
The Host Cell ViroCheckpoint: Identification
and Pharmacologic Targeting of Novel

Mechanistic Determinants of
Coronavirus-Mediated Hijacked Cell States

Pasquale Laise1,2, Gideon Bosker1, Xiaoyun Sun1, Yao Shen1, Eugene F. Douglass2, Charles Karan2, Ronald B. Realubit2,

Sergey Pampou2, Andrea Califano2,3,4,5,6,�, and Mariano J. Alvarez1,2,�

1DarwinHealth Inc, New York, NY, USA.
2Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.
3Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA.
4Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
5Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
6Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA.

Most antiviral agents are designed to target virus-specific pro-
teins and mechanisms rather than the host cell proteins that
are critically dysregulated following virus-mediated reprogram-
ming of the host cell transcriptional state. To overcome these
limitations, we propose that elucidation and pharmacologic tar-
geting of host cell Master Regulator proteins—whose aber-
rant activities govern the reprogramed state of coronavirus-
infected cells—presents unique opportunities to develop novel
mechanism-based therapeutic approaches to antiviral therapy,
either as monotherapy or as a complement to established treat-
ments. Specifically, we propose that a small module of host cell
Master Regulator proteins (ViroCheckpoint) is hijacked by the
virus to support its efficient replication and release. Conven-
tional methodologies are not well suited to elucidate these poten-
tially targetable proteins. By using the VIPER network-based
algorithm, we successfully interrogated 12h, 24h, and 48h sig-
natures from Calu-3 lung adenocarcinoma cells infected with
SARS-CoV, to elucidate the time-dependent reprogramming of
host cells and associated Master Regulator proteins. We used
the NYS CLIA-certified Darwin OncoTreat algorithm, with an
existing database of RNASeq profiles following cell perturba-
tion with 133 FDA-approved and 195 late-stage experimental
compounds, to identify drugs capable of virtually abrogating
the virus-induced Master Regulator signature. This approach
to drug prioritization and repurposing can be trivially extended
to other viral pathogens, including SARS-CoV-2, as soon as the
relevant infection signature becomes available.
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Introduction

SARS-CoV is an enveloped, positive-sense, single-stranded
RNA virus of the genera Betacoronavirus introduced into
the human population from an animal reservoir and culmi-
nating in a lethal epidemic in 2002-03, affecting 8,098 indi-

viduals, 774 of whom died (9.6%)(1). The virus shares 79%
genome sequence identity with SARS-CoV-2, which is re-
sponsible for the current COVID-19 pandemic(2). SARS-
CoV can generate a rapid inflammatory cascade eventually
leading to pneumonia or severe acute respiratory syndrome
(SARS), characterized by diffuse alveolar damage, exten-
sive disruption of epithelial cells and accumulation of re-
active macrophages(3). Similar to SARS-CoV-2, SARS-
CoV spike protein S binds to angiotensin converting en-
zyme 2 (ACE2), which is widely expressed on the cell mem-
brane of oral, lung, and nasal mucosa epithelial cells, ar-
terial smooth muscle and venous endothelial cells, as well
of other organs, including stomach, small intestine, colon,
skin, lymph nodes, spleen, liver, kidney, and brain(4). Sup-
portive care—including prevention of Acute Respiratory Dis-
tress Syndrome (ARDS), multi-organ failure, and secondary
infections—remains the foundational approach for managing
serious infections caused by coronaviruses, although prelim-
inary analysis of a recently-reported, prospective, random-
ized, placebo-controlled trial, suggests that patients receiving
remdesivir recovered faster than those receiving placebo(5–
7). Despite early optimism and approval on May 1st, 2020 of
remdesivir for emergency use in hospitalized patients with
COVID-19, no other specific antiviral treatment has been
proven to be effective in randomized, placebo-controlled
trials(5, 6). Consequently, there remains a formidable un-
met need to identify pharmacologic treatments, alone or
in combination—directly targeting either viral mechanisms
and/or host cell factors—that significantly inhibit viral repli-
cation and, by extension, minimize progression of target or-
gan failure associated with COVID-19.

