncratically or stored in standardized file formats.


Here, we introduce a new approach that allows the development of common analysis 

tools without requiring a common file format: a Neuroscience Data Interface (NDI). The 
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interface provides a standard means of specifying and addressing the data that are 
collected in neuroscience experiments. At the highest level, the interface provides a 
vocabulary and conceptual framework for specifying recordings and analyses. At the 
implementation level, the interface contains an extendible set of open source code and 
interface standards for reading from a variety of data formats and for specifying the 
manner in which the experimental data is organized on disk. The interface is platform- 
and computing language-independent. The interface includes a scalable database for 
storing results of calculations on the raw data, and user-designed or commercial 
applications can read and write from the database in order to build complex, layered 
analyses. These database entries are specified using platform-independent metadata 
that is human- and machine-readable, and database entries can exist on a user’s 
computer or in the cloud. NDI is designed to serve analysts who want to be able to 
quickly read data from a variety of collaborators; if it were widely adopted by the 
community, it also has the capability to act as a data curation and archive system for 
neuroscience data.


Results 

Concepts and vocabulary – probes, elements, DAQ systems, and epochs 

Before designing a software interface to experiments, we first sought to codify the 
elements of an experiment using easy concepts and defined terms, in an effort to take 
inspiration from the graphical user interfaces developed by Xerox PARC and Apple. We 

define a probe to be any instrument that makes a measurement or produces a 
stimulus. Probes are part of a broader class of experiment items that we term 

elements, which include concrete physical objects like probes but also inferred objects 
that are not observed directly, such as neurons in an extracellular recording 
experiment, or abstract quantities, such as simulated data, or a model of the 

information that an animal has about a stimulus at a given time. We define a DAQ 

system as an instrument or a set of instruments that digitally records the 
measurements or the stimulus history of a probe. These DAQ systems record data from 
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probes each time the DAQ systems are switched into record mode, and we use the 

term epoch to signify each of these recording periods.


The conceptual framework of the interface is applied to a simple experimental situation 

in Figure 1. Here, a probe (an extracellular electrode) is used to record activity in the 
cerebral cortex of a ferret. The probe is wired to a DAQ system (data acquisition 
system, DAQ), that is turned on and off 3 times, resulting in 3 epochs of sampled probe 
data that is saved to disk. The probe has been given the name cortex and a reference 

number of 1 in metadata, in this case provided by the user. 


In this framework, a large variety of experimental apparatus are considered probes. 
Examples of probes that make measurements include a whole cell pipette, a sharp 
electrode, a single channel extracellular electrode, multichannel electrodes with either 
known or unknown geometries, cameras, 2-photon microscopes, fMRI machines, 
nose-poke detectors, EMG electrodes, and EEG electrodes. Examples of probes that 
provide stimulation are odor ports, valve-driven interaural cannulae, food reward 
dispensers, visual stimulus monitors, audio speakers, and stimulating electrodes.


In an experiment, we also deal with items that we do not observe directly or abstract, 
simulated data. We term all of these items as experiment elements (avoiding the term 
“object” to minimize confusion with the software objects in the implementation). An 
example of an inferred element is the activity of a neuron derived from an extracellular 
recording. We do not observe the neuron directly, so while we have some certainty that 
it corresponds to a physical entity, this is really an inference, and different analysts may 
disagree as to whether it exists. Another type of quantity that we may wish to use in 
our analysis is a model, such as a calculation of the information that the animal has 
about a stimulus at a given time. Moreover, we may wish to generate artificial data or 
simulated data that will go through the same pipelines as experimental data. Thus, 
experiment elements encompass a broad class of items, including probes. 
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Figure 1. A vocabulary for neuroscience experiments that forms the basis of the Neuroscience Data 
Interface (NDI). Top-left) An example experiment. A probe is any instrument that can make a measurement or 
provide stimulation. In this case, an electrode with an amplifier is monitoring signals in cerebral cortex and the 
electrode is a probe. A DAQ system is an instrument that digitally logs the measurements or stimulus history of a 
probe. In this case, a data acquisition system (DAQ) is logging the voltage values produced by the electrode’s 
amplifier and storing the results in a file on a computer. An epoch is an interval of time during which a DAQ 
system is switched on and then off to make a recording. In this case, 3 epochs have been sampled. The 
experiment has additional experiment elements. One of these elements is a filtered version of the electrode data. 
A second element is a neuron, whose existence and spike times have been inferred by a spike analysis 
application and recorded in the experiment. Bottom) In NDI, a wide variety of experiment items are called 
elements, of which probes are a subset. Examples of probes include multi-channel extracellular electrodes, 
reward wells, 2-photon microscopes, intrinsic signal imaging systems, intracellular or extracellular single 
electrodes, and visual stimulus monitors. Other elements include items that are directly linked to probes, such as 
filtered versions of signals, or inferred objects like neurons whose activity are inferred from extracellular recordings 
or images. Still other elements have no physical derivation, such as artificial data or purely simulated data; 
nevertheless, we want to be able to treat these items identically in analysis pipelines. Finally, elements might be 
the result of complex modeling that depends on many other experiment elements, such as an inferred 
phenomenological model of the amount of information that an animal has about whether a stimulus is a grating. 
Top-Right) DAQ systems digitally record probe measurements or histories of stimulator activity. In NDI, DAQ 
systems are logical entities, which could correspond physically to a single DAQ device made by a particular 
company (top), or a collection of home-brewed devices that operate together to have the behavior of a single 
DAQ device (bottom). In the bottom example, information from an electrode probe and digital triggers from a 
visual stimulation probe are acquired on a single DAQ device, but digital information from both systems (in 
separate files) is needed to fully describe the activity in each epoch. 
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To read the data generated by a probe, NDI must access data from the data 
acquisition device or devices that recorded the probe, which we term a DAQ system. A 
DAQ system can either be a single data acquisition system, such as a data acquisition 
device made by a major company, or it can describe the collective recordings of a set 
of these systems, such as a home-brew system that might use a few data acquisition 
devices at a time. In our own lab, our visual stimulation system relies on data from 2 
data acquisition systems (our stimulus computer and a multifunction data acquisition 
system that records digital triggers), but logically these are treated together as a single 

DAQ system in NDI (Figure 1).


Each time a DAQ system is switched on and off, an epoch of data is logged. The 
epochs are numbered (1, 2, etc) and assigned a unique identifier that never changes, 
so that the epoch can be unambiguously referenced even if other epochs are added or 
deleted later. It is also necessary to specify, for each epoch, the mapping between any 
probes that are present and the channels of the DAQ system that correspond to the 
probes. Commonly, this information must be specified manually using a data type that 
we have created, but some data acquisition systems (such as SpikeGadgets MFDAQs) 
and file formats include this epoch metadata in their native file formats, and this 
metadata can be processed from the files directly.


