The structural variation landscape in 492 Atlantic salmon genomes

Alicia C. Bertolotti ^{1,2}, Ryan M. Layer ^{3,4}, Manu Kumar Gundappa ², Michael D. Gallagher ², Ege Pehlivanoglu ², Torfinn Nome ⁵, Diego Robledo ², Matthew P. Kent ⁵, Line L. Røsæg ⁵, Matilde M. Holen ⁵, Teshome D. Mulugeta ⁵, Thomas J. Ashton ⁶, Kjetil Hindar ⁷, Harald Sægrov ⁸, Bjørn Florø-Larsen ⁹, Jaakko Erkinaro ¹⁰, Craig R. Primmer ¹¹, Louis Bernatchez ¹², Samuel A.M. Martin ¹, Ian A. Johnston ⁶, Simen R. Sandve ⁵, Sigbjørn Lien ⁵*, Daniel J. Macqueen ²*

* Corresponding authors:

Daniel J. Macqueen (<u>daniel.macqueen@roslin.ed.ac.uk</u>) Sigbjørn Lien (<u>sigbjorn.lien@nmbu.no</u>

Affiliations:

¹ School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, UK

² The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK

³ BioFrontiers Institute, University of Colorado, Boulder, CO, USA

⁴Department of Computer Science, University of Colorado, Boulder, CO, USA

⁵ Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway

⁶Xelect Ltd, Horizon House, St Andrews, Scotland, United Kingdom

⁷ Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, NO, 7485, Trondheim,

Norway

⁸ Rådgivende Biologer AS, Bergen, Norway

⁹Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106, Oslo, Norway

¹⁰Natural Resources Institute Finland (Luke), Oulu, P.O.Box 413 FI-90014, Finland

¹¹ Institute for Biotechnology, University of Helsinki, Helsinki, Finland

¹² Institut de Biologie Intégrative et des Systèmes (IBIS) Pavillon Charles-Eugène Marchand, Université Laval Québec QC Canada

1 Abstract

2 Structural variants (SVs) are a major source of genetic and phenotypic variation, but remain challenging to 3 accurately type and are hence poorly characterized in most species. We present an approach for reliable SV discovery in non-model species using whole genome sequencing and report 15,483 high-confidence SVs in 4 5 492 Atlantic salmon (Salmo salar L.) sampled from a broad phylogeographic distribution. These SVs 6 recover population genetic structure with high resolution, include an active DNA transposon, widely affect 7 functional features, and overlap more duplicated genes retained from an ancestral salmonid 8 autotetraploidization event than expected. Changes in SV allele frequency between wild and farmed fish 9 indicate polygenic selection on behavioural traits during domestication, targeting brain-expressed synaptic 10 networks linked to neurological disorders in humans. This study offers novel insights into the role of SVs 11 in genome evolution and the genetic architecture of domestication traits, along with resources supporting

12 reliable SV discovery in non-model species.

13 **Main**

14 Modern genetics remains primarily focused on single nucleotide polymorphism (SNP) analyses, with a 15 growing recognition of the importance of larger structural variants (SVs) including inversions, insertions, 16 deletions and copy number variations (CNVs) (defined here as variants ≥ 100 bp), among others¹. SVs affect a larger proportion of bases in human genomes than SNPs⁴, are not always reliably tagged by SNPs⁵, 17 more frequently have regulatory impacts⁶, and have been shown to alter the structure, presence, number, 18 19 dosage, and regulation of many genes¹. Nonetheless, SVs remain challenging to accurately type using whole genome sequence data²⁻³, limiting our understanding of their biological roles and exploitation as 20 21 genetic markers. Consequently, there is a need for reliable SV detection approaches to fully exploit the fast-22 accumulating genome sequencing datasets in both model and non-model species, allowing for more 23 complete genetics investigations. Many tools exist for SV discovery using short-read sequencing data, but all suffer from high false discovery rates (10-89%)^{2,3,7}. This poses a challenge for truly de novo SV 24 25 detection in previously unstudied species lacking 'gold standard' reference SVs to help distinguish true 26 from false calls. Most studies rely on combining an ensemble of signals from different SV detection 27 methods, although this strategy does not reliably improve performance and can in some cases aggravate false discovery³. Researchers therefore often apply independent experimental⁸⁻⁹ or visualization methods¹⁰ 28 29 to validate a subset of SV calls. Overall, there remains an unsatisfactory lack of consensus on how to 30 validate the quality of *de novo* SV datasets in most species³.

31

32 Salmonids have the highest combined economic, ecological and scientific importance among all fish 33 lineages, and have consequently been subject to hundreds of genetics studies employing SNPs and other molecular markers^{11,12}. In common with most non-model fish species, the SV landscape remains extremely 34 35 poorly characterized in salmonids, apart from recent work informed by SNPs that revealed multi-megabase inversions in rainbow trout (Oncorhynchus mykiss Walbaum) influencing migration^{13,14}, and a 36 chromosomal fusion under selection in Atlantic salmon¹⁵, consistent with roles in adaptation. Salmonids 37 38 offer a unique system to characterize SVs due to an ancestral salmonid-specific autotetraploidization (i.e. 39 whole genome duplication, WGD) event (Ss4R), which occurred 80-100 Mya, following an earlier WGD (300-350 Mya) in the teleost common ancestor^{16,17,18}. WGD events may influence selection on SV retention 40

41 due to the functional redundancy linked to mass retention of duplicated genes, though this idea is yet to be 42 tested. In addition, salmonids have been farmed in aquaculture for a small number (<15) of generations¹¹, 43 and while the genetic architecture of such recent domestication has been investigated using SNPs¹⁹, the role 44 played by SVs remains unexplored. Finally, the application of SVs in selective breeding of salmonids and 45 other commercial fishes remains untested. Clearly, the lack of SV data and analysis frameworks in 46 salmonids represents an important knowledge gap. 47

48 Here we provide an end-to-end workflow to detect, genotype, validate and annotate SVs using short-read 49 sequencing, removing false positives through efficient manual curation¹⁰, allowing reliable SV discovery in 50 non-model species. Using this approach, we report a detailed investigation of the genomic landscape of 51 SVs in the iconic Atlantic salmon, inclusive of 492 genomes representing wild and farmed genetic 52 diversity, and populations of both European and North American descent.

53 Results

54

55 Accurate SV discovery in Atlantic salmon

56 We developed a workflow for SV discovery using paired-end short-read sequencing data aligned to the unmasked ICSASG V2 reference assembly¹⁷, which can be run in Snakemake²⁰ (Supplementary Figure 1). 57 The probabilistic tool Lumpy²¹ was used for SV detection, which simultaneously draws on multiple 58 59 evidence and SVtyper²² was used for genotyping. As *de novo* SV detection using short-read data is prone to 60 false positives^{3,21,23}, we added steps to avoid SV calling in complex regions of the genome where false 61 positive rates were predicted to be particularly high (proven below). This included regions of $\geq 100x$ 62 coverage (>10 times higher than the global average of 8.1x coverage across 492 samples), shown elsewhere 63 to be overwhelmingly false calls³, as well as gap regions in the ICSASG_V2 assembly. These complex 64 regions were most prevalent in chromosome arms where rediploidization was delayed after Ss4R, characterized by high sequence similarity among duplicated regions¹⁷ (Supplementary Figure 2). 65 66

67 Rather than using evidence from additional SV detection tools as a filter for true SV calls, a strategy shown 68 elsewhere to be potentially unreliable³, we applied a curation approach to the entire filtered SV dataset 69 using SV-plaudit¹⁰. SV-plaudit is a scalable framework for the rapid production of thousands of SV images 70 via Amazon web services¹⁰ (examples: Supplementary Figures 3-8). This approach allowed us to efficiently 71 retain high-confidence SV calls, while excluding low confidence or ambiguous calls, on the basis of 72 available visual evidence drawn from paired-end and split-read alignments, in addition to read depth^{10,21}. The Atlantic salmon individuals (Supplementary Table 1) produced on average 55,754 SV calls (median: 73 74 55,041, SD: 10,051) before filtering complex regions and SV-plaudit curation (Supplementary Table 2). 75 Across all individuals, 165,116 unique SVs were detected (size: 100bp to 2 million bp), which included an 76 outlier peak of deletion SVs in the 1,432-1,436 bp size range (Supplementary Data 1; Supplementary 77 Figure 9).

78

79 Using SV-plaudit on the full set of SV calls allowed us to retain only high-confidence calls, quantify the 80 impact of filtering complex regions, and estimate a false discovery rate (FDR). The overall estimated FDR 81 was 0.91 (149,491/165,116 of calls had low confidence), in line with the highest estimates in the 82 literature^{2,3,7}. In complex regions, the FDR was 0.992 (47,268/47,636 calls had low confidence). In the 83 remaining chromosome-anchored assembly, the FDR was 0.85, validating the usefulness of removing 84 complex genomic regions. Sequencing depth was not a reliable indicator of FDR (Supplementary Figure 85 10). A final high-quality set of 15,483 unique SV calls (14,017 deletions, 1,244 duplications, 242 inversions) and their genomic location is visualized in Fig. 1a and 1b. The average size for deletions was 86 87 1,532 bp (100 to 1,946,935 bp; SD: 23,070 bp) and for duplications 8,183 bp (102 to 80,1673 bp; SD: 88 25,589 bp) (Fig. 1c, d). For inversions, the average size was 121,935 bp (113 to 1,796,230 bp; SD: 278,698 89 bp) (Fig. 1e). The outlier peak at 1,432-1436 bp remained in the high-confidence deletions (Fig. 1c). 90

91 To validate our SV discovery workflow we estimated the true positive rate for SV presence/absence and
92 genotype calls using the high-confidence data retained after the SV-plaudit step. We sequenced PCR
93 amplicons for 876 independent SV calls representing 168 unique SVs (108 deletions, 46 duplications, 15
94 inversions) (Supplementary Figure 11) at ≥50x coverage on the MinION platform. Across all SV calls, the

95 true positive rate was 0.88 for SV presence/absence and 0.81 for SV plus genotype. For deletion calls, the 96 true positive rate was 0.93 for presence/absence (520/559 calls) and 0.85 (475/559 calls) for genotype. For 97 duplications, the true positive rate was 0.81 for presence/absence (186/230 calls) and 0.74 (170/230 calls) 98 for genotype. For inversion calls, the true positive rate was 0.78 for presence/absence (68/87 calls) and 99 0.75(65/87 calls) for genotype. Full results are shown in Supplementary Table 3 (with examples in 100 Supplementary Figures 12, 13 and 14). In summary, SV-plaudit curation vastly reduced the FDR to 101 maintain predominantly true SV calls (provided in Supplementary Data 2).

