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Abstract 1 

Infection with human cytomegalovirus (HCMV) can cause severe complications in 2 

immunocompromised individuals and congenitally infected children. Characterizing 3 

heterogeneous viral populations and their evolution by high-throughput sequencing of 4 

clinical specimens requires the accurate assembly of individual strains or sequence 5 

variants and suitable variant calling methods. However, the performance of most 6 

methods has not been assessed for populations composed of low divergent viral 7 

strains with large genomes, such as HCMV. In an extensive benchmarking study, we 8 

evaluated 15 assemblers and six variant callers on ten lab-generated benchmark data 9 

sets created with two different library preparation protocols, to identify best practices 10 

and challenges for analyzing such data.  11 

Most assemblers, especially metaSPAdes and IVA, performed well across a range of 12 

metrics in recovering abundant strains. However, only one, Savage, recovered low 13 

abundant strains and in a highly fragmented manner. Two variant callers, LoFreq and 14 

VarScan2, excelled across all strain abundances. Both shared a large fraction of false 15 

positive (FP) variant calls, which were strongly enriched in T to G changes in a “G.G” 16 

context. The magnitude of this context-dependent systematic error is linked to the 17 

experimental protocol. We provide all benchmarking data, results and the entire 18 

benchmarking workflow named QuasiModo, Quasispecies Metric determination on 19 

omics, under the GNU General Public License v3.0 (https://github.com/hzi-20 

bifo/Quasimodo), to enable full reproducibility and further benchmarking on these and 21 

other data.  22 
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Introduction 1 

Human cytomegalovirus (HCMV) causes a lifelong infection that is typically without 2 

major clinical symptoms. After primary infection HCMV persists latently in infected 3 

cells [1]. Primary or (re-)infections and reactivation of HCMV can cause significant 4 

morbidity and severe complications in immunocompromised individuals, such as HIV-5 

infected persons, transplant recipients or congenitally infected children [2,3]. HCMV 6 

has a double-stranded DNA genome of approximately 235 kb, including terminal and 7 

internal repeats, which contains at least 170 open reading frames [4]. With genome 8 

sizes of known viruses ranging from ~1 kb (Circovirus SFBeef) to 2 Mb (Pandoravirus 9 

salinus) [5], HCMV belongs to the larger known viruses and has co-evolved with its 10 

host for millions of years [6]. Multiple HCMV strain infections (i.e. with more than one 11 

strain at the same time) probably contribute to prolonged viremia, delayed viral 12 

clearance and other complications [7–10].  13 

The establishment of high-throughput sequencing techniques and accompanying 14 

bioinformatics analysis methods has greatly advanced viral genomic research [11–16]. 15 

Assembling viral genomes of individual virus strains from a mixed population and 16 

variant calling are essential for characterizing the evolution and genetic diversity of 17 

viral pathogens such as HCMV in vivo. Although HCMV mutates and evolves more 18 

slowly than many RNA viruses and not any faster than other herpes viruses, high 19 

levels of genetic variation due to mixed (i.e. multiple) viral strain infections in an 20 

individual are often observed [17–20]. These multiple strain infections likely result from 21 

reactivation of latent strains and/or re-infections [17,21,22].  22 

Assemblers leverage short read sequence data by linking sequences using kmer or 23 

read graphs, and, in some cases, variant frequencies, to reconstruct viral haplotypes, 24 

such as the recently developed HaROLD [23], which makes use of longitudinal 25 

sequence data. There are also many variant callers available, including programs for 26 

calling low-frequency variants, such as LoFreq [24], VarScan2 [25], and the 27 

commercial CLC Genomics Workbench [26]. Those programs use information on 28 

basecall and mapping quality to determine if a variant site in a read may be due to 29 

sequencing error, mapping bias or reflects true biological diversity [24–26]. 30 

A recent study on simulated and mock viromes suggests that the choice of assembler 31 

largely influences virome characterization [27]. Several assemblers that we evaluated, 32 
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including IDBA-UD [28], SPAdes [29], Ray [30] and Megahit [31], were previously 1 

assessed on more divergent, simulated and spiked mock viromes [27,32]. This in one 2 

case included strains of less than 97% average nucleotide identity (ANI) [33], which 3 

resulted in shorter assemblies for low divergent community members. Viral haplotype 4 

assemblers reconstruct small viral genomes, such as HIV, Zika and hepatitis C virus, 5 

with good genome fractions. However, these may be highly fragmented, in case of 6 

Savage [34], or consist of longer contigs with a substantial amount of misassemblies, 7 

in case of PEhaplo [35], QuasiRecomb [36] and PredictHaplo [37]. Viral haplotype 8 

assemblers have so far been mostly evaluated on much smaller and more divergent 9 

genomes (genome size around 10 kb with divergence of up to 12.7%) [34,38]. They 10 

have not been assessed on substantially larger genomes with low density of variants 11 

so far. A recent assessment of variant callers [39] reported variable, in part 12 

complementary performances of FreeBayes [40], LoFreq, VarDict [41], and VarScan2 13 

in minority variant detection on simulated short read data from Respiratory Syncytial 14 