With a vocabulary to describe the real-world items in an experimental session, we can 

continue to describe the necessary computational features of the interface (Figure 2). 
While the specification of the probes, elements, DAQ systems, and epochs is sufficient 
to allow the interface to read the data from the probes in the experiment, it would be 
useful to the analyst and his/her collaborators to have a space to store the results of 

analyses of this data. This space is provided by the database (Figure 2), which allows 
the user to store any type of text or binary data related to the experiment in entries 

called documents. For example, one may have a document that stores the responses 
of a neuron to a family of stimuli, and another document that stores the results of a 
model fit of that neuron’s responses to the stimulus family. Still another document 
might store the aggregate statistics of the responses to all the neurons in a given study. 
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Documents in NDI have a human-readable portion and the option of a binary blob, so 
that they can be understood easily by humans and programs.


The interface with the database allows the creation of an application ecosystem 

(Figure 2) that can read the raw data and read and write to the database. For example, 
one common set of early analyses that must be performed by physiologists examining 
extracellular data is to identify spike waveforms from the raw data and to make an 
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Figure 2. An overview of the Neuroscience Data Interface (NDI). Top-left) The physical experiment from 
Figure 1. A probe (electrode) is used to sample data from the visual cortex of a ferret. A DAQ system digitally logs 
the measurements. 3 epochs of data have been recorded by the DAQ system. Top-right) An experiment session 
is contained in a software object that has a link to the raw data (red), an internal set of NDI objects that have 
information about DAQ systems and synchronization methods (green), and link to a database (dark blue). Upon 
creation, each ndi_daqsystem object is provided with an ndi_filenavigator object, which is a parameterized set 
of instructions for locating the raw files or links that contain the data for a given epoch. Therefore, the same 
ndi_daqsystem can manage data that is organized into epochs on disk according to different schemas. Metadata 
associated with each epoch, in a type called ndi_epochprobemap, specifies the probes that are present in each 
recorded epoch and indicates the probe’s name, a unique reference, and the channel mapping between the 
ndi_daqsystem and the probe. This data can be added manually by the user or analyst, or can be read from the 
epoch data files if the ndi_daqsystem's data format or a Laboratory Information Management System (LIMS) 
encodes this information. The database stores documents, which are platform-independent representations of 
analyses, analyses of analyses, and NDI internal objects. Bottom-right) Applications can use NDI to read raw 
data and read the results of previous analyses from the database and write the results of new analyses back to 
the database as documents. The database and documents therefore support the construction of pipelines that 
may be linear or integrated. Applications are free to focus on single analysis problems instead of the raw data 
format or organization of their input.
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inference as to which spike waveforms arise from the same neuron(s). The NDI 
document schema specifies a document type that includes common spike detection 
parameters, including threshold algorithm, filter frequencies, the amount of time around 
each spike to extract, refractory period, etc. These parameters can be used by a 
variety of spike extraction applications, including the example “spikeExtractor” app 

shown in Figure 2 but also other related applications that may be developed. There is 
also a document schema for storing extracted spike waveforms and the spike times, 
and another schema for spike shape features. These documents can be used by spike 
sorting applications, such as the example “spikeCluster”, to produce assignments of 
spikes to clusters. One can imagine another application that automatically performs 
neuron assignment from these clusters (“autoSpikeSort”), and so on. The document 
schemas are flexible and expandable, but must contain certain fields that applications 
can count on being present. In this way, developers and scientists can write 
applications that perform a particular job well, and mix and match their desired 
applications. The database and document schema allows for powerful collaboration 
across applications, and allows for a healthy competition and interchangeability among 
applications that perform similar jobs.


The database is also designed to allow for the curation and examination of 
neuroscience data and computations at scale. Because each database document 
contains the identifier of the experimental session, the documents can be combined 
and searched across the cloud so that data and analyses from multiple experiments 
can be queried, allowing third parties to easily perform analyses or meta analyses of a 
wide variety of experimental data.


The interface is also meant to be used in a similar manner during on-line evaluation of 
data and off-line evaluation of data. The data is addressed in the same manner 
regardless of whether it has been acquired in the last few seconds or a long time ago. 
This design choice has the advantage that all applications can be used on-line or off-
line, and removes the necessity of any second “curation” step before making data 
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available to the world on a data archive. The data can be curated live, during the 
experiment.


Implementation - high level 

The Neuroscience Data Interface is both an idea, as described above, and an evolving 
open-source software product that implements the concepts. The current software 
implementation of NDI has two layers: a high-level layer of core objects that are 
described here, and a low-level of objects that implement the details of the high-level 
objects. The separation between the high-level and low-level objects has been made 
so that the external interface of NDI can be stable, while the open-source products that 
implement file reading or the database can be switched in and out over time without 
greatly impacting the user/analyst’s use of the interface. The high-level interface is 
intended as a sort of “neural data operating system” on which GUIs and other 
programs can build, but the core of NDI does not define any particular graphical user 
interface or stipulate the use of any particular underlying database product.


The goal of this paper is to describe the high-level objects in brief so that the ideas of 
the interface can be discussed or criticized. This paper is not meant to serve as a 
software tutorial. For tutorials on using the software with neuroscience data, please see 
the repository of our current software at http://github.com/VH-Lab/NDI-matlab or 
http://github.com/VH-Lab/NDI-python. As of this writing, the Matlab prototype is 
mature and the Python prototype is still under development (see the distributions 
themselves for the latest development schedules).


ndi_daqsystem 

An ndi_daqsystem object is a means of addressing and reading the files that are 

stored by the DAQ devices that comprise a DAQ system. Different high-level 
subclasses of ndi_daqsystem allow the user to read from multifunction data 

acquisition systems (with analog and/or digital channels and sampling rates: 
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ndi_daqsystem_mfdaq), from imaging systems (with image channels and frames: 

ndi_daqsystem_image), or from stimulus systems (with events and parameters: 

ndi_daqsystem_stimulus). 


All ndi_daqsystem objects rely on 2 key software objects that determine the 

ndi_daqsystem object’s input and output. The first of these is an 

ndi_filenavigator object, which allows the user to specify, with a few parameters, 

how the system should search for the files that correspond to each recording epoch. 