102

103 To further confirm data quality, we asked if the high confidence SVs genotypes capture expected 104 population genetic structure (Fig. 1f-j). SV genotypes were used in principal component analyses (PCA) for the different SV types (Fig. 1f-i). For all SV types, PC1 separated European and Canadian salmon, 105 106 consistent with past work e.g.^{24,25}. Deletions achieved a better resolution for the sampled European 107 populations, with PC2 separating populations from Europe into distinct groups explained by latitude with 108 evidence of intermixing at middle latitudes in Norway (Supplementary Figure 15), as reported elsewhere²⁴. 109 All farmed salmon clustered with the wild populations from which they are descended. Farmed salmon 110 from Europe, including 13 farmed fish from Chile, clustered with wild salmon from Southern Norway, 111 while 7 Chilean farmed salmon clustered with Canadian salmon (Fig. 1c). Using the high-confidence 112 deletion genotypes, an admixture analysis was performed, which was consistent with the PC analysis (Fig. 113 1j). For comparison, we also performed PCAs using the raw unfiltered SV calls, plus the reduced subset 114 filtered for complex regions, which failed to capture the same population structure (Supplementary Figure 115 16). In summary, our final set of deletion genotypes capture expected population genetic structure at the highest resolution. It is unclear if the weaker signal for duplications and inversions is linked to specific 116 properties of these markers, their comparatively lower number, or slightly lower genotyping accuracy. 117 118

110

119 Annotation of Atlantic salmon SVs

We used SnpEff²⁶ to annotate all high confidence SV calls against features in the ICSASG_v2 annotation.
Many SVs were located in intergenic and intronic regions (Supplementary Figure 17), with 62%, 3% and
2.5% within 5 kb of a protein-coding gene, long non-coding RNA gene or pseudogene, respectively.

123 Around half (49%) of all SVs overlapped one or more RefSeq gene, the majority of which overlapped a 124 single gene (Supplementary Figure 18), with 8,439 genes overlapped in total. Approximately 4%, 21% and 125 25% of deletions, duplications and inversions were predicted by SnpEff to have a high impact, respectively, 126 including hundreds of putative exon losses, frameshift variants and potential gene fusion events 127 (Supplementary Figure 19). 101 duplications spanned entire genes (mean length: 51.7 kb, median length: 128 15.1 kb). The high impact annotations for different SV types were associated with an overrepresentation of several biological processes in the gene ontology (GO) framework²⁷ (Supplementary Table 4, 5). 129 130 131 Recently active DNA transposon in Salmo evolution

132 The outlier peak observed in the deletion calls (Fig. 1a; Supplementary Figure 9) was investigated by

133 extracting all high confidence variants of 1,432-1,436 bp in size (104 sequences) from the ICSASG_v2

134 genome. 94 and 89 of these sequences shared \geq 50% and \geq 95% identity in all pairwise combinations,

135 respectively. The 94 sequences were used as queries in BLASTn searches revealing that 91% (86 out of 94)

136 shared \geq 95% identity to a pTSsa2 piggyBac-like DNA transposon (NCBI accession: EF685967)²⁸. The

137 breakpoints in the outlier deletions SV match to the complete pTSsa2 sequence (Supplementary Data 3),

138 missing no more than a few bp at the 5' or 3' end. Consequently, the outlier deletion peak (Fig. 1a) appears

139 to largely represent an intact pTSsa2 sequence.

140

141 Phylogenetic analysis was done incorporating the Atlantic salmon pTSsa2 sequences along with the top 142 100 BLASTn hits to the pTSsa2 sequence in the genome of brown trout Salmo trutta (repeat masking off; all sequences e-value = 0.0, 70-100% and 84-95% query coverage and identity, respectively). Repeating 143 144 the search against genomes for the next most closely-related salmonid genera, Salvelinus (Arctic charr S. 145 alpinus) and Oncorhynchus (rainbow trout O. mykiss, coho salmon O. kitsuch, and chinook salmon O. 146 *tshawytscha*) failed to identify sequences sharing >50% coverage or >81% identity. The tree indicates 147 independent expansions of pTSsa2 sequences in the Atlantic salmon and brown trout genome (Fig. 2; 148 Supplementary Figure 20). The pTSsa2 sequence appears in the Atlantic salmon genome with high copy

149 number across all chromosomes (Supplementary Figure 21).

151 We also determined the broader overlap of SVs and repeat sequences in the Atlantic salmon genome.

152 Among all SVs, 65% (10,184) contained no repeat sequences, 16% (2,423) a single repeat, and 7% (1,027)

153 two repeats. There was a significant correlation between SV size and the number of repeats per SV across

all SV types (Pearson's R \geq 0.99, P < 0.0001 in each test), indicating that the number of repeats within each

- 155 SV was simply a direct product of SV size.
- 156

157 Impact of genome duplication on the SV landscape

158 Salmonid genomes retain a global signature of duplication from Ss4R, with at least half of the protein-

159 coding genes retained as expressed, functional duplicates (referred to as ohnologs)^{17,18}. Ss4R ohnolog pairs

160 share amino acid sequence identity ranging from \sim 75 to 100%^{12,17,18} with \sim 40% maintaining the ancestral

161 tissue expression pattern¹⁷, suggesting pervasive functional redundancy. We hypothesised that the

162 redundancy provided ohnolog retention after WGD influenced the evolution of the SV landscape by

163 creating a mutational buffer²⁹ against deleterious SV mutations. A key prediction is that genes found in

164 Ss4R ohnolog pairs (with scope for functional redundancy) should be more overlapped by SVs compared

165 to singleton genes (lacking scope for functional redundancy).

166

167 We tested this prediction by generating a novel set of high-confidence Ss4R ohnolog pairs (10,023 pairs,

168 i.e. 20,046 genes) and singletons (8,282 genes) (Supplementary Data 4) and indeed, found a significant

169 enrichment of SVs overlapping retained Ss4R ohnologs (*Fisher's exact test*, P = 0, odds ratio = 1.47)

170 (Supplementary Table 6). This effect was specific to deletions (P = 0, odds ratio = 1.62), and hence not

171 observed in duplications (P = 0.62) nor inversions (P = 0.52). SVs with putative high impact did not

172 overlap ohnologs more than singletons (high impact snpEff annotation: P = 0.93, manually curated

173 deletions impacting exons: P = 0.55) (Supplementary Data 5).

174

175 Next we asked if gene expression characteristics influence the overlap between SVs and Ss4R ohnologs.

176 We initially used Spearman's rank correlation to establish co-expression of ohnologs across an RNA-Seq

177 atlas of 15 tissues¹⁶. We found that ohnolog pairs where one copy overlaps an SV showed slightly lower

178 expression correlation compared to randomly selected ohnolog pairs (resampling test, P = 0)

179 (Supplementary Figure 22). This pattern could be explained by SVs affecting ohnolog pairs with greater 180 levels of functional divergence, but may also be caused by relaxed purifying selection on duplicated copies, 181 allowing more SVs to accumulate. It has been shown elsewhere that the more highly expressed ohnolog in a pair is typically under stronger purifying selection³⁰. Therefore, we asked if ohnologs overlapped by a 182 183 deletion SV have reduced expression compared to their duplicate with no SV overlap. Indeed, this was the 184 case (Wilcoxon rank-sum test, P = 2.9e-6) (Supplementary Figure 22). We also found that ohnolog pairs 185 showing overlap with deletion SVs showed reduced expression compared to ohnolog pairs showing no 186 overlap to SVs (*Wilcoxon rank-sum* test, P = 7e-25) (Supplementary Figure 22).

187

188 Overall, these analyses reveal that the Ss4R WGD strongly influenced the retention of deletion SVs in the189 Atlantic salmon genome, and this may be explained by functional redundancy.

190

191 Selection on SVs during Atlantic salmon domestication

192 Our study provides a unique opportunity to ask if SVs were selected during the domestication of Atlantic salmon, which commenced when the Norwegian aquaculture industry was founded in the late 1960s^{11,31}. 193 194 Consequently, farmed Atlantic salmon are no more than 15 generations 'from the wild', in contrast to livestock and poultry, which have been domesticated for thousands of years^{11,12}. The early domestication 195 process involves strong selection on behavioural traits^{32,33} targeting molecular pathways underpinning 196 197 cognition, learning and memory, for instance genes with functions in synaptic transmission and 198 plasticity^{34,35}. Specifically, selection on farmed animals should remove individuals that invest in costly 199 behavioural and stress responses such as predator avoidance and fear processing, in favour of animals that invest into performance traits ^{32,36}. We thus hypothesised that SVs linked to genes regulating pathways 200 201 controlling behaviour would be under distinct selective pressures in farmed and wild salmon.

202

203 To test our hypothesis, we established significantly genetically differentiated SVs by calculating the

204 fixation index (F_{ST})³⁷ between 34 farmed Norwegian salmon and 257 wild salmon from Norway. The wild

205 individuals were selected based on a PCA including all European salmon, aiming to remove confounding

206 effects of genetic differentiation by latitude observed in wild Norwegian salmon (Fig. 3a), retaining the

207 closest possible background to the wild founders used in aquaculture. We used a permutation approach to 208 estimate the probability of observed F_{ST} values in relation to random expectations, defining 584 SV outliers 209 at *P*<0.01 (all F_{ST} >0.103, Median F_{ST} = 0.149) (Fig. 3b; Supplementary Data 6), which were distributed 210 throughout the genome (Fig. 3c).

211

GO enrichment tests identified 132 overrepresented biological processes (P<0.05) among the genes linked to these outlier SVs by SnpEff (Supplementary Table 7). This set comprises 326 unique genes contributing to the enriched terms (Supplementary Table 8). 34 biological processes explained by 156 unique genes (48% of the unique genes contributing to all enriched GO terms) were daughter terms related either to learning and behaviour, including 'habituation' (P<0.002), 'vocal learning' (P<0.001), and 'adult behavior' (P<0.02), or the nervous system, including 'positive regulation of nervous system process' (P<0.02),' presynaptic membrane assembly'(P<0.01), 'postsynapse assembly' (P<0.02) 'oligodendrocyte

219 development' (P < 0.001) and 'regulation of neuronal synaptic plasticity' (P < 0.03).

220

221 To test our hypothesis, we asked if genes linked to outlier SVs showed enrichment in brain expression (Fig. 222 3d). Indeed, this was strongly supported when judged against transcriptome-wide expectations (Fig. 3d); 223 with the signal being strongest for the 326 gene subset contributing to the overrepresented GO terms, 224 emphasising particular importance of brain functions among the enriched gene set (Fig. 3d, Supplementary 225 Table 9). A positive enrichment in the expression of outlier linked genes was only observed in brain, with 226 nine other tested tissues showing either no differences to transcriptomic expectations, or in the case of 227 muscle and foregut, reduced expression specificity (Supplementary Table 9; Supplementary Figures 23, 228 24). Finally, we asked if the outlier SVs overlapped putative cis-regulatory elements (CREs) detected in 229 brain using novel ATAC-Seq data (significant peaks overlapping a gene +/- 3,000bp up/downstream; n=4) 230 more than expected. For 9,920 SVs lacking evidence for differentiation between farmed and wild fish (Fst 231 P > 0.05), 7.1% overlapped at least one brain ATAC-Seq peak, which was almost identical to SV outliers 232 (7.0%) (Fisher's exact test, P = 0.86). A similar result was observed by restricting the analysis to genes 233 with brain biased expression (*Fisher's exact test*, P = 0.41).

