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Abstract: Many bacteria use the flagellum for locomotion and chemotaxis. Its bi-directional 

rotation is driven by the membrane-embedded motor, which uses energy from the transmembrane 

ion gradient to generate torque at the interface between stator units and rotor. The structural 

organization of the stator unit (MotAB), its conformational changes upon ion transport and how 15 

these changes power rotation of the flagellum, remain unknown. Here we present ~3 Å-resolution 

cryo-electron microscopy reconstructions of the stator unit in different functional states. We show 

that the stator unit consists of a dimer of MotB surrounded by a pentamer of MotA. Combining 

structural data with mutagenesis and functional studies, we identify key residues involved in torque 

generation and present a mechanistic model for motor function and switching of rotational 20 

direction. 

One Sentence Summary: Structural basis of torque generation in the bidirectional bacterial 

flagellar motor 
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Main Text: Numerous bacteria use rotating flagella to propel themselves (1, 2). The ability to 

move is crucial for bacterial survival and pathogenicity (3, 4). The flagellum is made of a long 25 

external filament functioning as a propeller; a flexible linking structure, the hook; and a motor 

embedded in the cell envelope (5-8) (Fig. 1A). The ion-powered rotary motor consists of a rotor 

surrounded by a ring of stator protein complexes (MotAB) that power its rotation (9-12). The 

motor is bidirectional: chemotactic signaling can cause a conformational change in the rotor, 

known as “switching” (13), which results in a change of the rotational direction of the motor.  30 

Of note, the prokaryotic rotary motor stator unit family (14) of which MotAB is the best studied 

example, is one of only two known motors that use energy from the transmembrane (TM) ion 

gradient instead of ATP to generate mechanical work (apart from the rotary ATPase family) (15). 

Unlike the rotary ATPases, for which great structural insight has been obtained in recent years 

(16), the mechanism of action of MotAB and stator units of other prokaryotic rotary motors 35 

remains poorly understood. 

The stator units of the bacterial flagellar motor are embedded in the inner membrane, allowing 

interaction with the motor and the formation of an ion channel (9-12, 17, 18). They are in a 

plugged, inactive state and get activated upon motor incorporation and peptidoglycan binding (19). 

Rotation of the rotor is powered by dispersion of an ion (generally H+ or Na+) motive force through 40 

the stator units (20, 21). It has been proposed that ion binding by the stator unit induces a 

conformational change in the stator unit itself (22). The stator unit protein MotA is thought to 

contact the FliG protein (through the torque helix (HelixTorque) of the C-terminal domain FliGCC) 

which forms part of the cytoplasmic C-ring of the rotor. In this way, the proposed conformational 

changes in the stator unit are driving rotation of the rotor (13, 22-24). A large body of genetic data 45 

is available on mutations in the motor that affect movement and are characterized as Mot- (non-
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motile, i.e. deficient in motor rotation) or Che- (no chemotaxis, which can be caused by a deficiency 

in switching rotational direction) (25). All previously described mutations in the stator unit 

proteins are Mot- and not Che-. This indicates that switching of the rotational direction is caused 

solely by structural changes in the rotor. The same conformational changes in the stator unit that 50 

power rotation of the rotor in the counterclockwise (CCW) direction, must therefore also power 

rotation in the clockwise (CW) direction. Upon switching, it is thought that FliGCC makes a 180° 

turn relative to the stator unit, which allows the rotor to turn in the other direction (24).  

The stator unit is a complex of two membrane proteins, MotA and MotB (for the H+-driven motor) 

(26). MotA contains four TM helices and a large cytoplasmic domain that is proposed to interact 55 

with the rotor (27-29). MotB contains a single TM helix followed by a large periplasmic domain 

which can bind peptidoglycan (30, 31). The MotB TM domain contains a universally conserved 

aspartate residue (D22 in Campylobacter jejuni, D33 in Salmonella enterica), which is thought to 

be directly involved in proton transport (32). Directly following the MotB TM domain is a region 

known as the plug (19). Incorporation of the stator unit in the motor is coupled to the unplugging 60 

of the stator unit and peptidoglycan domain dimerization, allowing it to bind peptidoglycan. 