Current efforts focusing on antiviral drug discovery can be
summarized as belonging to two broad strategies: (a) disrupt-
ing the synthesis and assembly of viral proteins or (b) target-
ing host proteins and mechanisms required by the viral repli-
cation cycle. The first strategy has yielded drugs targeting
(i) viral proteases, required for processing of the virus large
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replicase polyprotein 1a, producing non-structural proteins
involved in viral transcription and replication(5, 8); (ii) RNA-
dependent RNA-polymerase, using guanosine and adenosine
analogs, as well as acyclovir derivatives; (iii) virus helicases;
(iv) viral spike proteins, with antibodies, peptide decoys and
carbohydrate-binding agents; and (v) structural proteins such
as those maintaining ion channel activity of CoV E protein
and RNA-binding affinity of CoV N protein(5, 6, 9, 10). Al-
though virus-targeting approaches have the advantage of be-
ing specific, and, therefore, generally offer acceptable tox-
icity profiles, targeting viral products typically restricts the
applicability of antiviral agents to only one, or only a few,
closely related virus species. Moreover, due to the high mu-
tation rate of viral genomes, such drugs are prone to rapid
virus adaptation by resistant strain selection(11, 12). Consid-
ering the time required to develop new pharmacologic agents,
this strategy has proven unsuitable to address new viral epi-
demics and pandemics in real time.

In contrast, targeting host cell proteins, especially at an early
stage when viral hijacking of host mechanisms may still be
reversible, may have more universal and longer term value
because the same host factors may be required by multiple,
potentially unrelated viral species and because host target
proteins mutate far less rapidly than viral proteins, thereby
limiting emergence of drug resistance(13). Unfortunately,
pharmacologic targeting of host factors is more commonly
associated with toxicity, thereby limiting clinical application
of many drugs identified as potential anti-viral agents in vitro,
for instance, with anti-CoV drugs EC50 markedly exceeding
their maximum tolerated serum concentration (Cmax)(5).
Despite these translational challenges, current approaches to
target host proteins are primarily based on either boosting in-
nate anti-viral immune response, in particular interferon re-
sponse, or targeting proteins and processes mediating viral
infection, such as ACE2 receptors(14), cell surface and endo-
somal proteases(15), and clathrin mediated endocytosis(16).
Moreover, broad availability of high-throughput screening
approaches has allowed the purposing and repurposing of
drugs based on their effect on virus replication(16–19), lead-
ing to identification of several anti-coronavirus candidates,
such as chloroquine, tamoxifen, dasatinib and lopinavir,
among others(16, 19). Yet, this approach is limited by the
idiosyncratic nature of the in vitro models used in antiviral
screens and by drug concentrations that may not be achiev-
able in patients(5).

More recently, systems biology approaches, including tem-
poral kinome analysis(20) and proteomics(21–24), have also
been used to identify protein kinases—and associated path-
ways—modulated in response to virus infection, as well as to
generate virus-host protein-protein interactomes (PPI). These
methods also present an opportunity to develop and test host-
targeting therapeutic approaches that apply functional ge-
nomics to the “infected system as a whole.”(24) The out-
put of these predictions can be used to direct drug repur-
posing efforts(21–23) and to design more focused in vitro
screens, with models that better recapitulate disease patho-

physiology, such as primary cells, organoids or 3D organ-on-
chip systems(25).

Coronaviruses have been shown to extensively hijack the
cellular machinery of host cells they infect; as one exam-
ple, this class of viruses induces arrest in S phase, allow-
ing them to benefit from physiological alterations they in-
duce in host cells that enhance their reproductive rate(26).
As shown for other physiologic(27–29) and pathologic cell
states—among them, cancer(30–34), neurodegeneration(35,
36), and diabetes(29)—we propose that such transcription-
ally “locked” states are established by the virus and main-
tained by a handful of Master Regulator (MR) proteins, or-
ganized within a highly auto-regulated protein module, or
checkpoint (see Califano & Alvarez(30) for a recent perspec-
tive). For simplicity, in a viral infection context, we will
call such modules “ViroCheckpoints.” Accordingly, we pro-
pose that aberrant, virus-mediated activation of a ViroCheck-
point is ultimately responsible for creating a transcriptionally
“locked” cellular context that is primed for viral replication
and release. We thus propose ViroCheckpoint activity rever-
sal as a potentially valuable therapeutic strategy for pharma-
cologic intervention.