234

235 SVs selected by domestication are linked to many synaptic genes

The increased brain expression and overrepresentation of nervous system functions for SV outlier linked genes motivated us to investigate the role of these loci in the genetic architecture of domestication. We performed a detailed annotation of the 156 SV outlier linked genes contributing to the 34 aforementioned enriched GO terms (Supplementary Table 10). To cement the relevance of this gene set to our hypothesis, we cross-referenced all the encoded protein products with a high-resolution synaptic proteome from zebrafish³⁸. Our rationale was that the synaptic proteome is central to nervous system activity and defines the repertoire of cognitive and behaviours an animal can perform during its life^{38,39}.

243

244 Among the 156 SV outlier linked genes, 65 (i.e. 42%, linked to 67 distinct SVs) encode a protein with an 245 ortholog in the zebrafish synaptic proteome (Supplementary Table 10) defined by stringent reciprocal 246 BLAST (mean respective pairwise % identity and coverage = 77% and 95%). As synaptic proteomes are highly conserved between fish and mammals³⁸, it is reasonable to assume these proteins are *bone fide* 247 248 components of Atlantic salmon synaptic proteomes, and that a minimum of 11% of the outlier SVs were 249 linked to synaptic genes by SnpEff. These proteins are encoded by multiple members of ancient, conserved 250 gene families involved in synaptic formation, transmission and plasticity, including neurexins (NRXN1 and 251 NRXN2), SH3 and multiple ankyrin repeat domains 3 proteins (SHANK2 and 3), cadherins (CDH4, CDH8, 252 CDH11, PCDH1), Down syndrome cell adhesion molecules (DSCAM and DSCAML), teneurins (TENM1 253 and TENM2), gamma-aminobutyric acid receptors (GABRB2 and GABRG2), potassium voltage-gated 254 channel subfamily D members (KCND1 and KCND2), receptor-type tyrosine-protein phosphatases 255 (PTPRG and PTPRN2) and ionotropic glutamate receptors (GRIK3 and GRIN2C) (Fig. 4). Genetic 256 disruption to orthologs for most these proteins (59/65) cause behavioural and/or neurological disorders in mammals (Supplementary Table 10). 257

258

To ask how selection acted on these variants during domestication, we compared allele frequencies
between wild and farmed fish (Fig. 4). By far the most common scenario was that the synapse gene - linked
SVs are rare alleles in wild fish that show increased frequency of heterozygotes (carrying one SV copy,
0/1) and homozygotes (carrying both SV copies, 1/1) in farmed fish (Fig. 4). We also found that farmed

263	individuals often carry multiple copies of SVs that are especially rare in wild fish (defined as 0/0
264	homozygous frequency \geq 0.90, 45 SVs) - assumed to be deleterious in natural environments - including
265	homozygote 1/1 states for SVs located on different chromosomes (Supplementary Figure 25).
266	

267 Many of the outlier SVs linked to the 65 synaptic genes are located in non-coding regions (introns and 268 untranslated regions, 45%), while a smaller fraction are located within 10kb up or downstream (15%) or 269 within \geq 10kb to 260 kb (33%) of the same genes (Fig. 4). A smaller fraction affect coding regions via 270 whole gene duplications, either involving a small number of genes, e.g. a 55 kb duplication overlapping the 271 brain-specific CDK5R1 gene, or through larger multigene duplications (Fig. 4; Supplementary Table 10). A 272 striking example of an SV with a putative major disruptive effect was a 696 kb inversion that flips multiple 273 exons and the upstream region of the brain-specific gene encoding neurexin 2, which should halt translation 274 of a functional protein (Supplementary Table 10). Finally, among this synaptic gene set, we identified two 275 ohnolog pairs retained from Ss4R encoding astrotactin-1 and seizure protein 6 (Fig. 4).

276

277 Major effect SVs altered by domestication

278 We identified 32 further SVs with major predicted effects on gene structure and function among the 279 significant F_{ST} outliers, which typically show increased allele frequency in farmed compared to wild Atlantic 280 salmon (Table 1). These SVs disrupt or ablate coding genes with diverse functions, including male fertility (e.g. CATSPERB⁴⁰), immunity (e.g. B cell survival and signalling, GIMAP8⁴¹ and two distinct CD22⁴² genes), 281 282 circadian control of metabolism (NR1D2⁴³), lipid metabolism and insulin sensitivity (ELOVL6⁴⁴), and 283 melanin transport and deposition (MYRAP⁴⁵) (Table 1). We observed four deletions that disrupt conserved lncRNAs of unknown function, and several large SVs that cover multiple genes, for instance a 423 kb 284 inversion on Chromosome 7 containing 16 genes that was absent in 257 wild salmon (Table 1). In summary, 285 286 this data demonstrates that diverse gene functions beyond neurological and behavioural pathways were 287 altered by the domestication of Atlantic salmon due to altered selective pressure or drift.

288 Discussion

289

290 Despite an increasing shift towards the use of long-read sequencing for SV discovery^{1,2}, these technologies 291 remain prohibitively expensive for large-scale population genetics, making such datasets scarce in most 292 species. Consequently, it remains a timely challenge to extract reliable SV calls from the more extensive 293 repository of short-read genome sequencing datasets, which continue to emerge rapidly in many species, 294 largely for use in SNP analyses. The approach reported can be applied for reliable SV detection and 295 genotyping using such data in any species with a reference genome. A critical step - unique to this study was the curation of all SV calls using SV-plaudit¹⁰. This approach demands significant manual effort, 296 297 equivalent to approximately two weeks for a small team of trained curators, yet was efficient in retaining 298 predominantly true calls, and allowed us to demonstrate the value of filtering complex regions to drastically 299 reduce the FDR. The overall extreme FDR for SV discovery advocates for the routine application of such 300 curation in SV studies based on short-read sequencing, particularly if 'gold-standard' SVs defined by past 301 work are unavailable.

302

303 The SVs reported provide a novel resource for future studies on the genetic architecture of traits in Atlantic 304 salmon, which has excluded SVs until now. It will be useful to overlap our SVs with genomic regions of 305 interest such as QTLs defined by SNPs, to investigate SVs as putative causal variants. For example, we 306 discovered a duplication on chromosome 14 that likely destroys the function of the MYRIP gene, which is involved in melanosome transport⁴⁵ – a past study discovered a single QTL on chromosome 14 that 307 explained differences in melanocyte pigmentation between wild and domesticated fish⁴⁶, which may be 308 309 linked to this newly discovered SV. It will also be useful in future studies to apply SV markers directly in 310 genome wide association analyses, and to test their value for genomic prediction in salmon breeding programmes^{11,12}. While our study captured hundreds of Atlantic salmon genomes representing several 311 312 major phylogeographic groups, it fails to capture broader genetic diversity within this species, and due to 313 the retention of only high confidence SV calls, our method may be prone to false negatives. Further, 314 inherent limitations of short read sequencing data for SV detection presumably obscures detection of many

SVs, suggesting future SV studies in Atlantic salmon must also focus on adapting long-read sequence data,
and integrating short and long-read data for optimal SV discovery¹.

317

318 We discovered intact pTSsa2 polymorphisms within our SV dataset, and provided evidence for transposon 319 expansion after the split of S. salar and trutta ~10 Mya¹⁶ (Fig. 2). The pTSsa2 transposon appears with high 320 copy number in the Atlantic salmon genome, suggesting an important role in shaping very recent genome 321 architecture. Transposons have largely been excluded from studies of contemporary genetic variation in salmonids, but were central to genome rediploidization after the Ss4R WGD¹⁷, and likely contributed to the 322 evolution of the sex determining locus, e.g.⁴⁷. As work in other taxa has revealed that transposon 323 polymorphisms contribute to adaptive evolution ^{48,49} and speciation⁵⁰, future studies on pTSsa2 should 324 325 investigate such possibilities in Salmo. We also showed that Atlantic salmon deletion SVs are more likely 326 to overlap genes retained as ohnolog pairs from the Ss4R WGD event compared to singleton genes. This 327 supports the hypothesis that WGD events buffer against potential deleterious impacts of SVs on gene function and regulation, consistent with past work^{29,51}. However, the link between SVs and the Ss4R WGD 328 329 requires further investigation to more fully dissect the role of selection and drift in driving SV retention. 330

331 We discovered many SVs showing genetic divergence between farmed and wild Atlantic salmon linked to synaptic genes responsible for behavioural variation^{38,39}. Most were rare alleles in wild fish and showed a 332 333 small to moderate increase in frequency in domesticated populations, consistent with a polygenic genetic 334 architecture for behavioural traits altered by domestication, including risk-taking behaviour, aggression, 335 and boldness^{32,52,53,54,55,56}, affecting many unique genes from the same functional networks, mirroring the polygenic basis for many human neurological traits^{57,58,59}. The disruption of mammalian orthologs for many 336 337 of the same synaptic genes cause disorders including schizophrenia, intellectual disability, autism, and 338 Alzheimer's (Supplementary Table 10). For Atlantic salmon, we did not establish if these SVs are 339 causative variants or in linkage disequilibrium with other variants under selection. In several cases, it is 340 likely that the SVs discovered are causative variants due to their disruptive nature on protein coding gene 341 sequence potential (e.g. Table 1), including the ablation of the key synaptic protein neurexin-2, which 342 caused autism-related behaviours when induced experimentally in mice⁶⁰. However, as many of the outlier

343 SVs were located in non-coding regions, this points to regulatory effects on gene expression, which may have minor or additive effects on behavioural traits. Future work should test whether the outlier SVs alter 344 the expression or function of synaptic genes and directly influence behavioural phenotypes. Beyond 345 neurological systems, domestication altered the frequencies of numerous major effect SVs disrupting genes 346 347 with diverse functional roles (Table 1), providing candidate causative variants for ongoing investigations 348 into diverse traits. For instance, an increased frequency of SVs ablating the ELOVL6 and NR1D2 genes in 349 domesticated fish, which play key roles in lipid metabolism, insulin resistance, and the coordination of metabolic functions with the circadian clock^{44,45}, is highly consistent with a recent transcriptomic study 350 351 demonstrating altered metabolism linked to disrupted circadian regulation in domesticated compared to wild Atlantic salmon⁶¹. 352

353

To conclude, given the rapidly growing recognition of the importance of establishing the role of SVs in adaptation and other evolutionary processes in natural populations^{62,63}, in addition to commercial variation relevant to breeding of farmed animals^{64,65}, we anticipate that this reliable description of the SV landscape in Atlantic salmon will encourage more studies exploiting SV markers to address both fundamental and applied questions in the genetics of non-model species.

359

360 Methods

361

362 Sequencing data

Paired-end whole genome sequencing data (mean 8.1x coverage, 2 x 100-150 bp) was generated for 472 Atlantic salmon on several different platforms (Supplementary Table 1). DNA extraction, quality control and sequencing library preparation followed standard methods. Wild Atlantic salmon were sampled either during organized fishing expeditions or by anglers during the sport fishing season with DNA extracted from scales. We sampled n=80 wild Canadian individuals from 8 sites, n=359 Norwegian individuals from 52 sites (including n=5 landlocked dwarf salmon), n=8 Baltic individuals from a single site and n=4 White sea individuals from a single site. Whole genome sequencing data was generated for 21 farmed individuals

370 (n=12 individuals from Mowi ASA; n=9 samples from Xelect Ltd) and downloaded for a further 20
371 individuals (NCBI accession: PRJNA287458).