Crosslinking, biochemical, and genetic data for both MotAB and PomAB (a Na+-dependent stator 

unit) have allowed the identification of residues involved in complex formation and function (26, 

33-36). Based on these experiments, the stoichiometry of the MotAB stator unit has been suggested 

to be 4:2. However, this is based on the facts that MotB must at least be a dimer and that the 65 

MotA:MotB ratio is at least 2:1 (37). Negative stain electron microscopy structures of Vibrio 

alginolyticus PomAB (38) and Aquifex aeolicus MotA (39) have been reported, but due to the 

limited resolution these do not provide information on stator unit stoichiometry or mechanism. 
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MotAB shows some sequence homology to energizing proteins of other systems, which have been 

proposed to be stator units of prokaryotic rotary motors (14) such as ExbBD (22), TolQR (40) and 70 

AglRQS (41). The stoichiometry of ExbBD was uncertain and different experiments reported 4:1, 

4:2, 5:2 and 6:3 stoichiometries (42-44). However, a recent high-resolution structure of ExbBD 

shows a clear 5:2 stoichiometry (45), which is consistent with the existence of ExbB pentamers in 

the native Escherichia coli membrane (46). 

Despite great advances in the last decades concerning flagellar motor function, we still do not 75 

understand the structural and mechanistic basis of ion transport, channel (un)plugging and torque 

generation. To help answer these questions, we determined ~3 Å cryo-electron microscopy (cryo-

EM) structures of MotAB in different states, as well as lower-resolution structures of several other 

stator units. Our structures demonstrate a 5:2 stoichiometry for the stator unit complex MotAB, 

which we show is conserved across the MotAB/PomAB family, and reveal the structural basis of 80 

the autoinhibitory plugging of non-incorporated stator units. Furthermore, we infer the structural 

changes upon proton transport that are driving rotor rotation from the structures of different 

functional states and validate our structural results using extensive mutagenic analysis of the 

flagellar stator unit complex. Finally, based on our structural and functional results, we provide a 

detailed model for motor powering and rotational direction switching. 85 

 

The flagellar stator unit is a 5:2 complex 

To obtain detailed insight into the mechanism of flagellar stator unit function, we tested the 

expression and purification of eight H+- and Na+-dependent stator units of seven different 

organisms that have been shown to be functional in the presence of C-terminal tags on MotB (figs. 90 

S1 and S2). Of the eight protein complexes, six could be purified after detergent solubilization. 
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For three of these, we obtained cryo-EM reconstructions, with the best resolution (3.1 Å) for C. 

jejuni MotAB (CjMotAB) (fig. S3 and table S1). The maps obtained for CjMotAB allowed 

building of an atomic model for the nearly complete MotA protein and for the TM helix and plug 

of MotB (Fig. 1, B to F, and figs. S4 to S7). Therefore, CjMotAB was used as a model system to 95 

investigate the structural mechanism of the stator unit. We validated our structures using prior 

crosslinking, mutational, and tryptophan scanning data of the E. coli stator unit (fig. S8, A to F). 

Structure determination of Shewanella oneidensis MotAB (SoMotAB) and V. alginolyticus 

PomAB (VaPomAB) was complicated by preferential orientation of the protein in the ice (figs. S9 

and S10), but still allowed clear stoichiometry determination (fig. S3, C to K). We found that 100 

CjMotAB forms a 5:2 complex, as do SoMotAB and VaPomAB, suggesting that MotAB 

stoichiometry is conserved across all flagellar stator units. Furthermore, given the fact that the 

stoichiometry of ExbBD is identical (45), it is likely to be a property of the whole family of stator 

units of prokaryotic rotary motors. 