Virus (RSV), which is a small virus with a 15 kb genome size. 15 

So far, strain-level assembly and variant calling methods have not been evaluated for 16 

large DNA viruses, where runtime and memory consumption of the algorithms might 17 

also be critical, nor on benchmark data that include experimental biases of library 18 

preparation and sequencing. To investigate these issues, in the largest benchmark of 19 

its kind so far, we created and sequenced ten samples of HCMV strains with different 20 

mixing ratios and then evaluated 21 computational methods on the resulting WGS 21 

data. Analysis of these lab-created benchmark data sets allowed us to dissect the 22 

effects of computational methods and library preparation protocols. 23 

 24 

Results 25 

Creation and quality control of viral sequence samples  26 

To produce a benchmark dataset of mixed viral strains that also includes technical 27 

artifacts introduced in experimental data generation, we created viral strain mixtures 28 

mimicking clinical samples from patients with mixed strain infections in vitro. For this, 29 

we combined viral DNA of the HCMV strains TB40/E BAC4 and AD169 (designated 30 

as ”TA”), derived directly from bacterial artificial chromosomes (BAC) with these viral 31 
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genomes and prepared from Escherichia coli, or the strains TB40/E BAC4 and Merlin 1 

(designated as “TM”), which were amplified in human cell-cultures, respectively, at 2 

mixing ratios of 1:1, 1:10 and 1:50. The ANIs between each pair of those strains are 3 

around 0.977 (Table S1). In addition, pure strains were sequenced separately in each 4 

experiment, resulting in four data sets with the TB40/E and AD169 strains without 5 

target enrichment and the TB40/E and Merlin strain after enrichment. For the TA 6 

mixture experiments, we used a library preparation protocol (protocol 1, details in 7 

Material and Methods) without target enrichment, for the TM mixtures a protocol 8 

including target enrichment (protocol 2). All ten samples (6 HCMV strain mixtures and 9 

4 pure strains) were sequenced using 2x 300 bp paired-end sequencing (Illumina 10 

MiSeq), resulting in 1.58 million raw reads on average per sample. After quality control, 11 

1.1 million quality reads per sample with average base quality above 30 remained.  12 

As the HCMV strains for the TA mixtures and corresponding pure strain samples were 13 

extracted from E. coli BACs, E. coli reads were found in those samples with an 14 

average fraction of 48.6±16.5% (Table S2). Based on the genome size of HCMV 15 

(235K) and E. coli (4.6M), the abundance of contaminating E. coli is thus around 5%. 16 

The three TM data sets and the pure Merlin strain, TM-0-1, did not include detectable 17 

bacterial contamination, but 51.7% of the reads of TM-1-0 (pure TB40/E strain) were 18 

of human origin.  19 

 20 

Strain-resolved genome assembly 21 

For mixed strain data sets, the ultimate aim for assembly is to recover the genomes of 22 

individual strains. To obtain a comprehensive performance overview for existing 23 

software, we evaluated the performances of the generic (meta-)genome assemblers 24 

SPAdes, metaSPAdes [42], Megahit, ABySS [43], Ray, IDBA-UD, Tadpole, which is a 25 

part of the BBMAP toolkit [44] and IVA [45], Vicuna [46], as well as the viral haplotype 26 

assemblers Savage, PredictHaplo, PEhaplo, QuasiRecomb, ShoRAH [47] and 27 

VirGenA [48] on our data sets (Material and Methods).  28 

Assemblies were assessed based on common assembly quality metrics with 29 

metaQUAST [49], such as genome fraction, duplication ratio, largest alignment, 30 

NGA50 using both strain genomes as references for the respective mixtures (Methods, 31 

Figure 1). The genome fraction is defined as the fraction of the reference genome 32 
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covered by at least one contig. The duplication ratio is the number of bases of the 1 

reference genome covered, divided by the total number of aligned bases from the 2 

assembly. The largest alignment is the size of the biggest contig that aligned to the 3 

reference genome. The NGA50 value of an assembly is calculated by first sorting the 4 

aligned contigs, after being split at misassembly events, by size in descending order 5 

and returning the length of the contig that exceeds 50% genome fraction. If an 6 

assembler fails to produce 50% genome fraction, the NGA50 value cannot be 7 

calculated and was set to 0 kb. To further summarize the performance of assemblers 8 

on the HCMV datasets, we defined a composite quality metric for strain-resolved 9 

assembly performances, consisting of a weighted score combining the metaQUAST 10 

assembly metrics “duplication ratio”, “genome fraction”, “largest alignment”, “NGA50”, 11 