372

373 SV detection and genotyping

Sequence alignment to the unmasked ICSASG_V2 assembly (GCA_000233375.4)¹⁷ was done using BWA 374 v0.7.13⁶⁶. Reads were mapped to the complete reference, including unplaced scaffolds, with random 375 placement of multi-mapping reads⁶⁷. Reads mapping to unplaced scaffolds were discarded. Alignments 376 were converted to BAM format in Samtools v0.1.1968. Alignment quality, batch effects and sample error 377 were further assessed using Indexcov goleft v0.2.1⁶⁹. Gap regions were extracted and converted to BED 378 379 format using a Python script (Supplementary Note 1); SV calls overlapping these regions were identified using Bedtools⁷⁰ and removed. Sample coverage was estimated using mosdepth v0.2.3⁷¹. High depth 380 381 regions were defined as $\geq 100x$ coverage and removed; this cut-off was a compromise to avoid generating 382 too many false SV calls, balanced against the risk of losing real SVs. High depth regions located within 100bp were merged. SV detection was done using the Lumpy-based tool Smoove V.2.3²¹ with genotypes 383 called by SVtyper²². Gap and high-depth regions were combined into a single BED file, which can 384 385 optionally be used to exclude these locations from SV detection in Lumpy (-exclude option). All of the above steps were combined in a Snakemake (v.3.11.0)²⁰ workflow, with the input being paired-end 386 387 sequencing data (FASTQ format), and the output a VCF file with SV locations and genotypes for all 388 individuals in a study (Supplementary Figure 1; Supplementary Note 2 provides Snakefile).

389

390 SV-plaudit curation

391 All 165,116 SV calls generated in the study were curated using SV-plaudit¹⁰. A plotCritic website was

392 setup on Amazon Web Services where variant images produced in samplot v1.01

393 (https://github.com/ryanlayer/samplot) were deployed. SV curation involved the random visualization of

394 one homozygous wild-type (0/0; lacking SV, identical to reference genome), two heterozygous (0/1, with

395 one SV copy) and two homozygous-alternate (1/1, with two SV copies) individuals per SV, done using

396 cyvcf2 v0.11.5⁷². With each image the question "is this variant real?" was answered (options: 'No', 'Yes',

397 or 'Maybe'). Only high confidence variants ('Yes') were kept for downstream analysis. Three different co-

398 authors (ACB, MKG, EP) team-curated the full SV set. 1,000 random plots were commonly curated by

399 each researcher to establish congruence in decision making, and there was 100% agreement concerning

400 high confidence ('Yes') variants. Subsequently the SV plots were divided randomly and each set validated

401 independently across the 3 researchers and then merged.

402

403 SV annotation

- 404 High confidence SVs retained following SV-plaudit curation were filtered to remove redundant SVs using
- 405 the Bedtools *intersect* function (90% reciprocal overlap), removing 133 SVs and leaving 15,483 SVs used
- 406 in further analysis (Supplementary Data 2). The association between SVs and RefSeq genes within the

407 ICSASG_v2 assembly was done using SnpEff²⁶ (default parameters). GO enrichment tests were done using

408 the 'weight01' algorithm and Fisher's test statistic in the TopGo package⁷³. The background set was all

- 409 genes in the RefSeq annotation. The R package 'Ssa.RefSeq.db'
- 410 (https://gitlab.com/cigene/R/Ssa.RefSeq.db)⁷⁴ was used to retrieve GO annotations from the ICSASG_v2

411 genome. The overlap between SV locations and repeats in the ICSASG_v2 annotation was done using

- 412 Bedtools⁶¹ against an existing database¹⁷.
- 413

414 **Phylogenetic analyses**

- 415 pTSsa2 sequences including EF685967 were used in BLASTn⁷⁵ searches against the NCBI nucleotide
- 416 database (restricted to Salmonidae) in addition to unmasked assemblies for Atlantic salmon (ISCASG_v2),
- 417 brown trout (GCA_901001165.1), Arctic charr (GCA_002910315.2), rainbow trout (GCA_002163495.1),
- 418 chinook salmon (GCA_002872995.1) and coho salmon (GCA_002021735.2). Sequence alignments were

419 performed using Mafft⁷⁶ with default settings. Phylogenetic analysis was done using the IQTREE server⁷⁷

420 with estimation of the best-fitting nucleotide substitution model (Bayesian Information Criterion) and 1,000

421 ultrafast bootstraps⁷⁸.

422

423 SV validation by MinION sequencing

424 PCR primers are shown in Supplementary Table 3. PCRs were performed using LongAmp® Taq (New

425 England Biolabs) with 1 cycle of 94°C for 30s, 30 cycles of 94°C for 30s, 56°C for 60s and 65 °C for

426 50s/kb, followed by a 10 min extension at 65°C. Amplicons for different SVs in each fish individual were 427 pooled and cleaned using AMPure XP beads (Beckman Coulter). 250ng pooled DNA was used to create 428 sequencing libraries with a 1D SQK-LSK109 kit (Oxford Nanopore Technologies, ONT). DNA was end-429 repaired using the NEBNext Ultra II End Repair/dA Tailing kit (New England Biolabs) and purified using 430 AMPure XP beads. Native barcodes were ligated to end-repaired DNA using Blunt/TA Ligation Master 431 Mix. Barcoded DNA was purified with AMPure XP beads and pooled in equimolar concentration to a total 432 of 200 ng per library (~0.2 pmol). AMII Adapter mix (ONT) was ligated to the DNA using Blunt/TA 433 Ligation Master Mix (New England Biolabs) before the adapter-ligated library was purified with AMPure 434 XP beads. DNA concentration was determined at each step using a Qubit fluorimeter (Thermo Fisher 435 Scientific) with a ds-DNA HS kit (Invitrogen).

436

437 Sequencing libraries were loaded onto MinION FLO-MIN106D R9.4.1 flow cells (ONT) and run via 438 MinKNOW for 36h without real-time basecalling. Basecalling and demultiplexing was performed with 439 Guppy v2.3.7. FASTQ files were uploaded into Geneious Prime 2019.1.1 and simultaneously mapped to a 440 reference of sequences spanning all candidate SV regions in the ISCSAG v2 assembly. Mapping was done 441 with the following parameters: 'medium-fast sensitivity', 'finding structural variants', including 'short 442 insertions' and 'deletions' of any size, with the setting 'map multiple best matches' set to 'None', and the minimum support for SV discovery set to 2 reads. Alignments were inspected for the presence and 443 444 genotype of the SV. Amplicons with <50x coverage to the target SV region were discarded as failed PCRs. When alignments matched the predicted SV breakpoints and size, the SV call was considered correct. 445 When >90% of the aligned reads matched to the expected SV and breakpoints (i.e. a gap for deletions, an 446 447 insertion for duplications and flipped reads for inversions compared to the reference) it was classified 1/1 448 homozygous. When at least 10% of the aligned reads matched to both the reference genome state, in 449 addition to the 1/1 state, the locus was classified 0/1 heterozygous.

450

451 Association between SVs and Ss4R ohnologs

452 The code used to identify a genome-wide set of Ss4R ohnologs, along with a description of the genome 453 assembly annotations employed, is available at <u>https://gitlab.com/sandve-lab/salmonid_synteny</u> and

https://gitlab.com/sandve-lab/defining_duplicates. Orthogroups were constructed with Orthofinder⁷⁹ using 454 455 seven salmonid species (Atlantic salmon, rainbow trout, Arctic charr, coho salmon, huchen Hucho hucho, 456 and European grayling *Thymallus*, five additional actinopterygians (zebrafish, medaka *Oryzias*) 457 latipes, northern pike Esox lucius, three-spined stickleback Gasterosteus aculeatus and spotted gar 458 Lepisosteus oculatus), and two mammals (human and mouse Mus musculus). For each orthogroup, we extracted nucleotide protein coding sequences, aligned them with Macse⁸⁰ and built gene trees using 459 TreeBeST 81 . Trees were split into smaller subtrees at the node representing the divergence between pike 460 461 and salmonids. To derive a final set of Atlantic salmon Ss4R ohnologs, we used both synteny and gene tree 462 topology criteria. Firstly, we required that the subtrees branched with northern pike as the sister to salmonids and outgroup to Ss4R^{16,17} and contained either exactly two (ohnologs) or exactly one (singletons) 463 Atlantic salmon genes. Secondly, we removed any putative Ss4R ohnologs falling outside conserved 464 465 synteny blocks predicted using iadhore⁸². A final set of ohnolog pairs is provided in Supplementary Data 4, 466 which contains all gene trees in NWK format.

467

468 We used the *fisher.exact()* function in R to compare the observed counts of SVs overlapping singleton and 469 ohnologs with the total counts of singletons and ohnologs. To test for association between ohnolog expression divergence and SV overlap, we used a 15 tissue RNA-Seq dataset¹⁷ available as a TPM 470 471 (transcripts per million reads) table in the salmofisher R-package https://gitlab.com/sandve-472 lab/salmonfisher. We used the cor() function in R to compute median Spearman's tissue expression 473 correlation for all ohnolog pairs where one copy was overlapped by an SV. We then computed median 474 correlations for 1,000 randomly sampled ohnolog sets of the same size. The P-value was estimated as the 475 proportion of resampled medians lower than the observed median for ohnologs overlapped by SVs. Tests comparing expression level between genes that were either overlapped or not overlapped by SVs were 476 477 conducted using the sum log10 transformed TPM for each gene across all 15 tissues. The function 478 wilcox_test within the R-package rstatix was used to calculate P-values for differences in expression levels. 479 The code used is available at https://gitlab.com/ssandve/atlantic_salmon_sv_ohnolog_analyses/. 480

481 Association of SVs with brain ATAC peaks

482 Four Atlantic salmon (freshwater stage, 26-28g) were killed using a Schedule 1 method following the Animals (Scientific Procedures) Act 1986. Around 50mg homogenized brain tissue was processed to 483 extract nuclei using the Omni-ATAC protocol for frozen tissues⁸³. Nuclei were counted on an automated 484 cell counter (TC20 BioRad, range 4-6 um) and further confirmed intact under microscope. 50,000 nuclei 485 486 were used in the transposition reaction including 2.5 µL Tn5 enzyme (Illumina Nextera DNA Flex Library Prep Kit), incubated for 30 minutes at 37 °C in a shaker at 200 rpm. The samples were purified with the 487 488 MinElute PCR purification kit (Qiagen) and eluted in 12µL elution buffer. qPCR was used to determine the optimal number of PCR cycles for library preparation⁸⁴ (8-10 cycles used). Sequencing libraries were 489 490 prepared with short fragments and fragments >1,000 bp removed using AMPure XP beads (Beckman 491 Coulter, Inc.). Fragment length distributions and confirmation of nucleosome banding patterns were 492 determined on a 2100 Bioanalyzer (Agilent) and the library concentration estimated using a Qubit system 493 (Thermo Scientific). Libraries were sent to the Norwegian Sequencing Centre, where paired-end 2 x 75 bp 494 sequencing was done on an Illumina HiSeq 4000. The raw sequencing data is available through 495 ArrayExpress (Accession: E-MTAB-9001).