Here we show that time-dependent, SARS-CoV-mediated
ViroCheckpoints—and the specific MR proteins of which
they are comprised—can be effectively elucidated by
network-based analysis using the Virtual Inference of Protein
activity by Enriched Regulon (VIPER) algorithm(37). More
importantly, once the MR protein identity is available, drugs
can be effectively and reproducibly prioritized based on their
ability to invert the activity of ViroCheckpoint MR proteins,
using the OncoTreat algorithm(34), a NYS CLIA-certified al-
gorithm that is used routinely on cancer patients at Columbia
University.(38)

Accurate identification of virus-dependent MR proteins per-
mits deployment of the same OncoTreat-based methodolog-
ical approach for mechanism-based repurposing or develop-
ment of new drugs with potential anti-viral activity. To avoid
confusion, we will use the term “ViroTreat” to indicate the
virus-specific version of OncoTreat. Specifically, ViroTreat
uses the full repertoire of virus-induced MR proteins in the
ViroCheckpoint as a reporter assay to identify drugs capable
of reversing its activity(34), thereby preventing emergence of
or abrogating the virus-mediated transcriptional locked state.
While limited by the availability of data on SARS-CoV-2, in-
cluding of infection in an appropriate pathophysiologic cell
context, we provide proof of concept that this approach can
be applied to prioritizing FDA-approved and late-stage in-
vestigational drugs representing potential antiviral agents for
SARS-CoV based on infection in cancer-related lung epithe-
lial cells.

Results

Elucidating MRs of SARS-CoV infection in lung epithe-
lial cells. To identify candidate MR proteins that mechanisti-
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cally regulate the host cell gene expression signature induced
by SARS-CoV infection (i.e. the SARS-CoV ViroCheck-
point), we applied the VIPER algorithm to a previously-
published, microarray-based gene expression signature of a
Calu-3 lung adenocarcinoma cell clone expressing elevated
ACE2 levels, compared to the parental line, at 12h, 24h, and
48h following infection with SARS-CoV at MOI = 0.1(39).
A total of 6,054 regulatory proteins were considered in the
analysis, including 1,793 transcription factors (TFs), 656 co-
transcription factors (co-TFs), and 3,755 signaling proteins
(SP).

Similar to a highly-multiplexed gene reporter assay, VIPER
measures the activity of an individual protein based on the
enrichment of its positively regulated and repressed targets
in genes that are over- and under-expressed in a specific cell
state, compared to a control(37). We have shown that VIPER
can accurately measure the activity of >70% of regulatory
proteins and, as a result, the algorithm has been used to eluci-
date MRs of both pathologic(31–33, 35, 36, 40, 41) and phys-
iologic cell states(27–29) that have been experimentally val-
idated. Moreover, VIPER-inferred protein activity has been
shown to provide a better biomarker of cell phenotype than
the original transcriptional profile(30, 34, 42, 43); and, im-
portantly, is a better reporter for validating clinically relevant
drug sensitivity(44). Accordingly, VIPER requires a differ-
ential expression signature for each sample to be analyzed
and a regulatory model comprising the transcriptional targets
of each regulatory protein. For the former, we computed a
differential gene expression signature for each SARS-CoV
infected sample, by comparing it to three 12h mock control
replicates. For the latter, we leveraged a transcriptional regu-
latory model (interactome) generated by ARACNe(45) anal-
ysis of 517 samples in the lung adenocarcinoma cohort of The
Cancer Genome Atlas (TCGA)(37). Use of a cancer-related
interactome is well justified as we have shown that protein
transcriptional targets are highly conserved between cancer
and normal cells(28).