 105 

Stator unit architecture 

The flagellar stator unit has a truncated cone shape (widest at its cytoplasmic region) (Fig. 1B and 

movie S1). Five copies of MotA cradle the single TM helices of the two copies of MotB. MotA 

TM helices 3 and 4 make direct interactions with MotB, and both these helices, which span the 

complete height of MotA, extend to the cytoplasmic domain.  110 

The N-terminal part of MotA forms a parallelogram-like structure in the membrane. It consists of 

TM helix 1 (crossing from cytoplasm to periplasm), a linker including a 310 helix lying horizontally 

at the periplasmic side of the membrane (periplasmic interface helix), TM helix 2, crossing from 

periplasm to cytoplasm and finally the cytoplasmic interface helix, which then connects to the 
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large cytoplasmic domain. Both horizontal helices are very polar on their external sides, and the 115 

cytoplasmic interface helix is very basic at its cytoplasmic side (fig. S11, A to D). 

The cytoplasmic domain of MotA is made up of two stretches of amino acid chains (residues 69-

142 and 211-258) (Fig. 1D). The surface conservation is generally low with two clear exceptions: 

the MotB interface and a highly conserved region at the bottom of MotA, which extends slightly 

to the left bottom part of the side of MotA (Fig. 1, D to F, and fig. S11, E to I). The latter region 120 

contains residues that have previously been shown to be important for torque generation (CjMotB 

R89 and E97, corresponding to R90 and E98 in E. coli/S. enterica) (47). Chromosomal point 

mutants of S. enterica MotA (SeMotA) R90 and E98 displayed a pronounced defect in motility 

when the charge of these residues was inverted or the arginine residue was mutated to a smaller 

amino acid (alanine) (Fig. 2, A and B, and fig. S12). The chromosomal point mutations of MotAB 125 

did not affect bacterial growth, suggesting that the observed motility defect was due to impaired 

motor function and not due to a general deficiency in cellular physiology e.g. increased proton 

leakage (figs. S13 to S15). In support, charge reversal substitutions in these residues complement 

charge reversal mutants of oppositely charged residues in the FliG HelixTorque in in E. coli (23). 

Therefore, we propose that this part of the structure contacts the rotor, and most likely FliG and its 130 

HelixTorque, during torque generation (fig. S8, G and H). 

The inside of the MotA cytoplasmic region is extremely acidic (fig. S11, A to D). Possibly, this 

region might act as a reservoir for taking up charges that have passed through the stator unit and/or 

might interact with the N-terminal tail of MotB, which is visible in our maps but is less ordered 

than the MotB TM helix (fig. S11, J to L), and which contains various basic residues (fig. S1). 135 
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Stator unit channel (un)plugging 

To reveal the active state of the stator unit and the structural basis of unplugging, we determined 

the 3.0 Å structure of unplugged stator unit CjMotAB(Δ41-60) (which has a deletion of the 20 

equivalent MotB residues shown to be important for plugging in E. coli (19)) and compared it to 140 

the full-length CjMotAB structure (Fig. 2, C to E, figs. S5 and S16 and movie S2). 

In the full-length structure, MotA interacts with extensions (or plugs, one per MotB chain) 

immediately C-terminal of the MotB TM helix. Seen from the periplasmic side of the channel, the 

plugs have pseudo-mirror symmetry, resulting in extensive interaction between both plugs at the 

crossover point (Fig. 2C). After a short coil structure (residues 40-44), both plugs form a helix 145 

which lies in between MotA subunits, with three MotA subunits on one side and two on the other. 

Deletion of the plug region in E. coli and S. enterica MotB results in a massive influx of protons 

into the cytoplasm and inhibition of cell growth (19, 48), therefore the plug region is important to 

prevent proton leakage. 