496

497 ATAC-Seq reads were aligned to the Atlantic salmon genome (ICSASG_v2) using BWA (v0.7.17)⁶⁶ and a 498 merged peak set called combining the four replicates using Genrich (<u>https://github.com/jsh58/Genrich</u>) 499 with default parameters, apart from "-m 20 -j" (minimum mapping quality 20; ATAC-Seq mode). Bedtools 500 was used to identify SVs overlapping ATAC-Seq peaks (filtered at corrected $P \le 0.01$) associated to genes, 501 defined as being located within 3,000 bp up/downstream of the start and end coordinates of the longest 502 transcript per gene.

503

504 Population structure analyses and F_{ST} analyses

505 PCAs were performed separately on the complete set of high confidence deletions (14,017), duplications
506 (1,244) and inversions (242) using the *prcomp* and *autoplot* functions within GGplot2⁸⁵ in R. Genotypes
507 were coded into bi-allelic marker format to be compatible with standard population genetics methods.
508 Population structure was examined using NGSadmix⁸⁶ tested for group sizes of K=2-4.

509

 F_{ST} values were calculated for all high confidence SVs using VCFtools v0.1.16⁸⁷ with the Weir and 510 511 Cockerham method³⁷ comparing 34 Norwegian farmed vs. 257 Norwegian wild Atlantic salmon (Fig. 4a provides rationale for sample selection). To establish the significance of each FST value, individuals from 512 513 the two groups were randomly split into two sets of the original size (i.e. 34 vs. 257 individuals) 200 times, 514 before the distribution of resultant F_{ST} values was plotted using the ggplot2 function geom_freqpoly (binwidth = 0.01). Per SV *P*-values were considered as the proportion of F_{ST} values obtained in the 200 515 516 random distributions higher than the F_{ST} in the observed distribution. Thus, if 10/200 randomly sampled 517 F_{ST} values above the observed F_{ST} value were recorded, P=0.05 was assigned. We further applied an F_{ST} 518 cutoff to include SVs where 99.7% of all F_{ST} values fell above the randomly sampled values ($F_{ST} > 0.103$). 519 Any SVs lacking alternative alleles in the compared groups were excluded. Code to perform these analyses 520 is provided in Supplementary Note 3.

521

522 Annotation of SV outliers

523 GO enrichment tests for genes linked to the SV outliers (P < 0.05) were done as described in the section 524 'SV annotation', with the background gene set restricted to all RefSeq genes linked to SVs by SnpEff. To 525 investigate the expression of genes linked to SV outliers, we used existing RNA-seq data¹⁷, representing 526 normalized counts per million (CPM) for 10 tissues (brain, liver, muscle, spleen, pancreas, heart, pyloric, 527 gill, skin and foregut). We filtered any genes where the across-tissue sum of CPM was <1.0. A 'tissue 528 specificity' index was calculated, representing the sum across-tissue CPM divided by the CPM per tissue. 529 We tested whether genes linked to SV outliers by SnpEff, in addition to a subset contributing to significant 530 GO terms (P<0.01), differed from the transcriptome-wide expectations. Hypergeometric tests were used 531 (*dhyper* function in R) to compare the number of genes in the two gene sets with a tissue specificity index \geq 0.5 compared to all genes in the transcriptome. Two-sample t-tests (*t.test* function in R) were used to 532 533 compare differences in mean CPM between the two gene sets compared to all genes in the transcriptome. BLAST was used to cross-reference protein products of genes linked to SV outliers against 3,840 unique 534 proteins detected in the zebrafish synaptic proteome³⁸ (downloaded from the GRCz11 assembly version 535 536 using BioMart at Ensembl.org), taking forward the top zebrafish BLAST hit (cut-off: 40% identity, 40% 537 query coverage) as a query in a reciprocal BLAST against all S. salar RefSeq proteins (no cut-off);

538	evidence for orthology was accepted when the candidate zebrafish protein showed a best hit to the original
539	query in the complete salmon proteome. We used the <i>fisher.exact()</i> function in R to test if the 584
540	significant F _{ST} outlier SVs were more likely to overlap brain ATAC-Seq peaks than non-significant SVs (P
541	> 0.05), which was done considering all expressed genes (TPM \geq 1) in the RNA-Seq tissue atlas described
542	above ¹⁷ and a subset of the same genes most highly expressed in brain (filtered for genes where brain was
543	among the top 3 tissues for TPM). The bedtools ⁶¹ intersect function was used to associate ATAC-Seq peaks
544	with SVs. The code used is available at https://gitlab.com/ssandve/atlantic_salmon_sv_ohnolog_analyses/.
545	
546	Data availability
547	New genome sequences generated are available through the European Nucleotide Archive (project
548	accession: PRJEB38061, released upon publication). Sample accession numbers for all 492 Atlantic salmon
549	genomes are provided in Supplementary Table 1 (available upon publication). ATAC-Seq reads were
550	deposited in ArrayExpress (accession: E-MTAB-9001).
551	
552	Code availability
553	Python script used to identify regions in ICSASG_v2 genome and convert output to BED file:
554	Supplementary Note 1.
555	Snakefile and associated code for SV detection pipeline: Supplementary Note 2.
556	R script used to obtain F_{ST} values from random comparisons and establish probability value for outlier SVs:
557	Supplementary Note 3.
558	Code to define orthogroups and build gene trees: <u>https://gitlab.com/sandve-lab/salmonid_synteny</u> .
559	Code to identify Atlantic salmon ohnolog pairs from ortholog groups and gene trees:
560	https://gitlab.com/sandve-lab/defining_duplicates.
561	Code to analyse overlaps between SVs, ohnologs and ATAC-Seq data:
562	https://gitlab.com/ssandve/atlantic_salmon_sv_ohnolog_analyses/.
563	

564 Acknowledgements

565 The study was supported by Biotechnology and Biological Sciences Research Council grants 566 BB/M016455/1, BB/S004181/1, BBS/E/D/10002070 and BBS/E/D/30002275. Wild Atlantic salmon 567 genome sequencing was funded by the Research Council of Norway (The Aqua Genome project; ref: 568 221734). We thank Dr Chris Hollenbeck (formerly Xelect Ltd; currently Texas A&M, USA) for support 569 with Snakemake and Drs Serap Gonen and Matt Baranski (Mowi AS) for sharing sequencing data. We thank Terese Andersstuen and Dr Mariann Árnyasi (both NMBU) for organizing the sequencing of wild 570 571 Atlantic salmon samples. We acknowledge the use of computing clusters at the University of Aberdeen 572 (Maxwell), University of Edinburgh (EDDIE) and CIGENE, NMBU (Orion). Storage resources were 573 provided by the Norwegian National Infrastructure for Research Data (NIRD, project NS9055K). DJM 574 thanks Prof. Seth Grant (University of Edinburgh) for helpful discussion concerning the Atlantic salmon 575 SV outliers and synaptic genes. 576

577 Contributions

578 DJM, SL, IAJ and SRS conceived the study. ACB, RL and TN developed the SV detection workflow. ACB

579 performed downstream analyses with contributions from MKG, DR, DJM, TDM, SRS, and EP. DJM (lead

580 supervisor), TJA, IAJ and SAM supervised ACB. ACB and MDG performed MinION sequencing. SLL

581 and MHH performed ATAC-Seq. KH, HS., BF-L, JE, CRP and LB provided wild Atlantic salmon samples.

582 ACB, DJM and SRS drafted the text and figures. All authors commented on and approved the final

583 manuscript.

584

585 Ethics declarations

586 Competing interests: The authors declare no competing interests

587

588 Supplementary information

- 589 Supplementary Figure 1. Snakemake pipeline for end-to-end SV detection.
- 590 Supplementary Figure 2. Locations of complex regions in Atlantic salmon genome.
- 591 Supplementary Figure 3. Example of SV-plaudit image for a high confidence deletion SV call

- 592 Supplementary Figure 4. Example of SV-plaudit image for a false positive deletion SV call excluded
- 593 from further analyses.
- 594 Supplementary Figure 5. Example of SV-plaudit image for a high confidence duplication SV call
- 595 retained in further analyses
- 596 Supplementary Figure 6. Example of SV-plaudit image for a false positive duplication SV call excluded
- 597 from further analyses
- 598 Supplementary Figure 7. Example of SV-plaudit image for a high confidence inversion SV call retained
- 599 in further analyses
- 600 Supplementary Figure 8. Example of SV-plaudit image for a false positive inversion SV call excluded
- 601 from further analyses
- 602 Supplementary Figure 9. SV sizes before SV-plaudit curation
- 603 Supplementary Figure 10. Sequencing depth was not a strong predictor of the final number of high-
- 604 confidence SVs retained after SV-plaudit curation.
- 605 Supplementary Figure 11. Summary of 168 SV regions used for MinION amplicon sequencing to
- 606 validate Lumpy/SVtyper SV and genotype calls.
- 607 Supplementary Figure 12. Example of congruence between SV/genotype calls and data generated by
- 608 MinION amplicon sequencing.
- 609 Supplementary Figure 13. Example of congruence between SV/genotype calls and data generated by
- 610 MinION amplicon sequencing.
- 611 Supplementary Figure 14. Example of congruence between SV/genotype calls and data generated by
- 612 MinION amplicon sequencing.
- 613 Supplementary Figure 15. PCAs showing the same data presented in Fig. 1g-i (main text), except
- 614 visualized according to latitude
- 615 Supplementary Figure 16. PCA analyses done on SV genotype calls prior to SV-plaudit curation
- 616 Supplementary Figure 17. SV annotation by SnpEff
- 617 Supplementary Figure 18. Overlap between high confidence SVs and protein coding genes in the
- 618 ICSASG_v2 annotation.