“number of contigs”, and “number of mismatches per 100 kb” (Materials and Methods). 12 

In this weighted score, we considered genome fraction and largest alignment the most 13 

important metrics, since they reflect the ability of the assembler to reconstruct 14 

individual strains and the completeness of the largest assembly.  15 

All programs reconstructed the genome sequence much better for the dominant than 16 

for the minor strain. With the weighted summary score, metaSPAdes achieved the 17 

highest score (8.57), with a large genome fraction assembled (54.5±6.4% versus 18 

45.3±12.4% for IVA, mean ± standard deviation) and second best for largest alignment 19 

(145.9±56.6 kb), NGA50 (102.3±69.0 kb), number of contigs (12.5±9.0) and 20 

duplication ratio (1.01±0.01) (Figure 1, Table S3-4). Next were IVA (8.12), which was 21 

ranked best for largest alignment, NGA50, and number of contigs, and ABySS (7.50) 22 

(Figure 1, Table S3-4). IVA produced on average the fewest (8.1±7.9), and longest 23 

contigs (159.6±77.8 kb), especially for abundant strains (160.8±72.3 kb) (1/0, 50/1, 24 

10/1), with only very few parts of the genomes covered multiple times (duplication ratio 25 

of 1.01±0.03) (Figure 1-2, Table S3). The Tadpole assembly had the lowest duplication 26 

ratio (1.001±0.001) and the fewest mismatches per 100 kb (32.2±54.4, Figure 1-2, 27 

Table S3). However, this was mainly because it assembled very little data and 28 

generated short contigs (NGA50 10.9±15.4 kb) that covered less than half 29 

(33.8±15.6 %) of the underlying genomes.  30 

The haplotype assembler Savage in reference-based mode recovered the most 31 

(64.4±27.2% genome fraction) of both strains, even for the low abundant ones (1/10, 32 

1/50) (Figure 2). However, it produced shorter contigs (largest contig length 21.5±22.8 33 
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kb) and many duplicates (1.38±0.23). Megahit recovered most (93.4±5.7%) of the 1 

genome sequence for the dominant strains, followed by ABySS (92.7±3.1%), SPAdes 2 

(91.8±4.1%) and Ray (91.6±7.8%), however much less for the low abundant strains 3 

(38.3±20.0%, 37.3±14.5%, 35.2±6.6%, 12.2±4.5%, respectively). MetaSPAdes and 4 

IVA also recovered a relatively large fraction (83.4±28.2% and 86.4±21.2%, 5 

respectively) of the dominant strains, but only little (38.7±28.4% and 8.5±6.0% 6 

respectively) of the genome for low abundant strains.  7 

All other haplotype assemblers, i.e. Savage in de novo mode, PredictHaplo, PEhaplo, 8 

QuasiRecomb, ShoRAH and VirGenA, assembled no contigs and were terminated 9 

after running for more than 10 days using 24 CPU cores. Furthermore, we also tested 10 

1000 random weights sets to calculate the summary score, and the top two 11 

assemblers (metaSPAdes and IVA) maintained this ranking for ~850 out of 1000 sets. 12 

This suggests that the assemblers with good performance deliver a high quality 13 

assembly across most metrics. 14 

As genome assembly can be computationally intensive and time consuming, we also 15 

benchmarked the disk space consumption (IO output), memory (maximum memory 16 

requirement) and run time of the different algorithms. Ray and ABySS used less than 17 

300 MB for the output while IVA, SPAdes, metaSPAdes and Savage consumed more 18 

than 20 GB of disk space for output or intermediate output (Figure 3). Megahit was the 19 

most memory efficient assembler, using less than 1 GB memory, whereas ABySS, 20 

Savage and Vicuna consumed more than 10 GB. As to the run times, Megahit required 21 

around ten minutes for each assembly, while Vicuna and Savage needed more than 22 

20 hours on a server with sixty-two 2.4GHZ CPUs, 200 TB disk space and 1 TB 23 

memory. 24 

 25 

Variant calling 26 

We evaluated the variant callers LoFreq, VarScan2, the low frequency variant caller 27 

of the CLC genomics workbench, BCFtools [50], FreeBayes and the GATK 28 

HaplotypeCaller [51] on the six mixed strain and four pure strain (three different strains, 29 

details in material and methods) WGS samples. A ground truth was generated by 30 

pairwise genome alignment of the respective strains with MUMmer [52] (Methods, 31 
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Figure 4), which identified around 3500-4000 variants, including ~200 short insertions 1 

and deletions (InDels). Sites in these genomes were then classified as variant or non-2 

variant in this alignment, and compared to predicted variants, to determine true 3 

positive (TP), false negative (FN) and false positive (FP) calls. Since the major strain 4 

in each mixture was used as reference, we could evaluate the performance of those 5 

variant callers in identifying low frequency variants originating from the minor strain in 6 

the mixture, with the expected low frequency variants being 2% and 10%, respectively, 7 

in the mixtures with ratios of 1:50 and 1:10. Variant calls for which a false nucleotide 8 

was predicted for a variant site were also considered as false positives. Based on the 9 

number of TP, FN and FPs we calculated precision, recall and the F1-score as 10 

detection quality metrics for each caller and sample. Precision, or purity, reflects the 11 

fraction of predicted variants that are true variants: 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"
!"#$"