Comparing the structures of plugged and unplugged stator units, few conformational changes can 150 

be observed based on the lowest Cα root-mean-square deviation (r.m.s.d.) superposition (0.714 Å) 

(Fig. 2C). For the larger residues of CjMotB, changes are limited to different conformations of 

Y20, D22 and F23 in chain 1. Looking at the universally conserved CjMotB D22 residue, we note 

that one (CjMotB chain 1 D22) is mostly accessible (but pointing away) from the cytoplasmic 

interface (where we can observe solvent molecules), whereas the other (CjMotB chain 2 D22) is 155 

interacting with MotA and not accessible to solvent, both in the plugged and unplugged structures 

(Fig. 2D). This suggests that CjMotB chain 1 D22, but not CjMotB chain 2 D22, would be 

protonatable and/or able to interact with hydronium. 
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The MotB TM helix and the internal MotB-interacting surface of MotA are highly conserved (fig. 

S11, E to I). Their interaction surfaces are almost purely hydrophobic, the only polar or charged 160 

residues are CjMotA T155 and T189 and CjMotB Y20, D22 and S25 (Fig. 2, F and G). The 

corresponding SeMotAB residues are also the only polar residues in this region (fig. S17). Of these, 

CjMotA T189 and CjMotB D22 are universally conserved and the polarity of CjMotB S25 (which 

can be threonine in some stator units) is conserved as well (fig. S1). Interestingly, all these residues 

lie at the height of the bottom part of the MotB TM helix, or put differently, at or below the height 165 

of the inner membrane. Using swimming motility assays, we show that in S. enterica, only SeMotB 

D33 (CjMotB D22) is absolutely required for motor function, but SeMotA T209A (CjMotA T189) 

also displays severely decreased motility (while not affecting growth) (Fig. 2, A and B, figs. S12 

to S15 and table S2). 

These observations suggest that an access pathway must exist for protons and/or hydronium ions 170 

to MotB chain 1 D22 from the periplasm in the unplugged structure, but not in the plugged 

structure. Such a pathway appears to exist from the side of MotA between chains 1 and 2, just 

above the TM region. In the unplugged structure, but not in the plugged structure, MotA chain 1 

F186 is present in two alternate positions (positions 1 and 2), as can be clearly seen in the map 

(Fig. 2E and fig. S18). Position 1 is the same as in the plugged structure. Position 2, which appears 175 

to be the most occupied, overlaps with the location that in the plugged structure is taken up by a 

solvent molecule. This position is also in close proximity to MotB chain 1 S25 (and a solvent 

molecule that can be found near this residue in both structures), D22 and Y20 and MotA chain 1 

T189. The polar residues outlined before appear to form a solvent-accessible channel (Fig. 2, F 

and G). The channel is lined with residues that have previously been shown to be important for 180 

ion transport (49-51) and/or are differentially conserved between H+- and Na+-dependent stator 
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units (figs. S1 and S19). CjMotA F186 (SeMotA M206) is universally conserved hydrophobic 

residue (fig. S1). We found that mutations of SeMotA M206 to a small amino acid (M206A) or 

negatively charged amino acid (M206D) completely abrogated motility while not affecting growth 

(Fig. 2, A and B, figs. S12 to S15 and table S2). This supports previous findings that M206 is 185 

involved in torque generation and proton translocation as well as pH-dependent stator assembly 

(52). We conclude that CjMotA F186 is a hydrophobic residue shielding the periplasm from the 

hydrophilic channel of MotAB. We propose that unplugging increases flexibility of CjMotA F186, 

allowing the passage of protons or hydronium ions through the channel. 

 190 

Conformational changes upon proton transport 

To gain insight into the conformational changes that CjMotAB undergoes upon proton transport, 

we determined the 3.0 Å cryo-EM structure of stator units that combine the unplugging mutation 

CjMotB(Δ41-60) with a CjMotB(D22N) mutation, mimicking protonation or hydronium binding 

of D22 (Fig. 3, A and B, figs. S6 and S16 and movie S3). The structure of CjMotAB(Δ41-60, 195 

D22N) is extremely similar to CjMotAB(Δ41-60) when observing the lowest Cα r.m.s.d. (0.297 