Figure 3 shows how different parameters and subclasses of the ndi_filenavigator 

class can be used to navigate the different file organization schemas of different labs. 
Once the files are found, another software object, the ndi_daqreader, provides the 

services for reading data from the particular file formats that comprise the epochs.  


Reading from probes: ndi_element and ndi_probe 

When an analyst thinks of a probe such as an electrode, he or she might think of the 
probe as having the properties of the data acquisition system that records it. For 
example, we may want to talk about the channels of the electrode, and even casually 
speak of the “sampling rate” of an electrode despite the fact that it is the DAQ system 
that directly has a sampling rate, not the electrode. The ndi_element class, of which 

ndi_probe is a member, allows one to address the probe or element directly, without 

regard to the DAQ system that acquired it, which is handled behind the scenes by NDI. 
In order to define a probe, it is necessary to functionally define, for each recording 
epoch, a map between the channels of the ndi_daqsystem and the ndi_probe 

object. This can be done manually with the class ndi_epochprobemap, or can be 

specified in the data files directly if the DAQ system allows it. As shown in Figure 4, 
probes can be read by analysis programs without any direct concern about the 
underlying DAQ systems that were employed.
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The ndi_element class allows many types of data to be treated similarly by software 

programs. For example, all time series in NDI are members of a subclass called 
ndi_element_timeseries, which can include artificial (test) data, modeled data, 

filtered data, and so on. In Figure 5, the user has created 2 
ndi_element_timeseries objects from a recording from a sharp electrode: 1 of 

these elements represents the membrane voltage where the spikes have been removed 
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    {’timestamp’}, 1, …
    epochnum, t0, t1);
plot(time,data);

C

A
Name

epoch_1_file.acme Today at 14:03
epoch_2_file.acme Today at 14:27
epoch_3_file.acme Today at 14:35

Date Modified

lab_1_experiment

E = ndi_experiment(dirname);
fnav = ndi_filenavigator(…
    E, {’.*\.acme\>’};
dr = ndi_daqreader_mfdaq_acme();
ds = ndi_daqsystem_mfdaq(...
   ’my_acme_Daq’,dr,fnav);
E.daqsystem_add(ds);
f=fnav.getepochfiles(2)
% f = {’epoch_2_file.acme’}

B

D E

ndi_daqsystem

ndi_filenavigator

ndi_filenavigator

ndi_daqreader

Job: given search parameters
and epoch number/id,
return the files of the epoch.

Job: given epoch files and
channel(s) to read, return
the data in the epoch.
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ndi_daqreader
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do
1 ……

ii1
ii2…

do
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e1 …e2 …mk
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mk
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ai2
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…
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Figure 3. DAQ systems allow an analyst to read data in a variety of formats and with a variety of file 
organizations on disk or in the cloud. All labs begin by initializing the main data management object, an 
ndi_experiment. A) In lab 1, data from an ACME DAQ device (.acme files) is organized in a single, flat 
directory. With a search parameter (the regular expression .*\.acme\>), an ndi_filenavigator object is 
instructed how to find the data for each epoch. The file for epoch 2 is requested and shown. B) In lab 2, data from 
a home-brewed configuration using an ACME DAQ device that writes .acme files and a custom stimulation 
system that writes .stim files are organized in a single DAQ system. In this lab, data from individual epochs are 
contained in subdirectories. A subclass ndi_filenavigator_epochdir is used to restrict epochs to the 
contents of subdirectories, and the search parameters indicate that an epoch must have both a .acme file 
and .stim file to be valid. C) Lab 3 uses an integrated file format, such as that from SpikeGadgets. D) After 
setting up the DAQ systems, data for all the labs is read using the same code, which is independent of the file 
format or the organization on the disk or server.
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by a median filter, and the other represents the the spiking activity of the cell that is 
recorded by the sharp electrode. These ndi_element_timeseries objects can be 

passed along to an analysis application (here, our built-in applications 
ndi_app_tuning_response and ndi_app_oridirtuning). The epochs of both of 

these element objects are linked back to epochs in the probe, which are in turn linked 
to the epochs of the DAQ system, so that time relationships between other systems, 
such as the visual stimulus system, are automatically understood for all of the element 
objects derived from probes. 


Clocks and time: ndi_clocktype, ndi_timereference, 

ndi_syncgraph, ndi_syncrule 
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Figure 4. Probes. A) When probes are defined by providing B) a mapping between the channels of the probe and 
the channels of the DAQ system, the data can be read through direct calls, and NDI manages the necessary calls 
to the DAQ systems. C) Code snippet that loads probe objects for a visual stimulus system and a sharp electrode, 
and reads time series data from the sharp electrode probe. The code returns a time reference for the sharp 
probe’s epoch, and that reference is used to request a time series with the corresponding time intervals from the 
visual stimulus system (even though the systems likely do not have the same clocks). D) The raw data and 
stimulus information are plotted together.

A

C D

B

stimprobe = E.getprobes(‘name’, ...

   ‘visStim’, ’type’,’vh_visstim’);

sharpprobe = E.getprobes(’type‘, ...

   ‘sharp-Vm’);

stimprobe = stimprobe{1};

sharpprobe = sharpprobe{1};

[data,t,timeref] = sharpprobe....

    readtimeseries(epochnum,t0,t1);

% read stim data, converting to sharp

% probe time reference

[ds,ts] = stimprobe.readtimeseries(…

    timeref, t(1), t(end));

plot_stimulus_timeseries(0,ts.stimon…

    ,ts.stimoff,’stimid’,ds.stimid);

hold on;

plot(t,data,’b’);
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One of the biggest challenges in experiments that involve multiple DAQ systems is 
synchronizing time across devices that have different clocks. In general, data 
acquisition devices do not share the same clocks: the current time reported by each 
device will differ from others at any given time, and the drift rate of these clocks differs 
very slightly in a matter that may alter the timing of samples in long recordings. Many 
current data standardization schemas sidestep this issue and simply insist that the user 
must convert all times into a standard clock, and NDI is rare in building clocks and 
synchronization into the interface.