; it thus quantifies 12 

how reliable the predictions of a particular method are. Recall is sometimes also 13 

known as completeness, and measures the fraction of truly existing variants in a data 14 

set that have been detected by a caller (𝑟𝑒𝑐𝑎𝑙𝑙 = !"
!"#$%

), it thus measures how 15 

complete the predictions of a caller are with respect to the variants that are there to 16 

discover. To allow a comparison based on a single metric, the F1-score is commonly 17 

used, which is the harmonic mean of precision and recall, i.e. 𝐹& = 2 × '()*+,+-.×()*011
'()*+,+-.#()*011

. 18 

Applying the commonly used cutoff of 20 for Phred quality scores (QUAL) [53] for 19 

accepting predicted variants, we evaluated the performance of variant callers on single 20 

nucleotide polymorphisms (SNPs). LoFreq achieved the best average precision 21 

(0.940±0.011) and VarScan2 the highest recall (0.872±0.050, Figure 5A, Table S5) 22 

across mixture samples. LoFreq and VarScan2 consistently performed best across 23 

samples, with average F1-scores, of 0.890±0.009 and 0.880±0.011, respectively 24 

(Figure 5B, Table S5). CLC had a slightly lower F1-score (0.806±0.025), and was more 25 

variable in performance across samples, while BCFtools, GATK and Freebayes 26 

performed poorly (F1-score: 0.166±0.288, 0.261±0.388 and 0.289±0.428, 27 

respectively), particularly due to low recall (0.122±0.230, 0.215±0.338 and 28 

0.253±0.386). Across all strains and abundance ratios tested, LoFreq consistently 29 

performed well, while VarScan2 was consistent across abundance ratios but 30 

performed differently for the two strain mixtures (varied in precision) and CLC’s recall 31 

dropped dramatically for mixture TM-1-50. BCFtools, GATK and FreeBayes performed 32 
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poorly in comparison for all samples, and for highly diluted samples, their recall was 1 

almost 0. To analyze the effect of their returned Phred quality scores on variant callers’ 2 

performances, we evaluated both SNPs and InDels called with different thresholds for 3 

their quality scores using a recall-precision curve. LoFreq had the best recall-precision 4 

balance followed by VarScan2 and CLC, while FreeBayes demonstrated high 5 

performance on samples TA-1-1 and TM-1-1 (Figure S1). To compare variant caller 6 

performances under optimized performance conditions, we also determined 7 

performances of variants called using the best F1-scores over these different settings 8 

across all samples. Notably, the performance of FreeBayes increased substantially, 9 

and that of CLC slightly, while the performances of other methods remained similar 10 

(Figure 5C and 5D, Figure S2, Table S6). 11 

The callers achieving good recall, LoFreq, CLC and VarScan2, identified around 2400 12 

to 2700 shared true positive SNPs from all mixed strain samples when using a quality 13 

score threshold of 20 (Figure 6). On the pure strain samples, where no SNPs were 14 

expected, LoFreq and VarScan2 predicted 61±33 and 71±42 false positives, 15 

respectively, substantially less than for the mixed strain samples (164±59 and 16 

381±163). Notably, of these false positives in mixtures, 70.7±17.3% (based on LoFreq 17 

predictions) and 37.6±7.9% (based on VarScan2) were shared (Figure S3). This 18 

significant overlap (Fisher’s exact test p-value <2.2×10-16, odds ratio 3416.8±1601.1), 19 

indicates a systematic shared bias regardless of variant callers. Variant calling (Figure 20 

S4) indicated that allele frequencies intended by dilutions were closely reached with 21 

protocol 2 (TM mixture) and differed slightly more for protocol 1 (TA mixture).  22 

 23 

Genomic context of variant calls 24 

We analyzed whether there was a specific genomic signal associated with variant calls, 25 

considering separately correct and false calls using mutational context analysis [54–26 

56]. Focusing exemplarily on LoFreq, this approach analyzes the frequency of a 27 

certain SNP together with its sequence context, specifically the flanking3' and 5’ bases. 28 

For the predictions of a certain caller, the genomic context of the six substitution types 29 

(C to A, C to G, C to T, T to A, T to C and T to G) was calculated with the R package 30 

SomaticSignatures [56] for the six mixtures and four pure strain samples (2 samples 31 

of TB40/E, 1 of Merlin, and 1 of AD169). Since the analysis is not strand-specific, the 32 
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above were considered equivalent with G to T, G to C, G to A, A to T, A to G and A to 1 