Å) superposition, with one exception in MotB chain 1 (nomenclature based on structure alignment 

with lowest Cα r.m.s.d. not taking into account large-scale rotational movement). N22 is clearly in 

a different position compared to D22, pointing down towards the cytoplasmic interface, where we 

can also distinguish several putative solvent molecules (fig. S11, M to O). We conclude that proton 200 

or hydronium binding or release by CjMotB chain 1 D22 establishes a small conformational 

change in and around this residue, strongly suggesting that this residue is directly involved in the 

shuttling of protons or hydronium ions. 
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A rotational model for torque generation 205 

Stator units power the rotation of the flagellar motor using energy derived from the ion motive 

force. As mentioned, the only motors harnessing ion motive force to generate work found in nature 

are the stator unit family of prokaryotic rotary motors (exemplified by MotAB) and rotary 

ATPases. Our analysis combined with a plethora of prior structural and functional data shows that 

the stator units interact with the rotor through the cytoplasmic domains of MotA to provide torque.  210 

Two mechanisms can be proposed for how torque is generated: a “rotational” model, where MotA 

rotates around MotB, and a “large conformational change” model, where MotAB changes between 

two conformations without rotation of MotA around MotB. 

Our results are fully consistent with a rotational mechanism of the stator unit, rather than a large 

conformational change mechanism. The Cα r.m.s.d. between CjMotAB(Δ41-60) and 215 

CjMotAB(Δ41-60, D22N) is 0.297 Å. It has been estimated that on the order of 37 (53) or 70 (54) 

ions are turned over per stator unit, per rotation of the rotor. From the geometry of the motor (fig. 

S20) we calculate that the rotor needs to traverse an arc length of ~20-38 Å per ion. Consequently, 

the observed conformational changes are approximately two orders of magnitude smaller than the 

estimated arc length traversed per ion passage. Rotations of 36° or 72° of MotA around MotB, 220 

however, would traverse arc lengths of 24 and 47 Å, respectively. Therefore, we propose that 

MotAB, and most likely all stator unit proteins of prokaryotic rotary motors, use a rotational 

mechanism to perform work. 

 

An inchworm model for powering of rotation of MotA around MotB 225 

Given the structural similarity of both unplugged structures and the number of ions per stator and 

per rotor rotation, it follows that rotation of MotA around MotB will occur in steps of either 36° 
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(so that after each rotary step, MotB chain 2 would be in a position equivalent, with respect to 

MotA, to where MotB chain 1 was before the rotation, and vice versa) or 72° (with MotB chain 1 

and chain 2 in the same equivalent positions, with respect to MotA, which they had before the 230 

rotation). The first model (36° rotation) is more likely, as in this model the universally conserved 

aspartate residue of both chains would transport ions alternately, while this would not happen in 

the second model. Superposing the CjMotAB(Δ41-60) and CjMotAB(Δ41-60, D22N) structures 

in this way and making the natural assumption that the hydrophobic MotA interior can only rotate 

around charge-neutralized MotB D22 readily points to a model for how rotation occurs at the 235 

molecular level (fig. S21 and movies S4 and S5). Note that charge neutralization by proton binding 

of a carboxylate group is also used in the Fo/Vo/Ao component of rotary ATPases, where 

protonation of an aspartate or glutamate residue on the c protein allows that residue’s entry into 

the hydrophobic interior of the lipid membrane and therefore rotation of the c-ring (16, 55). The 

protein geometry suggests a clockwise rotation (when observed from the extracellular/periplasmic 240 

side) of MotA around MotB: MotB chain 1 N22 is close to the equivalent position taken up by 

D22/N22 in MotB chain 2 (near T189), located clockwise. 

The proposed mechanism is very akin to human-made inchworm motors. Each MotB D22 

alternately engages with MotA, in a site between CjMotA T189, P154 and G150. When MotB D22 

is engaged, it can (help) drive a power stroke (when the charge of the other MotB D22 becomes 245 

neutralized). When it is not engaged, it picks up a proton from the channel and inches to the 

position where it can (help) drive the power stroke. The mentioned MotA residues at the site of 

engagement are extensively conserved across all stator units of rotary prokaryote motors (56). 