- 619 Supplementary Figure 19. Number of high impact annotations per snpEff effect for high-confidence
- 620 Atlantic salmon SVs.
- 621 Supplementary Figure 20. Maximum likelihood tree presented in Fig. 2 including sample identifiers,
- 622 genomic locations of pTSsa2 sequences and bootstrap values.
- 623 Supplementary Figure 21. Circos plot showing the genomic locations of pTSsa2 sequences in the
- 624 Atlantic salmon genome
- 625 Supplementary Figure 22. Expression characteristics of ohnologs depending on SV overlap.
- 626 Supplementary Figure 23. Tissue expression levels comparing SV outliers with transcriptome wide
- 627 expectations for nine tissues
- 628 Supplementary Figure 24. Tissue specificity comparing SV outliers with transcriptome wide
- 629 expectations for nine tissues
- 630 Supplementary Figure 25. Heatmap showing individual SV genotypes for 45 SV outliers linked to
- 631 synapse genes.
- 632
- 633 Supplementary Note 1. Python script used to extract gap regions in the ICSASG_v2 genome and and
- 634 convert the outputs to a BED file
- 635 Supplementary Note 2. Snakefiles and associated code for SV calling pipeline
- 636 Supplementary Note 3: Custom R script used to obtain F_{ST} values from random comparisons and establish
- 637 probability value for outlier SVs
- 638
- 639 Supplementary Table 1. Details of samples used in study

640 Supplementary Table 2. SV call statistics per individual across 492 Atlantic salmon samples following

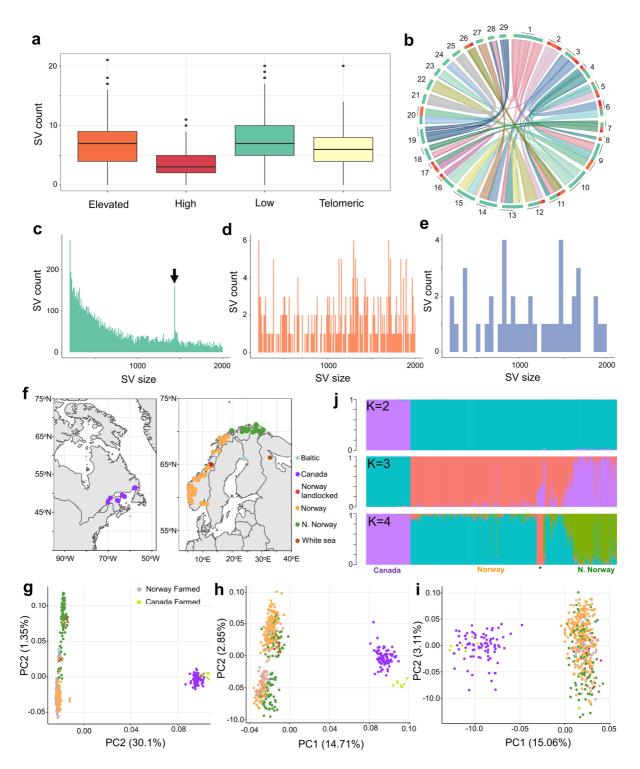
- 641 different filtering steps
- 642 Supplementary Table 3. Validation of SV calls and genotypes using MinION sequencing
- 643 Supplementary Table 4. GO Biological Process enrichment analysis for genes affected by high impact
- 644 deletions, duplications and inversions
- 645 Supplementary Table 5. Genes contributing to significant GO terms for high impact SVs

- 646 Supplementary Table 6. Fishers Exact test results contrasting the overlap between SVs with singleton genes
- 647 vs. Ss4R ohnolog genes.
- 648 Supplementary Table 7. GO enrichment analysis for genes linked to SV outliers between wild and farmed
- 649 Atlantic salmon
- 650 Supplementary Table 8. Genes contributing to significant GO terms for genes linked to SV outliers.
- 651 Supplementary Table 9. Statistical tests of two expression characteristics (specificity and level) across a
- 652 panel of tissues for 327 SV outlier linked genes contributing to significantly enriched GO biological
- 653 processes in comparison to a transcriptome-wide set gene set.
- 654 Supplementary Table 10. Detailed annotation of prioritized SV outliers between farmed and wild Atlantic
- 655 salmon linked to genes with synaptic functions.

656

- 657 Supplementary Data 1: Full SV dataset and genotypes prior to SV-plaudit curation
- 658 Supplementary Data 2: High-confidence SVs retained after SV-plaudit curation, including individual
- 659 genotypes and SnpEff annotation
- 660 Supplementary Data 3: Alignment of SV deletions representing pTSsa2 piggyBac-like DNA transposons
- 661 (used to Generate Fig. 2)
- 662 Supplementary Data 4: High confidence annotation of Ss4R ohnolog and singletons in the Atlantic salmon
- 663 genome
- 664 Supplementary Data 5: Manually filtered SV deletions that alter protein-coding exons
- 665 Supplementary Data 6: Significant SV outliers between wild and farmed salmon from Norway

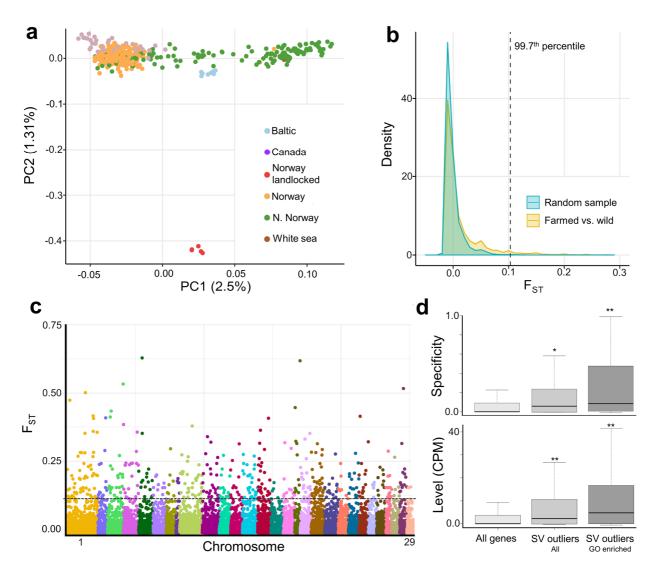
666


667 References

- 1. Ho, S.S., Urban, A.E., Mills, R.E. Structural variation in the sequencing era. Nat. Rev. Genet. doi:
- 670 10.1038/s41576-019-0180-9 (2019).
- 671 2. Mahmoud, M., et al. Structural variant calling: the long and the short of it. *Genome Biol.* 20, 246 (2019).
- 672 3. Cameron, D.L. Di Stefano, L., Papenfuss A.T. Comprehensive evaluation and characterisation of short
- 673 read general-purpose structural variant calling software. *Nat. Commun.* **10**, 3240 (2019).
- 674 4. Frazer, K.A., et al. Human genetic variation and its contribution to complex traits. *Nat. Rev. Genet.* **10**, 675 241-51 (2009).
- 5. Conrad, D.F., Hurles, M.E. The population genetics of structural variation. *Nat. Genet.* 39, S30–S36(2007).
- 678 6. Chiang, C. et al. The impact of structural variation on human gene expression. *Nat. Genet.* 49, 692–699 679 (2017).


- 680 7. Kosugi, S., et al. Comprehensive evaluation of structural variation detection algorithms for whole
- 681 genome sequencing. Genome Biol. 20, 117 (2019).
- 682 8. Becker, T., et al. FusorSV: an algorithm for optimally combining data from multiple structural variation
- 683 detection methods. Genome Biol. 19, 38 (2018).
- 684 9. Alkan, C., Coe, B.P, Eichler E.E. Genome structural variation discovery and genotyping. *Nat. Rev.*
- 685 Genet. 12, 363-376 (2011).
- 686 10. Belyeu, J.R., et al. SV-plaudit: A cloud-based framework for manually curating thousands of structural 687 variants. *GigaScience* **7**, giy064 (2018).
- 688 11. Houston, R.D., et al. Harnessing genomics to fast-track genetic improvement in aquaculture. *Nat. Rev.*689 *Genet.* Doi: s41576-020-0227-y (2020)
- 690 12. Houston, R.D., Macqueen, D.J. Atlantic salmon (Salmo salar L.) genetics in the 21st century: taking
- 691 leaps forward in aquaculture and biological understanding. Anim. Genet. 50, 3-14 (2019)
- 692 13. Pearse, D.E., et al. Sex-dependent dominance maintains migration supergene in rainbow trout. Nat.
- 693 Ecol. Evol. 3, 1731-42 (2019).
- 694 14. Pearse, D.E., et al. Rapid parallel evolution of standing variation in a single, complex, genomic region 695 is associated with life history in steelhead/rainbow trout. *Proc. Biol. Sci.* **281**, 20140012.
- 696 15. Wellband, C. et al. Chromosomal fusion and life history-associated genomic variation contribute to 697 within-river local adaptation of Atlantic salmon. *Mol. Ecol.* **28**, 1439-1459.
- 698 16. Macqueen, DJ., Johnston, I.A. A well-constrained estimate for the timing of the salmonid whole
- 699 genome duplication reveals major decoupling from species diversification. Proc. Biol. Sci. 2014 281,
- 700 20132881 (2014)
- 17. Lien, S., et al. The Atlantic salmon genome provides insights into rediploidization. *Nature* 533,200-5(2016).
- 703 18. Berthelot, C. et al. The rainbow trout genome provides novel insights into evolution after whole-
- 704 genome duplication in vertebrates. *Nat. Commun.* 2014 **5**, 3657 (2014)
- *salar* L.) populations with different geographical origins. *Evol. Appl.* **12**, 137-156 (2019)
- 707 20. Köster, J., Rahmann, S. Snakemake--a scalable bioinformatics workflow engine. *Bioinformatics* 28,
- 708 2520-2 (2012).
- 21. Layer, R.M. et al. 2014. LUMPY: a probabilistic framework for structural variant discovery. *Genome Biol.* 15, R84 (2014).
- 22. Chiang et al. SpeedSeq: Ultra-fast personal genome analysis and interpretation. *Nat. Methods* 12, 966–
 968 (2015).
- 713 23. Kronenberg, Z.N. et al. Wham: Identifying structural variants of biological consequence. *PLoS*.
- 714 Comput. Biol. 11, e1004572 (2015).
- 715 24. Wennevik, V., et al. Population genetic analysis reveals a geographically limited transition zone
- 716 between two genetically distinct Atlantic salmon lineages in Norway. Ecol. Evol. 9, 6901–21. (2019)
- 717 25. Rougemont, Q., Bernatchez, L. The demographic history of Atlantic salmon (Salmo salar) across its
- 718 distribution range reconstructed from approximate Bayesian computations. *Evolution* **72**, 1261-77 (2018)
- 719 26. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide
- polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w1118; iso-2; iso-3. *Fly* (*Austin*) **6**, 80-92 (2012).
- 722 27. Ashburner, M. et al. Gene ontology: tool for the unification of biology. *Nat. Genet.* 25, 25-9 (2000).
- 723 28. de Boer, J.G., et al. Bursts and horizontal evolution of DNA transposons in the speciation of
- pseudotetraploid salmonids. BMC Genomics 8, 422 (2007)
- 725 29. Fares, M. The origins of mutational robustness. *Trends Genet.* **31**, 373-381 (2015)
- 726 30. Pophaly, S.D., Tellier, A. Population Level Purifying Selection and Gene Expression Shape
- 727 Subgenome Evolution in Maize. *Mol. Biol. Evol.* **32**, 3226-35 (2015)
- 728 31. Gjedrem, T., Gjøen, H.M., Gjerde B. Genetic origin of Norwegian farmed Atlantic salmon.
- 729 Aquaculture 98, 41-50 (1991)
- 730 32. Pasquet, A. Effects of Domestication on Fish Behaviour. In Book 'Animal Domestication'
- 731 10.5772/intechopen.78752 (InTechOpen, 2018).
- 732 33. Jensen, P. Behavior genetics and the domestication of animals. Annu. Rev. Anim. Biosci. 2, 85-104
- 733 (2014)