C, respectively. We observed a strong, context-independent preference for C to T or 2 

T to C transitions (with a fraction of 0.803±0.016 of all variant calls across samples; 3 

top panel of Figure 7A and Figure 7B), which was even more pronounced for the true 4 

positives (middle panel of Figure 7A and Figure 7B), but not for FPs. For variants 5 

observed across pairwise combinations of 30 E. coli and 30 HIV genomes, which were 6 

obtained from NCBI RefSeq database (Table S7), respectively, we observed 7 

concordant results (Figure S5-S6). For these data, transitions accounted for 8 

0.716±0.058 and 0.681±0.017 of variants between genome pairs, respectively. 9 

We found a pronounced context dependent signal for false positive calls of LoFreq 10 

and VarScan2. Here, T to G variants in a G.G context correspond mostly to FPs in the 11 

TA and TM mixtures (57.1±10.0% and 86.8±18.3%, respectively; bottom panel of 12 

Figure 7A and Figure 7B). This enrichment is highly significant (p-value <0.0001, 13 

Fisher’s exact test), with an odds ratio of around 45.2 for the TM mixture; i.e. T to G 14 

calls are 45.2 times more frequent in this context than in others and 19.9 more frequent 15 

for the TA mixture. For false variant calls on the pure Merlin and AD169 samples, T to 16 

G calls in a G.G context were even more dominant. For LoFreq on the pure Merlin 17 

(TM-0-1) sample, the genomic context pattern of false calls is highly correlated with 18 

the context pattern of false positives for all mixed strain samples, with an average 19 

Pearson correlation of 0.903 (p-value <0.0001). For the AD169 strain and respective 20 

mixtures, this correlation (Pearson) is lower, on average 0.697, but still highly 21 

significant (p-value <0.0001).  22 

The allele frequencies of the FP LoFreq variants were substantially lower than those 23 

of the true positive variants (Figure S7, Wilcoxon test p-value <2.2×10-16), except for 24 

the TA-1-50 sample, which had the highest-level E. coli cloning vector contamination. 25 

False T to G calls in a G.G context had a lower frequency than other false calls (p-26 

value 1.181×10-10 for TM mixtures: Figure S8, 8.16×10-10 for TA mixtures). The allele 27 

frequency of those FP SNPs was slightly lower in protocol 2 (TM, 0.0237±0.0522) than 28 

in protocol 1 (TA, 0.0242±0.0121) with a Wilcoxon p-value = 0.000559, 95% CI = 29 

[0.00363, 0.0120]. The extent of the signal differed between samples created with 30 

different protocols. Though the overall FP rate was similar, the context-dependent 31 

false calls T to G in G.G doubled in protocol 2 (Figure 7A, 7B). We found no such 32 

signal for false LoFreq variants calls on MiSeq sequencing data from HIV lab data [57], 33 
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even though the frequency of GTG/CAC patterns in both genomes are similar (Figure 1 

S9). 2 

 3 

Materials and methods  4 

Creation and sequencing of HCMV strain mixtures 5 

We created mixtures for two pairs of strains: “TB40/E BAC4” with “AD169 subclone 6 

HB5” (TA) and TB40/E BAC4 with strain Merlin (TM). For each strain pair, mixtures 7 

with three different mixing ratios, 1:1, 1:10 and 1:50, were created. Accordingly, strains 8 

“AD169” and “Merlin” are the dominant strains in the mixtures, and their genomes were 9 

used as reference for variant calling in mixed samples. In addition, the pure strains 10 

were sequenced. The name of the mixture specifies the included strains and the 11 

mixing ratio. For instance, a mixture of TB40/E and Merlin with a ratio of 1:10 is 12 

denoted by TM-1-10. Pure strain samples are denoted as TA-1-0 for TB40/E and TA-13 

0-1 for AD169, which were created with protocol 1 (details, see below), as well as TM-14 

1-0 for TB40/E and TM-0-1 for Merlin, created with protocol 2. 15 

Two protocols were used to generate the sequencing libraries. In protocol 1, the DNA 16 

of TA mixtures (TA-1-1, TA-1-10 and TA-1-50) and pure strain samples (TA-0-1, TA-17 

1-0) was extracted from the BAC host E. coli strain GS1783 using the Plasmid Midi Kit 18 

(Macherey Nagel). Library preparation was performed using an Ultra II FS-Kit from 19 

NEB according to the standard protocol from the manufacturer. Fragmentation time 20 

was 10 minutes and the library was amplified 4 cycles for the mixtures and 5 cycles 21 

for the pure BACs, multiplexed and sequenced on a MiSeq (Illumina) using reagent kit 22 

v3 to generate 2 × 300 bp paired-end reads.  23 

Protocol 2 was used to generate the TM mixture data sets (TM-1-1, TM-1-10, TM-1-24 