Furthermore, the VaPomA T186A mutation abrogates motility as well as Na+-dependent structural 
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changes in VaPomAB (51) and the corresponding SeMotA T209A mutation has a severe motility 250 

defect (Fig. 2, A and B, and fig. S12), as mentioned (both corresponding to CjMotA T189). 

 

Powering bidirectional rotation of the flagellum 

In the following, we present a simple but comprehensive model integrating the data presented here, 

prior data and previous models for stator unit activation, torque generation and directional 255 

switching. 

Before association with the rotor and peptidoglycan binding, MotAB is in the plugged state and 

the channel is closed. Association with the rotor and peptidoglycan binding is coupled to 

unplugging of the channel (Fig. 4A). The cytoplasmic domains of MotAB incorporated in the 

motor are located such that (at least) one of them can interact with FliG HelixTorque (Fig. 4B). Based 260 

on our structural data, genetic data (23) and our modeling of the FliG–MotA interaction (fig. S8, 

G and H), FliG structural data (24) and tomographic data on the Borrelia flagellar motor (57), the 

rotor in the CCW state interacts with the inside (the side facing the motor axis) of the stator unit. 

Upon proton or hydronium binding and release by MotB D22, MotA rotates CW, relative to MotB, 

which in turn moves the rotor in CCW direction, as MotB is stably anchored to the peptidoglycan. 265 

Note that CW rotation of MotA is also predicted by our model outlined in the previous section 

(fig. S21). 

Upon CheY-P-induced directional switching, FliGCC (and therefore FliG HelixTorque) makes a 

~180° turn relatively to the stator unit (58). We propose that the geometry of the stator unit rotor 

interface allows FliG HelixTorque to now engage the outside (the side facing away from the motor 270 

axis) of the MotA pentamer. The rotation of MotA relative to MotB is still the same (CW), but 
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because of the changed positioning of FliG, the same conformational change in MotA now powers 

rotation of the rotor in the CW direction (Fig. 4B). 

The model is consistent with the recently observed structural changes in the C-ring of CCW-biased 

and CW-locked mutants of V. alginolyticus (59). Furthermore, it predicts that the reversal of the 275 

ion motive force would invert the rotation direction of the stator unit and hence of the motor. This 

has previously been observed in E. coli (60), lending experimental support to our model. 

Furthermore, our model does not require any different conformational changes for the stator unit 

in powering rotation of the rotor in the CCW vs. CW directions, consistent with the apparent lack 

of Che- mutations in MotA and MotB. According to our model (fig. S21) and the geometry of the 280 

rotor and stator unit (fig. S20), binding and release of two protons (two 36° rotations) allow the 

stator unit to bind the neighboring FliG molecule, or a total of 68 protons per stator unit per rotation 

of the C-ring (assuming 34 FliG molecules per C-ring), in good agreement with previous estimates 

(54). The geometry, jointly with the proposed inchworm mechanism of the stator unit, is also 

consistent with the observed high duty ratio of the motor (61), as the implied handover mechanisms 285 

allow that rotor and stator as well as MotA and MotB remain firmly associated all the time. 

In summary, we provide here fundamental insight into stator unit organization and a biophysical 

model of torque generation and switching of rotational direction of the flagellar motor. These 

results provide a structure-based framework for a profusion of experiments on stator units of 

prokaryote rotatory motors, the bacterial flagellar motor and nanoscale motors in general. 290 
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Figures 

 
Fig. 1. Architecture and topology of the flagellar stator unit MotAB. (A) Organization of the 

bacterial flagellar motor (in gram-negative bacteria). MotA: purple, MotB: dark grey, rotor with 295 

export apparatus: light blue, LP-ring: pink, hook: pale yellow, filament: green. Adapted from 

reference (62). OM, outer membrane; PG, peptidoglycan; IM, inner membrane. (B and C) Side 