NDI defines several types of clocks (ndi_clocktype). The most common type of 

clock is “device local time” (dev_local_time), which means that a DAQ system has a 

local clock that, for each epoch, starts a time t0 and ends at a time t1. In most cases, t0 
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Figure 5. ndi_element objects allow different types of data to go through identical analysis pipelines. A) 
Code that reads and B) plots time series data from 2 ndi_element objects derived from a single sharp electrode 
probe: voltage membrane data where spikes have been “chopped” out with a median filter (top) and thresholded 
spike data (bottom). C) The objects can be sent through analysis applications identically and the same type of 
summary data generated and plotted. D) Orientation and direction tuning curves for the subthreshold membrane 
voltage and spiking activity of the same cell. Note that filtered data, modeled data, or artificial test data can be 
sent through the same analysis pipelines with ndi_element.
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myelement_vm = E.getelements(...
 'element.type','Vm_without_spikes');
myelement_spike = E.getelements(...
 'element.type','spikes');
[data_vm, t_vm] = myelement_vm{1}...
    .readtimeseries(1, t(1), t(end));
[data_sp, t_sp]=myelement_spike{1}...
    .readtimeseries(1, t(1), t(end));
plot(t_vm,data_vm,’b’);
hold on;
spiketimes_plot(t_sp);

% use tuning_response app with things
tapp = ndi_app_tuning_response(E);
oapp = ndi_app_oridirtuning(E);

sp_resp = tapp.find_tuningcurve_document(...
    myelement_spike,1,’mean’);
vm_resp = tapp.find_tuningcurve_document(...
    myelement_vm,1,’mean’);
oriprop_sp = oapp.calculate_oridir(sp_resp);
oriprop_vm = oapp.calculate_oridir(vm_resp);
oapp.plot_oridir_response(sp_resp);
oapp.plot_oridir_response(vm_resp);
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is 0, and t1 is the duration of the recording. Some devices may further keep a “device 
global” time, so that the device has a sub-millisecond record of the relationship 
between the t0 of a given recording epoch and the t0 of a second recording epoch on 
the same device, but this is unusual. We also define the possibility that a device has a 
record of some “global experimental time” or that it keeps “universal controlled 
time” (UTC). 


As analysts, we’d like to be able to refer unambiguously to a time t on the clock of a 
given DAQ system, and effortlessly know the corresponding time t' on the clock of 
another DAQ system. Therefore, built into every call to the function readtimeseries , 

which reads data from a time ti to a time  tj from an ndi_element, ndi_probe, or 

ndi_daqsystem, is an input that specifies the time reference (ndi_timereference) 

being used. ndi_timereference objects include the referent (the ndi_element, 

ndi_probe, or ndi_daqsystem being referred to), the clock type, an epoch id (if the 

ndi_clocktype is dev_local_time, which is most common), and an offset time.


The system is illustrated in Figure 4. Here, the user reads samples from a sharp 
electrode probe using readtimeseries, which returns the time reference that was 

used. Next, the user wants to extract stimulus times from the visual stimulus probe, 
which has a different clock. The user simply passes the time reference object that was 
returned from the sharp electrode probe to the readtimeseries call to the visual 

stimulus probe, and NDI converts the input and output times appropriately so that the 
output returned is relative to the sharp electrode probe’s clock.


The interface solves these conversions from a given clock to another clock by 
computing paths through a directed graph that contains all recorded epochs as nodes 
and the mappings between epochs as edges. The object that performs this 
computation is called ndi_syncgraph. The mappings across epochs recorded on 

different DAQ systems are typically calculated by examining recordings of the same 
signal (such as a set of digital triggers) on both DAQ systems. One can also specify 
rules of synchronization (ndi_syncrule) among devices, and ndi_syncgraph will 
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automatically calculate possible mappings from its set of ndi_syncrule objects and 

solve the graph. An ndi_syncrule might specify the channels of 2 DAQ systems that 
record digital triggers in common, or might specify that 2 DAQ systems have the same 
clock if one of their data files is shared between the 2 systems (such that the same 
DAQ hardware is being used in service of 2 DAQ systems). Sometimes, if DAQ systems 
were not used simultaneously, or if there is no ndi_syncrule, there is no known 

mapping between different epochs. For example, if a DAQ system only has a local 
clock, then we usually do not understand the time relationship between subsequent 
epochs of that system (and usually there is no need to understand this relationship). 

Example cases of synchronization relationships are shown in Figure 6 and Figure 7.
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Figure 6. Epochs and ndi_syncgraph.  Illustration of an example experiment with 2 
ndi_daqsystem objects (elec_mfdaq and vis_stim_daq) that are each connected to a probe 
(elec_probe and vis_stim_probe, respectively). The DAQ systems have their own clocks that are 
not linked to any global time system. 3 epochs have been recorded by each DAQ system. The 
electrode probe has been analyzed and an ndi_element object (a neuron, elec_neuron) has been 
created from it. The clock and time of each of the epochs for the neuron is inherited from its 
underlying probe, which is in turn inherited from the underlying DAQ system. The 2 DAQ systems each 
record the same set of digital triggers, and ndi_syncgraph has used its list of ndi_syncrule 
objects to compute a mapping (ndi_timemapping) between epochs of those DAQ systems. Time 
can be converted between epochs that are recorded simultaneously on the 2 DAQ systems, but we do 
not know how the other epochs are related to each other, or how any epoch is related to a global time 
system like universal controlled time (UTC), shown below.

elec_mfdaq

elec_probe

elec_neuron

vis_stim_daq

vis_stim_probe

UTC time
(unsampled)

ndi_syncrule
inheritance

ndi object:
ndi_syncgraph

epochs:
ndi_timemapping:

Time (sec, relative to 2020-04-22 T20:26:51.839Z)
0

0 63

300

dev_local_time

epoch_id: …0c7d…

0 80dev_local_time

epoch_id: …ba7b…
0 65dev_local_time

epoch_id: …07b7…
0 55dev_local_time

epoch_id: …9024…

0 80dev_local_time

epoch_id: …ba7b…
0 65dev_local_time

epoch_id: …07b7…
0 55dev_local_time

epoch_id: …9024…

0 80dev_local_time

epoch_id: …ba7b…
0 65dev_local_time

epoch_id: …07b7…
0 55dev_local_time

epoch_id: …9024…

0 70dev_local_time

epoch_id: …56bf…
0 72dev_local_time

epoch_id: …d4c0…

0 63dev_local_time

epoch_id: …0c7d…
0 70dev_local_time

epoch_id: …56bf…
0 72dev_local_time

epoch_id: …d4c0…

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2020. ; https://doi.org/10.1101/2020.05.13.093542doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.093542
http://creativecommons.org/licenses/by-nc-nd/4.0/