50) and the pure strain samples data sets (Merlin, TM-0-1 and TB40/E BAC4, TM-1-25 

0). The HCMV strains TB40/E BAC4 and Merlin were isolated from cell cultures. The 26 

library preparation was performed as we previously described [20] with the KAPA 27 

library preparation kit (KAPA Biosystems, USA) with a few modifications. After PCR 28 

pre-amplification (6-14 cycles) with adapter specific primers, up to 750 ng of DNA was 29 

target enriched for HCMV fragments using HCMV specific RNA baits. HCMV enriched 30 

libraries were indexed, amplified (17 to 20 cycles) using TruGrade oligonucleotides 31 
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(Integrated DNA Technologies), multiplexed and sequenced on a MiSeq (Illumina) 1 

using reagent kit v3 to generate 2 × 300 bp paired-end reads.  2 

 3 

Quality control of the sequencing data 4 

Sequencing reads produced by the MiSeq sequencer were quality controlled using 5 

fastp v0.19.4 [58]. Fastp is an all in one FASTQ data preprocessing toolkit with 6 

functionalities including quality control, adapter detection, trimming, error correction, 7 

sequence filtering and splitting. The remaining adapter sequences were clipped from 8 

the raw reads as well as bases at the 5’ or 3’ of the reads with a base quality score of 9 

less than 20. Reads shorter than 130 bp after trimming were removed. The remaining 10 

PhiX sequences (originating from the Illumina PhiX spike-in control) were also 11 

removed from the dataset by mapping all quality-controlled reads against the PhiX 12 

reference genome downloaded from Illumina using BWA-MEM v0.7.17 [59]. 13 

Contamination from E. coli and the human host were also removed using the same 14 

method. 15 

 16 

Consensus assembly and evaluation 17 

To benchmark the performance of commonly used assemblers, we evaluated SPAdes 18 

v3.12.0 (with kmer sizes: 21, 33, 55, 77, 99, 127 and --careful option), metaSPAdes 19 

v3.12.0 (kmer sizes: 21, 33, 55, 77, 99, 127), Megahit v1.1.3 (kmer sizes: 21, 41, 61, 20 

81, 101, 121, 141, 151, ), Ray (kmer size: 31), ABySS v2.1.4 (kmer size: 96), IDBA 21 

v1.1.3 (default settings), Tadpole v37.99 (default settings), IVA v1.0.9 (default settings) 22 

and Vicuna v1.3 (default settings). The quality of the resulting contigs or scaffolds was 23 

then assessed with metaQUAST v5.0.2. Only contigs longer than 500 bp were taken 24 

into account. Since the reference genomes of those strains are highly similar, with an 25 

ANI around 98%, only unique mappings were considered in the assessment, i.e. not 26 

allowing a single contig to map to both reference genomes in the combined reference 27 

report. The metrics include the overall number of aligned contigs, the largest alignment, 28 

genome fraction, duplicate ratio, NGA50, number of mismatches per 100 kb. Here, 29 

“largest alignment” refers to the largest contig or scaffold that mapped to the reference 30 

genome. “Genome fraction” represents the fraction of the genome recovered by 31 
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contigs from an assembly. The “duplication ratio” is the total number of aligned bases 1 

in the assembly divided by the total number of those in the reference 2 

(https://github.com/ablab/quast). NGA50 is the N50 value of the contigs that mapped 3 

to the reference genomes with contigs being split at misassemblies. The NGA50 value 4 

cannot be calculated for the assemblies which recover less than 50% of the genome 5 

in terms of genome fraction and was set to 0 instead to ensure comparability. The 6 

individual reference report from metaQUAST was used to evaluate the performance 7 

for abundant or low abundant strains in mixtures. All overall metrics values regardless 8 

of the specific strain in the mixture were calculated using the combined reference 9 

report from metaQUAST, except for NGA50. 10 

 11 

Haplotype reconstruction 12 

Of viral quasispecies assemblers, we ran PEHaplo v0.1, PredictHaplo v0.4, Savage 13 

v0.4.0, QuasiRecomb v1.2, ShoRAH v1.9.95 and VirGenA v1.4 using default settings 14 

(for details see the code repository). We did not run HaROLD, as this requires 15 

longitudinal clinical samples from the same source. The haplotype assemblies were 16 

evaluated using metaQUAST together with the consensus assemblies mentioned 17 

above. 18 

 19 

A composite quality metric for strain-resolved assembly 20 

To summarize assembly performances, we defined a weighted score based on the 21 

metaQUAST assembly metrics using combined reference including genome fraction, 22 

largest alignment, NGA50, duplication ratio, number of contigs, and number of 23 

mismatches per 100 kb. As NGA50 is not available in the combined reference report 24 

of metaQUAST, we used the average NGA50 based on individual genomes from the 25 

individual references report. Of these metrics, we considered genome fraction and 26 

largest alignment as the most important metrics, since they reflect the ability of the 27 

assembler to reconstruct individual strains. To calculate a weighted summary score 28 

for assembler performance, we weighted the above metrics by the factors 0.3, 0.3, 0.1, 29 