- 734 34. O'Rourke, T., Boeckx, C. Glutamate receptors in domestication and modern human evolution.
- 735 Neurosci. Biobehav. Rev. 108, 341-357 (2020)
- 736 35. Theofanopoulou, C. et al. Self-domestication in *Homo sapiens*: Insights from comparative genomics.
- 737 *PLoS One* **12**, e0185306 (2017)
- 738 36. Price, E. O. Behavioral development in animals undergoing domestication. *Appl. Anim. Behav. Sci.*739 245-271 (1999)
- 740 37. Weir, B.S., Cockerham, C.C. Estimating F-statistics for the analysis of population structure. *Evolution*741 38, 1358-1370 (1984)
- 742 38. Bayés, À., et al. Evolution of complexity in the zebrafish synapse proteome. *Nat. Commun.* 2017 8,
 743 14613 (2017)
- 744 39. Emes, R.D., Grant, S.G. Evolution of synapse complexity and diversity. *Annu. Rev. Neurosci.* **35**, 111-745 31 (2012)
- 746 40. Liu, J. et al. CatSperbeta, a novel transmembrane protein in the CatSper channel complex. J. Biol.
- 747 Chem. 282, 18945-52 (2007)
- 748 41. Webb, L.M., et al. Generation and characterisation of mice deficient in the multi-GTPase domain
- 749 containing protein, GIMAP8. PLoS One 9, e110294 (2014)
- 750 42. Clark, E.A. and Giltiay, N.V. CD22: A Regulator of Innate and Adaptive B Cell Responses and
- 751 Autoimmunity. Front. Immunol. 9, 2235 (2018)
- 43. Bugge, A. et al. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic
- 753 function. Genes Dev. 26, 657-67 (2012)
- 44. Matsuzaka, T. et al. Crucial role of a long-chain fatty acid elongase, Elovl6, in obesity-induced insulin
- 755 resistance. Nat. Med. 13,1193-202 (2007)
- 756 45. Wasmeier, C. et al. Melanosomes at a glance. J. Cell Sci. 121, 3995-9 (2008)
- 46. Jørgensen, K.M. et al. Judging a salmon by its spots: environmental variation is the primary
- determinant of spot patterns in Salmo salar. BMC Ecol. 18, 14 (2018)
- 759 47. Faber-Hammond, J.J., Phillips, R.B., Brown, K.H. Comparative analysis of the shared sex-
- 760 determination region (SDR) among salmonid fishes. *Genome Biol. Evol.* 7, 1972–1987 (2015)
- 761 48. Schrader, L., et al. Transposable element islands facilitate adaptation to novel environments in an
- 762 invasive species. *Nat. Commun.* **5**, 5495 (2014)
- 763 49. Bourgeois, Y., Boissinot, S. On the population dynamics of junk: a review on the population genomics
- 764 of transposable elements. *Genes (Basel)* **10**, pii:E419 (2019)
- 765 50. Laporte M, et al. DNA methylation reprogramming, TEs derepression and postzygotic isolation of
- 766 nascent species. Sci. Adv. 5, eaaw1644 (2019)
- 51. Gu, Z., et al. Role of duplicate genes in genetic robustness against null mutations. *Nature* 421, 63-6
 (2003)
- 769 52. Fleming I.A., Einum, S. Experimental tests of genetic divergence of farmed from wild Atlantic salmon
- 770 due to domestication. ICES J. Mar. Sci. 54, 1051-1063 (1997)
- 53. Biro, P.A, et al. Predators select against high growth rates and risk-taking behaviour in domestic trout
- 772 populations. *Proc. R. Soc. B.* **271**, 2233–2237 (2004)
- 54. Lucas, M.D. et al. Behavioral differences among rainbow trout clonal lines. *Behav. Genet.* 34, 355-65.
 (2004)
- 55. Berejikian, B.A., et al. Competitive differences between newly emerged offspring of captive-reared and wild coho salmon. *Trans. Am. Fish. Soc.* **128**, 832-839 (1999)
- 56. Solberg, M.F., et al. Domestication leads to increased predation susceptibility. *Sci. Rep.* **10**, 1929 (2020)
- 57. McCarroll, S.A., Hyman, S.E. Progress in the genetics of polygenic brain disorders: significant new
- 780 challenges for neurobiology. *Neuron* **80**, 578-87 (2013)
- 781 58. Lee, J.L. et al. Gene discovery and polygenic prediction from a genome-wide association study of
- reducational attainment in 1.1 million individuals. *Nat. Genet.* **50**, 1112-1121 (2018)
- 59. Purcell, S.M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar
- 784 disorder. *Nature* **460**, 748-52 (2009)
- 785 60. Dachtler, J. et al. Deletion of α -neurexin II results in autism-related behaviors in mice. *Transl.*
- 786 *Psychiatry* **4**, e484 (2014)
- 787 61. Jin, Y. et al. Comparative transcriptomics reveals domestication-associated features of Atlantic salmon
- 788 lipid metabolism. Mol Ecol. In Press doi: 10.1111/mec.15446 (2020)


- 789 62. Mérot, C., et al. A roadmap for understanding the evolutionary significance of structural genomic
- 790 variation. *Trends Ecol. Evol.* Doi: https://doi.org/10.1016/j.tree.2020.03.002 (2020)
- 63. Wellenreuther, M. et al. Going beyond SNPs: The role of structural genomic variants in adaptive
- revolution and species diversification. *Mol. Ecol.* **28**, 1203-1209.
- 64. Bickhart, D.M., Liu, G.E. The challenges and importance of structural variation detection in livestock.
 Front. Genet. 5, 37 (2014)
- 795 65. Low, Y.W., et al. Haplotype-resolved cattle genomes provide insights into structural variation and
- 796 adaptation. *Nature Commun.* **11**, 2071 (2020)
- 797 66. Li, H., Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.
- 798 Bioinformatics 25, 1754-60.
- 799 67. Treangen, T.J., Salzberg S.L. Repetitive DNA and next-generation sequencing: computational
- 800 challenges and solutions. Nat. Rev. Genet. 13, 36-46 (2011)
- 68. Li, H., et al. 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* 25, 2078-9
 (2009)
- 803 69. Pedersen, B.S., et al. Indexcov: fast coverage quality control for whole-genome sequencing.
- 804 *Gigascience* **6**, 1-6. (2017)
- 805 70. Quinlan, A.R., Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features.
- 806 Bioinformatics 26, 841-2 (2010)
- 807 71. Pedersen, B.S., Quinlan, A.R. Mosdepth: quick coverage calculation for genomes and exomes.
- 808 Bioinformatics 34, 867-868 (2018)
- 72. Pedersen, B.S. and Quinlan, A.R. cyvcf2: fast, flexible variant analysis with Python. *Bioinformatics* 33, 1867-1869.
- 73. Alexa, A., Rahnenfuhrer, J. topGO: Enrichment Analysis for Gene Ontology. R package version 2.38.1
 (2019)
- 813 74. Robertson, F.M. Lineage-specific rediploidization is a mechanism to explain time-lags between genome
- 814 duplication and evolutionary diversification. *Genome Biol.* **18**, 111 (2011)
- 815 75. Altschul, S.F., et al. Basic local alignment search tool. J. Mol. Biol. 215, 403-10 (1990)
- 816 76. Katoh, K., Rozewicki, J., Yamada, K.D. MAFFT online service: multiple sequence alignment,
- 817 interactive sequence choice and visualization. *Brief. Bioinform.* **20**, 1160-1166 (2019)
- 818 77. Trifinopoulos, J., et al. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis.
- 819 Nucleic Acids Res. 44, W232-5 (2016)
- 820 78. Minh, B.Q., Nguyen, M.A., von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. *Mol.*
- 821 Biol. Evol. **30**, 1188-95.
- 822 79. Emms, D.M., Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics.
- 823 Genome Biol. 20, 238 (2019)
- 824 80. Ranwez, V. et al. MACSE: Multiple Alignment of Coding SEquences accounting for frameshifts and 825 stop codons. *PLoS One*. **6**, e22594 (2011)
- 826 81. Vilella, A.J. et al. EnsemblCompara GeneTrees: Complete, duplication-aware phylogenetic trees in
- 827 vertebrates. Genome Res. 19, 327-35.
- 828 82. Proost, S. et al. i-ADHoRe 3.0--fast and sensitive detection of genomic homology in extremely large
- 829 data sets. Nucleic Acids Res. 40, e11 (2012)
- 830 83. Corces, M.R., et al. An improved ATAC-seq protocol reduces background and enables interrogation of
- 831 frozen tissues. Nat. Methods 14, 959-62 (2017)
- 832 84. Buenrostro, J.D., et al. ATAC-seq: a method for assaying chromatin accessibility genome-wide. *Curr*.
- 833 Protoc. Mol. Biol. 109, 21.29.1–21.29.9 (2015)
- 834 85. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-
- 835 319-24277-4, <u>https://ggplot2.tidyverse.org</u> (2016)
- 836 86. Skotte, L., Korneliussen, T.S., Albrechtsen, A. Estimating individual admixture proportions from next
- 837 generation sequencing data. *Genetics* **195**, 693-702 (2013)
- 838 87. Danecek, P., et al. The variant call format and VCFtools. *Bioinformatics* 27, 2156-8 (2011)

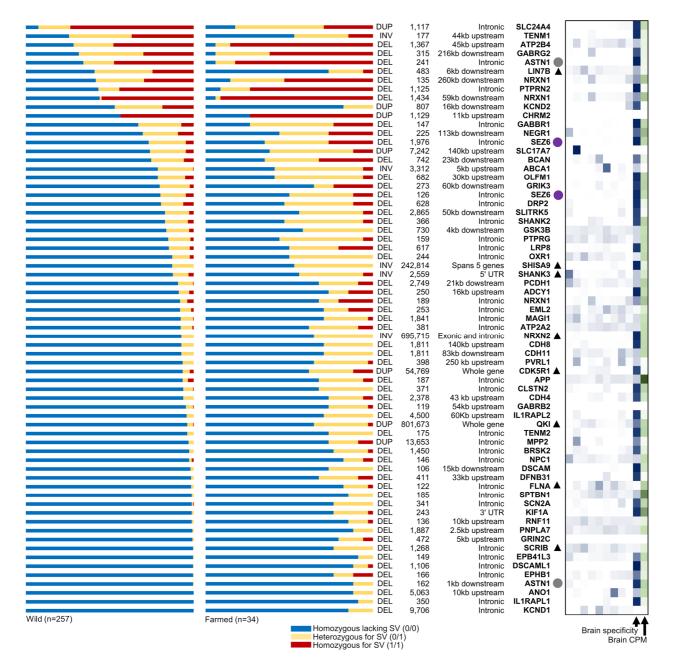

Fig. 1. SV landscape in 492 Atlantic salmon genomes. **a** SV counts per 1-million bp window in the genome split into homology categories¹⁷ representing duplicated regions retained from the Ss4R WGD sharing 'low' (<90% identity), 'elevated' (90-95% identity) and 'high' (>95% identity) similarity in addition to telomere regions. **b** Locations of the same regions depicted on a Circos plot using the same colour scheme. **c-e** Size distributions of SVs for deletions (**c**), duplications (**d**) and inversions (**e**) with X axis limited to SVs \leq 2,000 bp. Arrow in part **c** marks outlier peak in deletion calls (see Fig. 2). **f** Sampling locations of wild populations. **i-h** PCA of for each SV class: 14,017 deletions (**g**), 1,244 duplications (**h**), 242 inversions (**i**) with population matched by colour to part **f** for wild fish, and additional symbols given for farmed fish. **j** NGSadmix⁸⁶ analysis of 14,017 deletions with K=2, 3 and 4. Each individual is a vertical line with different colours marking genetically distinct groups. Asterisk corresponds to White sea, Baltic and landlocked populations (K=4 plot).