Database, documents: ndi_database and ndi_document 

All of the interface that we have described so far is necessary for reading raw 
electrophysiology or imaging files, but does not allow the user to store the results of 
analysis in a convenient and well-documented manner. For this purpose, each 
experiment is linked to a database that can be running on the local computer or in the 
cloud. The database class ndi_database provides standardized methods for adding 

documents to the database that conform to a validated, open schema, searching the 
database, and removing documents from the database.
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Figure 7. Epochs and ndi_syncgraph.  Illustration of an example experiment similar to that in 
Figure 6, except that the vis_stim_daq DAQ system also keeps UTC time in addition to its own 
local clock. Here, time can be converted among any epoch because there is a mapping between the 
epochs of vis_stim_daq and UTC, and there are ndi_timemapping mappings between the DAQ 
system. The time in any epoch can be computed according to the clock of any other epoch, by solving 
the transformations in the syncgraph. The mappings shown are ndi_timemapping objects built by a) 
an ndi_syncrule, b) inheritance (e.g., a probe inherits the epoch information of the DAQ system that 
acquired it); and c) same units (UTC is a global time system).
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The fundamental unit of the database is the document, which is implemented by the 
software class ndi_document. All documents include a core structure of fields that 
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Figure 8. Illustration of ndi_documents and the creation of new classes of ndi_documents by 
composition. Top panel) Document definitions, with fields. Several document classes are created by 
composition: for example, the spikewaves type has its own fields plus those of ndi_document, ndi_epochid, 
and ndi_app. Bottom panel) A specific spikewaves document from a database. The document includes a 
description of the document definition, a unique ID and timestamp, the app that created it, the parameters that 
were used, a link to the ndi_element that was analyzed and other parameters.

A

B

ndi_document, with fields:
    "id":   % unique identifier
    "experiment_id": % unique identifier
    "name": % name field
    "type": % type field
    "datestamp": %utc date stamp
    "database_version": % version

ndi_epochid = ndi_document + fields:
    "epochid": % unique epoch id

ndi_app = ndi_document + fields:
    "name":    % name of app
    "version": % version of app
    "OS": % operating system
    "OS_version": % OS version
    "interpreter": % Matlab, Python3, etc
    "interpreter_version": % version

spikewaves = ndi_document + ndi_app +
  ndi_epochid + fields:
    "depends_on": [
      "extraction_parameters_id":%paramdoc
      "element_id": % element id number
    ]
    "sample_rate": % sample rate of epoch
    "s0": % time of first sample (peak:=0)
    "s1": % time of last sample (peak:=0)
    + binary data

mydoc = E.database_search('','isa','spikewaves.json','');
mydoc{1}.document_properties.document_class:
  definition: '$NDIDOCUMENTPATH/apps/spikeextractor/spikewaves.json'
  validation: '$NDISCHEMAPATH/apps/spikeextractor/spikewaves_schema.json'
  class_name: 'ndi_document_apps_spikeextractor_spikeextractor_spikewaves'
  class_version: 1
  superclasses(1).definition: '$NDIDOCUMENTPATH/ndi_document.json'
  superclasses(2).definition: '$NDIDOCUMENTPATH/ndi_document_app.json'
  superclasses(3).definition: '$NDIDOCUMENTPATH/ndi_document_epochid.json'
mydoc{1}.document_properties.ndi_document:
  id: '41268449b95781fc_3fe0bf23a68a90a2'
  experiment_id: '2014-05-09_412684472cf40177_3feddc959c9bd904'
  name: 'manually_selected 412684472cf75018_3fe5dc9aac1a7ef0.t00012'
  type: ''
  datestamp: '2020-02-08T01:41:16.434Z'
  database_version: 1
mydoc{1}.document_properties.depends_on(1):
  name: 'extraction_parameters_id'  % parameters document
  value: '41268449b92c5644_3fe16609b1bfa8f8'
mydoc{1}.document_properties.depends_on(2):
  name: 'element_id'  % ndi_element that is being extracted
  value: ‘4126844732658ffe_3fe647147e14e1ff'
mydoc{1}.document_properties.ndi_app:
  name: 'ndi_app_spikeextractor' % our included simple spike extractor 
  version: '768849c6e5a4e4b8bdfa2aef065d135222e4a93f' % git commit
  OS: 'MacOS'  
  OS_version: '10.14.6 Build: 18G4032' 
  Interpreter: 'Matlab'
  Interpreter_version: '9.6.0.1174912 (R2019a) Update 5'
mydoc{1}.document_properties.epochid:
  epochid: ‘t00012’
mydoc{1}.document_properties.spikewaves:
  sample_rate: 11111 % sample rate, Hz
  s0: -0.004  % 4ms before peak
  s1:  0.004  % 4ms after peak
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DATA
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EID
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describe the unique identifier of the experiment session, the unique identifier of the 
document, the time of creation, the schema of the document, and a history of how the 
document was created so that the calculation can be traced back to the raw data or 
antecedent computations in other documents. Document schemas are specified in a 
platform independent, human-readable format so they can be read and interpreted on 
any platform and be read and understood by human readers easily. Document classes 
can be composed so that one can build documents that refer to common elements 
(such as epoch ids or app properties) in a consistent manner across documents 

(Figure 8). Dependencies among documents can also be expressed so that 
relationships among documents in a pipeline are clear. Finally, each document has its 
own binary stream that can be used to store large binary data. 


Note that the idea for an extendible, local- or cloud-based database of this type is not 
new. For example, the open-source program DataJoint (Yatsenko et al., 2015) uses a 
similar design, although the underlying data are organized into smaller units called 
tables rather than documents. The tables in DataJoint are similar to the substructures 
of NDI documents.


Analysis pipelines: ndi_app and ndi_query 

To understand the power of the interface and the potential app ecosystem, it is useful 
to examine a simple analysis pipeline. In this pipeline, we will use a simple spike 
detection app that is included in the base distribution of NDI called 
ndi_app_spikeextractor to detect spikes in sharp electrode data, and then user 

code to plot the spike shapes.


The steps of the code that produces the pipeline are illustrated in Figure 9, along with 
the database documents that are produced at each step. First, the user opens an 
experiment session and identifies the sharp electrode data for each epoch. The data 
here has been normalized by subtraction so that the voltage activity during the 
preceding interstimulus interval (blank screen) is 0. Then, the user creates an instance 
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of the application ndi_app_spikeextractor (Step 1), builds a document that has a 

set of parameters that the app will use in identifying spikes, and adds this document to 
the database (Step 2). Next, the user calls the app’s extract method to find and 

extract the spike data from the element; the results of the extraction, including spike 
times and spike shapes for each epoch, are added to the database as a document 
(Step 3). 


To see what results have been computed, it is necessary to search the database for the 
analysis documents that currently exist. The database documents can be queried with 
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% Job: Given a probe sharpprobe, epochid eid, and

%    threshold T, extract spikes

% Step 1: set up and load objects

%   make an instance of our spike extractor

sapp = ndi_app_spikeextractor(E);

%   load our normalized Vm trace

element_vmcorrected = E.getelements(...