0.1, 0.1 and 0.1 (genome fraction, largest alignment, NGA50, duplication ratio, number 30 
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of contigs, and number of mismatches per 100 kb), respectively. The score of an 1 

assembler with metric i was formulated based on the scale average performance 𝑠𝑝+ 2 

and then multiplied by a factor of 10 to ensure the score is in the range of 0-10: 3 

 4 

, where 𝑠𝑝+ is the scaled performance for metric i. The value was scaled into 0-1 5 

with min-max normalization defined as follows: 6 

 7 

In the formula, 𝑝+ is the average performance across all samples of the given 8 

assembler for metric i and the min and max are the smallest and largest average 9 

performance value on metric i among all assemblers. 10 

 11 

Determination of genome differences between two strains 12 

MUMmer v3.23 with default setting was used to align two genomes of the strains in 13 

each mixture and to identify the differences between genomes as ground 14 

truth. Command “show-snps” of the MUMmer package was employed to determine 15 

the SNPs and short InDels differing between two aligned genomes with parameter 16 

setting “--CTHr”, where the repeat regions were masked. The genomic differences 17 

between TB40/E and Merlin were considered as the ground truth variants for the TM 18 

mixtures, while differences between TB40/E and AD169 were considered as the 19 

ground truth for the TA mixtures. 20 

 21 

Variant calling 22 

Quality controlled reads were mapped against the reference genome of the HCMV 23 

strains Merlin and AD169 using BWA-MEM with a seed length of 31. HCMV Merlin 24 

and AD169 genomes were used as reference genomes, as they were the major strains 25 

in all mixtures. The resulting BAM files were deduplicated with the Picard package 26 

(http://broadinstitute.github.io/picard/) to remove possible amplification duplicates that 27 
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may bias the allele frequency of identified variants. To compare the performance of 1 

different variant callers, we used LoFreq (parameter: -q 20 -Q 20 -m 20), VarScan2 (-2 

--min-avg-qual 20 --p-value 0.01), FreeBayes (--p 1 -m 20 -q 20 -F 0.01 --min-3 

coverage 10), CLC (overall read depth ≥10, average basecall quality ≥20, 4 

forward/reverse read balance 0.1-0.9 and variant frequency ≥0.1%), BCFtools (--p 5 

0.01 --ploidy 1 -mv -Ob) and GATK HaplotypeCaller (--min-base-quality-score 20 -6 

ploidy 1) to identify variants. The variants from the difference between genomes 7 

detected by MUMmer were considered as positive variants. Based on this standard, 8 

precision, recall, and F1-score were computed to evaluate those callers. The pairwise 9 

genome differences of 30 E. coli or 30 HIV genomes were determined by MUMmer as 10 

well. To evaluate the performance of different callers for SNP and InDel prediction, the 11 

command vcfeval in RTG-tools [60] was used to generate recall-precision curves 12 

based on the Phred scaled “QUAL” score field (--squash-ploidy -f QUAL --sample ALT).  13 

 14 

Data and code availability 15 

The benchmarking program developed in this study is available under the GNU 16 

General Public License V3.0 at https://github.com/hzi-bifo/Quasimodo. This program 17 

can be also used to assess variant calling and assembly results for other viral mixed 18 

strain data sets (see readme of the repository for details). All assembly and variant 19 

calling results are freely accessible on Zenodo (10.5281/zenodo.3739874). The 20 

sequence data were deposited in ENA with accession number PRJEB32127. 21 

 22 

Discussion and conclusions 23 

Mixed infections with multiple HCMV strains are commonly observed in patients with 24 

active HCMV replication [10,17–20]. Accurately reconstructing the genomic 25 

sequences of the individual haplotypes has implications for gaining a deeper 26 

understanding of viral pathogenicity and viral diversity within the host. To identify the 27 

most suitable software for analysis of mixed viral genome sequencing samples with 28 

low evolutionary divergence and comparatively large genomes, we evaluated multiple 29 
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state-of-the-art assemblers and variant callers on lab-generated strain mixtures of 1 