(B) and top (C, periplasmic side) views of the cryo-EM map of the CjMotAB stator unit in a 

detergent micelle. (D) Topology organization of MotA (purple) and MotB (grey) subunit. Dashed 

lines indicate regions not resolved in this study. The OmpA-like domain containing the PGB motif 300 

is indicated as an ellipse. TM helices are numbered from TM1 to TM4. Interface helices are PI for 

the Periplasmic Interface helix and CI for the Cytosolic Interface helix. Cytosolic helices are 

numbered from H1 to H5. PG, peptidoglycan; IM, inner membrane; PP, periplasm; CP, cytoplasm; 
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PGB motif, peptidoglycan-binding motif. (E and F) Side (E) and top (F) views of the atomic model 

representation. Subunit color code is the same as in (B and C). Secondary structure elements are 305 

labelled for MotA chain 5 and MotB chain 1 in (E) and for MotB chain 2 in (F). 
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Fig. 2. Mutational analysis and conformational changes of the stator unit upon unplugging. 310 

(A and B) Swimming efficiency of S. enterica alanine mutants, plotting the mutated residues as 

spheres on the CjMotAB structure (grey) on the position of the Cα atoms of homologous residues 

in C. jejuni. The corresponding C. jejuni residue is listed first and colored red (CjMotA) or blue 

(CjMotB), the residue number of SeMotA or SeMotB that was mutated is shown in black. (C) 

Superposition of the plugged (colored, same color code as Fig. 1) and unplugged (light grey) 315 

models on the periplasmic and TM region of the CjMotAB complex. (D and E) Close-up view 

from the periplasmic side of the unplugging effect on the TM plane at the D22 residue level of 

CjMotB dimer (D) and at the MotA F186 residue (E). The density of the plugged and unplugged 

stator unit is shown in red and blue, respectively. (F and G) Side (F) and front (G) views from 

within the membrane of the predicted channel for the unplugged conformation. A predicted 320 

solvent channel accessible to protons and hydronium ions calculated with Mole 2.5 (63) (see 

Methods) is shown in cyan. 
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 325 

Fig. 3. Conformational changes upon (mimicking of) (de)protonation. (A) Superposition of 

CjMotAB(Δ41-60) (light grey) and CjMotAB(Δ41-60, D22N) (same color code as Fig. 1) in a 

close-up view from the periplasmic side. The proton- or hydronium-bound state is mimicked by 

the mutation D22N. The density maps are shown for both, CjMotAB(Δ41-60) (blue) and 

CjMotAB(Δ41-60, D22N) (green). (B) Same as (A) but a side view from within the membrane. 330 

The inset shows a magnification of the region around CjMotB chain 1 residue D22/N22, 

illustrating the conformational change around this residue upon mutation. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2020. ; https://doi.org/10.1101/2020.05.15.096610doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.096610
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2020. ; https://doi.org/10.1101/2020.05.15.096610doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.096610
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

Fig. 4. Models of MotAB activation and function. (A) Activation mechanism of MotAB. 335 

MotB of non-incorporated stator units plugs the proton channel. Motor incorporation is coupled 

to MotB peptidoglycan binding domain dimerization and peptidoglycan binding. This activates 

the channel. Proton or hydronium binding and release by the universally conserved MotB 

aspartate residue (CjMotB D22, SeMotB D33) will generate rotation of the MotA pentamer 

around the MotB dimer, which in turn powers the rotation of the flagellar rotor. MotA and MotB: 340 

multi-colored (same color code as Fig. 1). A proton or hydronium is represented by a sphere with 

a + symbol. (B) Torque generation mechanism during default rotation (CCW, left) and after 

switching direction (CW, right). Two stator units are shown in top view from the 

flagellum/extracellular side of the motor. FliG HelixTorque of 5 copies of FliG are shown. MotA: 

same color code as Fig. 1, FliG HelixTorque: light blue with 1 copy highlighted in grey blue. 345 

Conserved acidic and basic residues (in MotA and FliG HelixTorque) are symbolized with red and 

blue circles, respectively. See fig. S8, G to H, for the modeled MotA–FliG interaction. Rotation 

directions are given for a motor observed from the extracellular side. 
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