   'element.type','Vm_corrected',...

   'element.reference',sharpprobe.reference);

% Step 2: make a spike extractor parameter

%   document

extract_doc = ndi_document( ...

     'spike_extraction_parameters');

se_parameters = extract_doc.document_properties...

     .spike_extraction_parameters;

se__parameters.dofilter = 0;

se__parameters.threshold_method = 'absolute';

se__parameters.threshold_parameter = T;

se__parameters.threshold_sign = 1;

se__parameters.spike_start_time = -0.004;

se__parameters.spike_end_time = 0.004;

se__parameters.center_range_time = 0.0015;

se__parameters.read_time = 1000; % long time is faster

extract_p_name = ['manually_selected ' ...

    sharpprobe.id() '.' eid];

sapp.add_extraction_doc(extract_p_name,se_parameters);

% Step 3: do the extraction

sapp.extract(element_vmcorrected,eid,extract_p_name,1); 

Database:
At Step 1:

PARAM

After Step 2:

PARAM DATA

After Step 3:

CodeA B

DAQSYS PROBE PROBE ELEMENT

DAQSYS PROBE PROBE ELEMENT

DAQSYS PROBE PROBE ELEMENT

Figure 9. Analysis pipelines build database documents. A) Code snippet that creates an instance of the NDI 
spike extractor app (Step 1), creates a document that contains the parameters to be used for spike waveform 
extraction (Step 2), and extracts the spikes (Step 3). B) The database documents that are present at each Step. 
Initially, the experiment has an ndi_daqsystem, 2 probes (a visual stimulus system and a sharp electrode), and 
an ndi_element that is a normalized version of the spiking activity. At Step 2, a document describing the 
parameters to be used for spike waveform extraction is added. At Step 3, a document describing the extracted 
spikes is added.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2020. ; https://doi.org/10.1101/2020.05.13.093542doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.093542
http://creativecommons.org/licenses/by-nc-nd/4.0/


an search object called ndi_query, which allows the user to perform many types of 

searches. For example, the user can search any text field for several types of matches 
(exact, partial, regular expression match) or search any number field for several types 
of matches (equal to, greater than, less than, etc). The user can also search for 
documents of specific types, membership in a particular experiment, and search for 

documents that “depend on" specific other documents. Figure 10 shows a short 
example of the user using ndi_query to check for the existence of a spike extraction 

document for a particular ndi_element object, and then, if one is found, plotting the 

spike waveforms.


Developing pipelines in NDI becomes a task of writing small programs that read raw 
data and/or existing database documents, perform computation, and write results back 
to the database in the form of new documents. The documents develop beautiful 
structure when plotted as a graph with nodes corresponding to documents and edges 
corresponding to dependencies among documents. A representative graph from an 

experimental session in the study by Roy et al. (2020) is shown in Figure 11.
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% prepare search queries
q_e = ndi_query(E.searchquery());
q_t = ndi_query('','depends_on',...
  'element_id', ...
   element_vmcorrected .id());
q_sw = ndi_query('','isa', ...
  'spike_extraction','');
% is there a document that matches
% all of these criteria?
doc = E.database_search(q_e & ...
   q_t & q_sw);

% if so, load and plot ISIs > 100ms 
if ~isempty(doc), 
  [w,wp] = sapp.load_spikewaves_epoch(...
     element_vmcorrected,1,'manual');
  t = sapp.load_spiketimes_epoch(...
     element_vmcorrected,1,'manual');
  z = squeeze(w);
  indexes = 1+find(diff(t)>0.100);
  plot([wp.S0:wp.S1]/wp.sample_rate, ...
     z(:,indexes));
end;
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Figure 10. Accessing analysis results involves querying the database with ndi_query. A) Code that uses a 
composition of ndi_query objects to look for a document that meets the following criteria: 1) it is of 
ndi_document type ‘spike_extraction’; AND 2) it depends on the ndi_element variable named 
element_vmcorrected; and 3) it is from the experiment E. If it finds such a document, then it calls the spike 
extractor’s method to return the spike waveforms w and the parameters wp, and spike times t. All spikes that 
have an inter-spike-interval of 100 milliseconds or greater are plotted, as shown in panel B.
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Implementation - lower level 

The software product implementation of the interface is currently at the level of a 
working prototype in Matlab and a prototype in Python (see Materials and Methods). 
The low-level database implementation is only a slow prototype, and is currently being 
modified to use external SQL databases to allow the system to be used at a larger 
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Figure 11. Graph structure of the database documents of an example experiment in NDI. A) Full graph of 
documents from an experimental session from Roy et al. (2020). Documents are denoted by nodes (blue or green 
circles), and arrows point from dependent documents to the documents that they depend upon. In this graph, a is 
a visual stimulus monitor probe, and b and c are stimulus presentation documents that describe the presentation 
of sinusoidal gratings in different directions. d and e are sharp electrode probes corresponding to 2 recordings of 
different impaled cells. f and g are documents describing the ndi_element objects of probe e where spikes are 
removed (f) and where spike times are extracted (g). h is a document containing the stimulus responses of the 
spikes in g to the stimulus presentation in c. In i, these stimulus responses have been collated into a tuning curve. 
Finally, these responses have been examined to extract orientation and direction index values and to perform a 
double Gaussian fit, which are all stored in document j. B) Zoomed in view of the document pipeline a-j. 
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scale. Database documents in the prototype are JSON-based (with a binary blob) but 
will have stricter typing as the external database options come online. The system has 
been used to analyze data for a paper (Roy et al., 2020) and will be tested with data 
from other labs in 2020 and 2021. The software product is continuously updated on 
GitHub (see Materials and Methods).


Discussion 

We have designed a neuroscience data interface (NDI) that greatly reduces the burden 
of analyzing datasets from other labs. The interface allows an analyst to quickly 
address data that is acquired in a variety of formats and stored with a variety of 
organization schemes on disk. It provides tools for time synchronization across data 
acquisition systems, and allows experimental probes to be addressed directly by the 
analyst, while the interface performs the necessary reading from underlying DAQ 
systems. The interface contains a database that allows experiment objects, analyses, 
and analyses of analyses to be stored as documents, enabling the development of an 
application ecosystem that performs analysis independently of the format or 
organization of the underlying data. The results of the dataset can be accessed widely 
by anyone using the interface, such that the dataset and its analyses are curated for 
wide distribution.