HCMV.  2 

In the assembly benchmarking, most metagenome and genome assemblers, in 3 

particular metaSPAdes and IVA, recovered the abundant strains well in terms of 4 

metrics such as genome fraction, contig length and mismatches. When also 5 

considering strains of low abundance, Savage recovered the largest fractions of both 6 

underlying genomes in the reference-based mode. However, this was achieved in a 7 

highly fragmented manner, consistent with reports by the authors (Table 3 [34]). Thus, 8 

the state-of-the-art in assembly methods, including both generic (meta-)genome and 9 

specialized viral quasispecies assemblers, does not yet reconstruct large viral HCMV 10 

genomes of low abundance and low variant density with high quality. This may not be 11 

surprising since these programs were originally designed primarily for mixtures of 12 

large and much more divergent microbial genomes, or for viral genomes with a tenth 13 

of the size of the HCMV genome, but a higher variant density. In terms of resource 14 

usage, Ray and ABySS produced the smallest outputs, while megahit was the most 15 

memory efficient, as well as fastest assembler with good performance (weighted 16 

score >5). 17 

Of the variant callers, LoFreq most faithfully identified only true variants across all 18 

samples, closely followed by VarScan2. Both had high F1-scores even on the samples 19 

with high mixing ratios. When analyzing the genomic context of the predicted variants, 20 

for true positive calls, we observed a context independent enrichment of T to C and C 21 

to T transitions. A preference for transitions over transversions is common in molecular 22 

evolution [61,62]. This is the case in terms of observed mutations and because 23 

transitions more often lead to synonymous mutations that tend to be neutral, rather 24 

than under negative selection, as most nonsynonymous changes on the population 25 

level.  26 

For false variant calls, we found a striking enrichment of T to G changes in a G.G 27 

context, representing an unreported context-dependent signal. Calls with this pattern 28 

had lower allele frequencies than true positive variant calls and were more pronounced 29 

in sample with more PCR cycles used (protocol 2, 6-14 cycles versus 4 in protocol 1), 30 

indicating a link to DNA amplification. Amplification error introduced in PCR cycles will 31 

accumulate exponentially and occur at frequencies that depend on when they were 32 

introduced: PCR-induced errors are mostly of lower frequency unless introduced in 33 
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one of the very early amplification cycles [57]. Schirmer and co-workers studied the 1 

error profiles for the amplicon sequencing using MiSeq with different library 2 

preparation methods and showed that the library preparation method and the choice 3 

of primers are the most significant sources of bias and cause distinct error patterns 4 

[63]. They also observed a run-specific preference for the substituting nucleotide. They 5 

observed that A and C were more prone to substitution errors (A to C and C to A) 6 

compared to G and T, which differ from our results. We could not find the context 7 

dependent signal for an HIV quasispecies data set that had been generated with 8 

Nextera XT DNA Library Prep chemistry (Illumina) on Illumina’s MiSeq platform, 9 

suggesting that the false positive pattern originates from a step unique to the HCMV 10 

sequencing protocol, such as pre-amplification and amplification PCR during library 11 

preparation. 12 

Notably, the experimental protocols substantially affected the nature of the generated 13 

data and bioinformatics results. Protocol 1 led to substantial amplification of E. coli 14 

host DNA and thus lower coverage of the viral strains. This, together with the resulting 15 

differences in actual mixing ratios relative to protocol 2 likely explain the higher recall 16 

and slightly lower precision observed in variant detection (Figure S4). An earlier study 17 

based on simulated sequencing data also showed that variant calling on lower 18 

coverage samples achieved higher recall and lower precision [64]. Protocol 2 used 19 

more extensive DNA amplification together with cultivation in human cell culture. This 20 

resulted in higher coverage of viral strain genomes in comparison to protocol 1, and 21 

the doubling of context-dependent false positive variant calls within a G.G context 22 

discussed above (Figure 7).  23 

Taken together, our results suggest that for strain mixtures of large DNA viruses with 24 

low variant density, many assemblers reconstruct the abundant strain with high quality, 25 

but assembly of the low abundant strains is still challenging. Variant callers designed 26 

for low frequency variant detection provided the best results and detected most true 27 

variants. These findings are relevant for the interpretation of program outputs when 28 

analyzing clinical patient samples. We also provide a resource that facilitates further 29 

benchmarking, including our result evaluation and visualization software QuasiModo, 30 

all produced benchmarking data sets and results, for flexible assessment of further 31 

methods on these and similar data sets. 32 

  33 
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 1 
Key points 2 

• The strain-resolved de novo assembly of large DNA virus with low variant 3 

density is challenging to all evaluated assemblers. Some generic 4 

(meta-)genome assemblers, such as metaSPAdes and IVA, performed 5 

particularly well in recovering the dominant strain. 6 

• LoFreq and VarScan2 are good choices for identifying low frequency variants 7 

from strain mixture of large DNA viruses. 8 

• The pattern of false variant calls likely links to the experimental protocol used 9 

to generate the sequencing data. More amplification cycles led to more 10 

pronounced false positive variant calls. 11 

• All the analyses can be reproduced using QuasiModo developed in this study. 12 

QuasiModo can be also utilized to evaluate other methods using the 13 

benchmarking data sets in this study or similar data sets. 14 
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