Fig. 2. Evidence for an active DNA transposon in *Salmo* evolution. Phylogenetic tree of Atlantic salmon sequences representing deletion polymorphisms matching the pTSsa2 piggyBac-like DNA transposon²⁸ (EF685967) and 100 top hits to this sequence within the brown trout genome. The tree was generated from an alignment spanning the length of pTSsa2 (Supplementary Data 3) using the TPM3+F+G4 substitution model. Bootstrap values are given at key nodes. A full tree with sequence identifiers, genomic locations of pTSsa2 sequences and bootstrap values is provided in Supplementary Fig. 18. A circos plot highlighting the location of pTSsa2 sequences in the Atlantic salmon genome is given in Supplementary Fig. 19.

Fig. 3. Genetic differentiation of SVs between farmed and wild Atlantic salmon. **a** PCA used to select appropriate wild individuals for F_{ST} comparison (n=257) vs. farmed salmon (n=34) on the basis of genetic distance by latitude (see also Supplementary Fig. 15) separated along PC1. The population symbols are the same as shown in Fig. 1. **b** Observed F_{ST} value distribution comparing farmed vs. wild salmon contrasted against 200 random distributions for the same number of individuals. Dotted line shows cut-off F_{ST} value employed in addition to a per SV criteria of P<0.01. **c** Manhattan plot of 12,627 F_{ST} values with dotted line showing the same cut-off above which are the 584 SV outliers. **d** Brain gene expression specificity (top panel) and expression level (bottom panel) are increased for genes linked to the 584 outlier SVs, with the effect more pronounced for a 326 gene subset contributing to significantly enriched GO terms, compared to 44,469 genes in a multi-tissue transcriptome. Single and double asterisks indicate P<0.005 and P<0.00001, respectively. The observed increase in expression was specific to brain (plots for other tissues shown in Supplementary Fig. 22 and 23). Statistical analysis for all tissues shown in Supplementary Table 9.

Fig. 4. SVs under selection during Atlantic salmon domestication are linked to 65 unique genes encoding synaptic proteins. SV genotypes are visualized on the left, ordered from bottom to top with decreasing frequency of homozygous genotypes (0/0) lacking the SV in wild fish. Annotation of each SV type, its size, and genomic location with respect to each synaptic gene is also shown. The circles next to genes highlight Ss4R ohnolog pairs and the black triangles indicate the overlap of an SV with a putative cis regulatory element (ATAC-Seq peak). The heatmap on the right depicts the expression specificity of each gene across an RNA-Seq tissue panel¹⁷ (white to dark blue depicts lowest to highest tissue specificity; tissues shown in different columns from left to right: liver, gill, skeletal muscle, spleen, heart, foregut, pyloric caeca, pancreas, brain). The overall expression of each gene in brain is shown on the right of the heatmap (white to dark green depicts increasing CPM across the column). Data provided in Supplementary Table 10.

Chr	Start	Size	Туре	e Impact	SV genotype frequencies							
					Fst	0/0 Wild	0/0 Farmed	0/1 Wild	0/1 Farmed	1/1 Wild	1/1 Farmed	
1	15,177,232	23,362	DEL	Deletes coding exons 3-12 in metabolic gene <i>SCCPDH</i> (LOC106569909, 12 exons) and lncRNA conserved in teleosts (LOC106569968)	0.12	0.95	0.76	0.05	0.24	0.00	0.00	
1	15,282,772	9,209	DUP	Duplicates coding exons 5-10 within immune gene <i>GIMAP8</i> (LOC106569455, 14 exons)	0.10	1.00	0.94	0.00	0.06	0.00	0.00	
1	38,534,900	2,471	DEL	Deletes coding exons 15-16 within sperm motility gene CATSPERB (106602505, 26 exons)	0.11	1.00	0.91	0.00	0.09	0.00	0.00	
1	53,229,610	801,673	DUP	Duplicates region containing 9 coding genes, including immune gene <i>Pentraxin</i> (LOC100136583)	0.27	0.96	0.65	0.04	0.32	0.00	0.03	
1	63,072,912	1,133	DEL	Deletes coding exons 16-17 within cell fusion gene <i>ADAM12</i> (LOC106607406, 23 exons)	0.15	1.00	0.94	0.00	0.03	0.00	0.03	
1	134,577,173	742	DEL	Deletes lncRNA conserved in salmonids (LOC106567697)	0.28	0.95	0.68	0.05	0.26	0.00	0.06	
2	8,188,202	8,134	DEL	Deletes coding exons 5-10 within glycoprotein gene <i>TUFT1</i> (LOC106575489, 16 exons)	0.12	0.98	0.85	0.02	0.15	0.00	0.00	
2	15,507,544	2,071	DUP	Duplicates coding exons 12-15 within <i>HMCN1</i> (LOC106578676, 19 exons)	0.24	0.28	0.00	0.16	0.00	0.56	1.00	
2	45,905,818	49,351	DEL	Deletes coding exons 1-25 of cellular adhesion gene <i>ITGAL</i> (106588084, 29 exons)	0.11	0.95	0.76	0.05	0.24	0.00	0.00	
2	51,645,286	1,172	DEL	Deletion within coding exon 9 (frameshift) of endocytosis gene SMAP1 (LOC100286439, 10 exons)	0.15	1.00	0.91	0.00	0.09	0.00	0.00	
3	53,262,801	56,833	DUP	Disrupts coding sequence and intergenic region of two tandem <i>HEBP2</i> genes (LOC106600932, LOC106600932)	0.19	0.96	0.79	0.04	0.12	0.00	0.09	
4	33,772,841	2,115	DEL	Deletes coding exons 21-26 of <i>PCNX1</i> (LOC106602984, 32 exons)	0.24	1.00	0.91	0.00	0.03	0.00	0.06	
5	23,514,943	157	DEL	Deletes coding exon 8 of <i>PIGG</i> isoform 2 (LOC106604548, 8 exons) causing a frameshift	0.35	1.00	0.76	0.00	0.24	0.00	0.00	
5	29,459,708	1,886	DEL	Deletes coding exons 2-3 within GTPase-activating gene <i>TBC1D2</i> (LOC106604634, 16 exons)	0.10	1.00	0.94	0.00	0.06	0.00	0.00	
5	54,982,436	5,313	DUP	Affecting coding exons 6-8 within circadian regulator gene <i>NR1D2</i> (LOC100136378, 8 exons). Introduces stop codon	0.15	0.84	0.50	0.10	0.38	0.06	0.12	
6	1,542,320	19,710	DUP	Duplicates coding exons 5-7 within immune gene <i>CD22</i> (106606237/8, 8 exons)	0.13	0.87	0.62	0.10	0.29	0.03	0.09	
6	29,579,766	5,320	DEL	Deletes lncRNA conserved in salmonids (LOC106607070)	0.20	0.85	0.53	0.14	0.35	0.01	0.12	
7	21,191,252	422,735	INV	Inverts region containing 16 coding genes	0.11	1.00	0.91	0.00	0.09	0.00	0.00	

Table 1. Major effect SVs under divergent selection in farmed and wild Atlantic salmon

9	21,282,095	11,299	DUP	Duplicates coding exon 2 within <i>PGBD3</i> (LOC106611080, 4 exons)	0.12	0.99	0.91	0.01	0.06	0.00	0.03
9	53,275,027	100,799	DUP	Fusion of region containing last 10 coding exons of <i>TAPT1</i> (LOC106611550) with first 4 coding exons of <i>PROM1</i> (LOC106611549	0.15	0.84	0.56	0.12	0.29	0.03	0.15
10	23,225,394	32,774	DEL	Deletes region containing six tRNA genes	0.14	0.99	0.85	0.01	0.15	0.00	0.00
11	13,465,612	5,950	DEL	Deletes exon 1 within lncRNA conserved in teleosts (LOC106562070, 3 exons)	0.10	1.00	0.94	0.00	0.06	0.00	0.00
12	21,083,103	1,693	DEL	Deletes coding exon 2-3 within uncharacterised gene (LOC106564648, 6 exons)	0.25	0.96	0.71	0.04	0.24	0.00	0.06
14	14,287,987	18,976	DUP	Duplicates coding exons 8-15 within melanosome transport gene <i>MYRIP</i> (LOC106568916, 15 exons)	0.36	0.96	0.62	0.02	0.24	0.02	0.15
14	83,617,466	91,512	DUP	Duplicates region containing 9 coding exons from <i>FAM126A</i> (LOC106570580), complete cytokine gene <i>IL6</i> (LOC106570581) and coding exon 1 from <i>RAPGEF5</i> (LOC106570584)	0.13	0.98	0.88	0.02	0.06	0.00	0.06
18	56,889,482	39,099	DUP	Duplicates coding exons 1-12 within immune gene <i>CD22</i> (LOC106577812, 20 exons)	0.12	0.94	0.76	0.05	0.18	0.01	0.06
18	64,338,324	852	DEL	Deletes coding exon 7 within gene <i>PARP14</i> -like (LOC106578007, 7 exons) and ablates stop codon	0.15	0.84	0.56	0.14	0.32	0.02	0.12
19	51,422,161	31,121	INV	Flips coding exon 1-2 within fatty acid elongation gene <i>ELOVL6</i> (LOC106579283, 4 exons)	0.11	0.93	0.71	0.07	0.29	0.00	0.00
22	40,200,901	5,863	DEL	Deletes coding exon 2 within <i>PLEKHA6</i> (LOC106583501, 24 exons)	0.13	0.97	0.85	0.02	0.06	0.01	0.09
24	11,833,364	165	DUP	Deletes half of coding exon 2 within tRNA methyltransferase gene <i>TRMT2A</i> (LOC106584929, 12 exons)	0.11	0.09	0.32	0.44	0.47	0.46	0.21
24	19,661,320	266,147	INV	Affects 6 coding genes, inverting 5 genes completely and all but first exon of <i>AAK1</i> (LOC106585601)	0.16	0.83	0.44	0.17	0.56	0.00	0.00
27	42,220,948	341	DEL	Partially deletes exon 4 in angiogenesis gene (ANG2 LOC106589146, 5 exons) causing frameshift	0.12	0.56	0.24	0.34	0.50	0.10	0.26
28	3,887,040	5,373	DUP	Duplication affecting zinc transporter gene <i>SLC39A11</i> (LOC100380452, 10 exons) causing frameshift	0.14	0.95	0.79	0.04	0.09	0.02	0.12
28	16,046,880	24,780	DUP	Fusion involving coding exons 9-16 of sodium transport gene <i>SLC38A10</i> (LOC106589592, 16 exons) and exons 1-3 of vesicular transport gene <i>TEPSIN</i> (15 exons)	0.52	0.86	0.29	0.10	0.26	0.04	0.44

Genotypes: 0/0: homozygous lacking SV; 0/1 heterozygous for SV 1/1 homozygous for SV