An interface with low barriers for curation and exchange 

This neuroscience data interface offers several advantages relative to the current 
neurophysiological data standardization approaches of which we are aware. 1) NDI is 
grounded in concepts and a vocabulary that is easy for non-coders and coders to 
grasp. 2) NDI reads data in its native formats, so there are no restrictions for 
experimental data collection other than a requirement for using a logically consistent 
scheme and, once, locating or writing an open-source reader for each data type. 3) 
Reading native formats also offers the significant advantage that the interface can be 
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used regardless of whether the lab performing the data collection wishes or has the 
expertise to explicitly convert and curate their own data for analysis by others: an 
experienced data analyst will be able to quickly analyze data using the tools provided 
by NDI. 4) Reading native formats does not preclude the development of excellent file 
formats, and implementations of NDI can take partial advantage of fast code created 
for existing or future formats. 5) There is a database document framework so that users 
and applications can create and abide by document templates for saved analyses, so 
that other users and applications can read and interpret the results of classes of data 
analyses in a consistent manner. 6) The database is scalable and can exist on a user’s 
computer or in the cloud, and data from multiple experiments can easily be combined 
in the cloud to form large, searchable databases of neuroscience data and analyses. 7) 
The database offers methods for auditing computations and analyses, such that the 
code and raw data that underlie computations and analyses can be fully tracked and 
reconstructed. Finally, like many standardization efforts, we aim for the development of 
an ecosystem of neuroscience analysis apps that will improve reliability, reproducibility, 
and ease of discovery through re-analysis of data by scientists or amateurs. 


Why not simply a file format? 

Why not simply require users to convert their data into a common, standard file 
format? A standard file format provides several advantages. It provides a common 
target for development for device manufacturers and for companies and scientists 
writing analysis software. As the number of channels on some devices become larger, 
it may be prudent to include hardware in analysis, and a common format facilitates this 
process. Converting to a common file format also puts the burden of solving the 
synchronization of different devices outside the scope of the file format, as common 
file formats such as Neurodata Without Borders (Teeters et al., 2015; Rübel et al., 2019) 
require the user to import data from various devices into the format, and the scientist 
performing data analysis is freed from considering these problems. 


Van Hooser lab NDI 24

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2020. ; https://doi.org/10.1101/2020.05.13.093542doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.093542
http://creativecommons.org/licenses/by-nc-nd/4.0/


However, there are many reasons why, in our opinion, a common file format should not 
be the only tool in our toolbox. The first set of arguments against a common file format 
is technical in nature. We take it as a given that the most appropriate way to store raw 
data from an acquisition device (or simulation) will vary according to the particular 
computational and hardware needs of the device, and these needs may evolve in ways 
that we cannot imagine at present. For example, the optimal way to compress and 
store full 3-d voxel images from a calcium imaging experiment involving a major portion 
of the macaque brain (which may be possible in the future) may be very different from 
those required to store 3-d voxel images from a 500 µm x 500 µm x 10µm cube. By 
specifying a common interface standard but leaving the implementation to vary from 
DAQ system to DAQ system, we gain most of the benefits of a common file format 
without the liabilities of imposing a particular storage structure. One may suggest that 
one could always export the data from a device’s native format to a common file 
format, but one must remember that a) this is an extra step for the experimenter, and b) 
this step could be prohibitively expensive (in time) for experiments that require 
somewhat “online” access to neural responses. Having direct read access via a 
common reader interface allows the data to be examined “in place” in any file format. 
Our own experience waiting an hour to convert a few minutes of 1000-channel 
recordings from a prototype acquisition system in order to perform “online” analysis 
makes us very enthusiastic about “in place” analysis.


A second set of arguments against a common file format relates to the ease of 
workflow for the scientists. Our goal was to create a system that can be used at the 
time of data acquisition. There should be no forced separation between on-line and off-
line analysis, so that one can develop best-of-breed tools for either application that do 
not depend strongly upon the platform or devices being used. 


Finally, data curation is clearly a major burden, as there exist file formats that could be 
used for exchange but very few people use them, although this is improving. The 
requirement of an extra step at the conclusion of analysis to “export” the data is a 
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barrier to adoption. In NDI, there is no curation step, it is an inherent part of using the 
data interface.


An interface can bring on board some of the best benefits of an excellent file format, 
because an interface can read from any file format. As excellent file formats (such as 
Neurodata Without Borders) are developed, interfaces such as NDI can still read them, 
and these formats can be used as a target for future development of hardware and 
software. The NDI approach allows data from these sources to be integrated easily 
with data from older devices, or newer devices that use a different format for whatever 
reason (technical, creative, or historical/idiosyncratic).


Stress points: the first DAQ system, ndi_daqreader, ndi_filenavigator 

NDI was designed so that an experienced analyst can specify only a few parameters 
about the file format (ndi_daqreader) and data organization (ndi_filenavigator) 

in order to get started (Figure 3). For most labs, this will entail a small time investment 
by a user with coding experience to set up the initial DAQ system for a lab, or less if the 
lab uses file formats for which ndi_daq_reader objects are already available. After 

this initial setup, a DAQ system definition can be re-used as often as necessary, so a 
majority of lab users will not need this initial expertise.


Comparisons and synergies with other efforts 

This work builds on the experience and expertise of past and current efforts to ease 
the sharing of data in the neurosciences. A scholarly list of efforts to organize and 
share neuroscience data is presented in Table 1 of (Teeters et al., 2015), and we won’t 
attempt to enumerate a list of all such projects here. Instead, we will draw comparisons 
with a few ongoing efforts.


The idea of an open-source system that can read a variety of file formats is not new. 
The Matlab project sigTOOL (Lidierth, 2009) and the Python-based projects Neo 
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(Garcia et al., 2014) and SpikeInterface (Buccino et al., 2019) are already capable of 
reading a wide variety of data formats, and we are using the open source libraries of 
sigTOOL, Neo, and SpikeInterface extensively in our construction of the Matlab- and 
Python-based versions of NDI. On top of reading different file formats, NDI adds the 
ability to deal with different file organizations and explicit management of different 
timebases on top of managing different file formats or collections. Neo and 
SpikeInterface manage their raw data output in terms of quantities that are similar to 
NDI’s epochs.


Neurodata Without Borders (NWB) is an ongoing effort to devise a file format for 
neuroscience data and analyses (Teeters et al., 2015; Rübel et al., 2019). At present, it 
requires users to use or write conversion software to save data into a single file that is 
organized in HDF5 format and that employs a consistent data schema. In NWB, there 
is no equivalent of the NDI daq system; instead, users save what NDI calls probe and 
element data directly to the file. The system also offers spaces to save results of 
“processing” and “analysis”. NWB does not allow for multiple time bases, which 
simplifies the format greatly for the analyst, but it means that it is difficult to specify 
situations where probes or other elements do not have compatible time bases. The 
format is at present very tied to a file system (1 file per session), although it can be 
used in conjunction with databases like DataJoint. NWB continues to evolve to 
broaden its functions and extension capability.


The document space of the NDI database has commonalities with the tables in the 

database DataJoint (Yatsenko et al., 2015). For example, the document in Figure 8 can 
be built by 5 related tables in DataJoint (ndi_document, ndi_epochid, ndi_app, 

spikewaves, document_class). Different users may prefer the table arrangement of 

DataJoint or the documents of NDI. We designed our documents independently of 
DataJoint and noticed the similarities later. We think that the document structure of NDI 
might be easier for non-programmers to grasp and no more difficult for programmers 
to query, but the database forms share similar forms, including the ability to have 
dependencies across table entries or documents. Both DataJoint and NDI lend 
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themselves to the creation of exploration tools that allow users to examine the 
analyses that have been run and the creation of pipelines – compositions of analyses –
 that can speed analyses and improve reliability and reproducibility.


Big challenge: A culture of digital annotation 

Although NDI was designed to tackle the heterogeneity of the digital organization of 
data, our own experience and several colleagues have commented that another barrier 
to analyzing the data of others is the lack of any consistent digital annotation of data 
(Teeters et al., 2008; Grewe et al., 2011; Wiener et al., 2016; Sprenger et al., 2019). 
Often, the only copy of important metadata is written in a physical notebook and is not 
expressed digitally. Hopefully, as investigators see the utility of common analysis tools, 
the need to have consistent digital annotations of data and metadata will become 
clearer and more ingrained in experimental culture.


Big challenge: Common database schemas for analyses, analyses of analyses 

As data interfaces allow more streamlined access to data formats, a new problem 
arises: how do we read analyses or analyses of analyses from other labs? The 
database’s flexibility in creating new schemas and document types is a double-edged 
sword. Imagine that one lab develops a set of database documents that describes 
several responses indexes that characterize the response of a neuron to a class of 
stimuli. Now, imagine that another lab develops its own set of database documents for 
the same purpose, but gives the fields different names and organizes these indexes 
into a different document set. Someone doing a meta-analysis of data from the 
different labs would either have to recompute the index values from the raw activity of 
the neurons, or write analysis code that would search the database for the document 
schemas of both labs. For example, users are free to design their own schemas in 
DataJoint, NWB, NDI, or odML (Grewe et al., 2011; Sobolev et al., 2014; Sprenger et 
al., 2019), but there is no requirement that these schemas be similar or be able to 
exchange with one another. 
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Efforts to standardize schemas for certain sub disciplines (such as visual physiologists, 
or cellular physiologists) could be quite useful, but will take time (Wiener et al., 2016). In 
our opinions, the development of these schemas have the best chance for broad 
adoption if they are created independently of software implementation and are not tied 
to any specific software product. Each software tool may have its own particular 
advantages for certain applications, and it would be very powerful if users could form 
queries that make sense across multiple tools. If there were a standard list of metadata 
for common data types, an interface or file format or database could say it was “ACME 
12345”-compliant (where AMCE is the name of the organization making the standard, 
and 12345 was the version of the standard), and users could make common searches 
across these systems.


The field of fMRI is several years ahead of the physiology and imaging communities in 
the development of these systems (Cox, 1996; Saad et al., 2006; Gorgolewski et al., 
2016; Farber, 2017; Gorgolewski et al., 2017; Nichols et al., 2017; Poldrack and 
Gorgolewski, 2017).


Summary: 


As experimentalists and theorists in neuroscience enter the era of big data, it is 
necessary to lower barriers of data exchange and to increase access and the ability to 
search and aggregate data across labs and studies. Some labs have already 
developed pipelines and tools for exchange of neurophysiology and imaging data 
(Teeters et al., 2008; Teeters et al., 2015; Yatsenko et al., 2015; Rübel et al., 2019), 
while the great majority of labs and investigators still use custom or idiosyncratic 
schemas. Data interfaces allow analysts to quickly work with both types of data, 
greatly speeding collaborations that might otherwise be too cumbersome. Data 
interfaces also allow the development of best-of-breed tools that focus on analysis 
rather than being burdened with the format or organization of the underlying digital 
data. As more neuroscientists gravitate towards sharing data, utility and ease of use 
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will be important determining factors in adoption and the degree to which users with 
different levels of computer expertise (users, novice programmers, advanced 
programmers) can do science with each system. NDI was designed to address all 
these considerations through conceptual design first, and implementation second, 
using an interface framework that can reach back into the data of the past and into the 
data of the future.


Materials and Methods 

Design of the interface 

The neural data interface in its current form was designed and revised over the course 
of 5 years. The conceptual framework of the system was developed through 
discussions with Brandeis neuroscience and computer science graduate and 
undergraduate students. The system began from a Lab Information Management 
System (LIMS) in the Van Hooser lab, and was rebuilt twice from scratch to incorporate 
necessary features and simplify the interface and external concepts. 


The interface was prototyped in Matlab (The MathWorks) and is available at http://
github.com/VH-Lab/NDI-matlab. NDI was used extensively to analyze the data of Roy 
et al. (2020), and NDI was revised and debugged as necessary to allow a full pipeline 
analysis. In addition, the process of developing tutorials for user feedback also 
identified unnecessary complexity and bugs that were revised or simplified. Third party 
libraries such as sigTOOL (Lidierth, 2009) are extensively used to read a variety of data 
formats. Functions in NDI also depend on the VH Lab toolbox http://github.com/VH-
Lab/vhlab-toolbox-matlab and a set of third-party tools: http://github.com/VH-Lab/
vhlab-thirdparty-matlab. 


A Python3 version is under construction by SquishyMedia, LLC (Portland, OR). The 
Python3 distribution is located at http://github.com/VH-Lab/NDI-python. Project neo 
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(http://neuralensemble.org/neo) (Garcia et al., 2014) is used extensively to read a 
variety of data formats.


Table 1: Key resources table 

Reagent type Designation Source or 
reference

Identifiers Additional 
information

Software Matlab The MathWorks, 
Natick, MA

RRID:SCR_001622 Software language

Software GitHub GitHub RRID:SCR_002630 Software 
repository

Software Python3 www.python.org RRID:SCR_008394 Software language
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