The analysis revealed n = 236 proteins, whose activity was
significantly affected by SARS-CoV infection in at least one
time point (p < 10−5, Bonferroni Corrected (BC), see Sup-
plementary Table 1). Examination of the top 10 activated
MR proteins at each of the evaluated time-points (Fig. 1a) re-
vealed the presence of canonical cell-cycle regulators, includ-
ing (a) cyclins (CCNA2), and other proteins involved in G1/S
transition(46) (E2F8 and UHRF1); (b) S-phase proteins, such
as topoisomerases (TOP2A(47)) and other factors involved in
S-phase cell cycle arrest(48) (CHEK1, GTSE1); (c) mitotic
checkpoint proteins(49) (BUB1B, KIF11 and NDC80); and
(d) proteins involved in nucleotide synthesis (GMPS). These
showed significant activation as early as 12h after SARS-
CoV infection. In contrast, established innate immune re-
sponse proteins were also found among the top activated
MRs, including IFN-induced factors(50) (MX1, IRF9 and
IFI27) but their activation became most evident only at the
latest time point (48h). Interestingly, some proteins previ-
ously identified as key tumor MRs were strongly activated,
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Fig. 1. SARS-CoV-induced ViroCheckpoint in Calu-3 lung adenocarcinoma cells.
(a) Heatmap showing the VIPER-inferred protein activity, expressed as normalized
enrichment score (NES), for the top 10 most activated and the top 10 most inacti-
vated proteins in response to SARS-CoV infection for each of the three time points.
(b) Heatmap showing the similarity between the SARS-CoV induced protein activity
signatures, expressed as Pearson’s correlation coefficient.

such as FOXM1 and CENPF(33, 51), although this may be
a byproduct of the cancer related nature of the Calu-3 cells
used in the infection assays.

We then systematically evaluated whether viral infection
could affect host proteins known to be involved in SARS-
CoV host-pathogen protein-protein interactions (PPI). We
based this analysis on a set of 36 proteins previously identi-
fied by high-throughput yeast-2-hybrid screen and validated
by luciferase assays(23). Of the 36, 12 were represented
among our set of 6,054 regulons and could thus be assessed
for enrichment in SARS-CoV-induced differentially active
proteins. Despite the low statistical power of a test based on
only 12 proteins, enrichment was statistically significant for
the 12h activity signature (p < 0.01, Supplementary Fig. 1a).
Enrichment was borderline non-significant at 24h (p= 0.08),
and not significant at 48h (Supplementary Figs. 1b and c).

To increase the test’s sensitivity, we leveraged a larger set of
proteins identified as PPI for 26 of the 29 proteins coded by
the closely related SARS-CoV-2 virus, as identified by mass-
spec analysis of pull-down assays(21). Of 332 host proteins
identified by that analysis, 89 were represented among those
analyzed by VIPER. Confirming the prior results, enrich-
ment was highly significant (p12h < 10−5 by 2-tail aREA
test(37); p24h < 0.01 and p48h < 0.001 by 1-tail aREA test,
see Supplementary Fig. 1g, k and l, respectively). Inter-
estingly, while enrichment was significant at all three time
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points, (p < 0.01, 1-tail aREA test, Supplementary Fig. 1j–
l), several of the human SARS-CoV-2 PPIs activated at 12h
became inactivated at later time points (Supplementary Fig.
1h–i).

Correlation analysis showed a gradual shift in protein-activity
signatures from 12h to 48h after infection (Fig. 1b), suggest-
ing dynamic activation and inactivation of a diverse repertoire
of genetic programs by virus-host interaction and thus dy-
namic transition across multiple, time-dependent ViroCheck-
points. To gain insight into the biological programs most
profoundly affected by SARS-CoV infection, we performed
Gene-Set Enrichment Analysis (GSEA)(52) of a set of 50
biologically-relevant hallmark gene-sets from MSigDB(53)
in differentially active, infection-mediated proteins (Fig. 2).
The analysis identified four time-dependent program classes
including: (a) cell cycle programs, consistently up-regulated
at all three time points; (b) immune-related programs, associ-
ated with interferon response, inflammatory response, TNF-
α, and IL-6/JACK/STAT3 signaling, which were progres-
sively upregulated over time; (c) DNA repair pathways and
(d) PI3K/AKT/mTOR programs more strongly activated at
12h (Fig. 2).

Consistent with the multifarious effects that coronaviruses
are known to exert through their complex, synchronized mod-
ulations of cell cycle progression, interferon antagonism, in-
terleukin 6 and 8 induction, and host protein synthesis(26),
these findings disclose a time-dependency, with early vs.
late activation of protein signatures each linked to a dis-
tinct set of biofunctional hallmarks resulting from a virus-
governed reconfiguration of the host cell’s regulatory state,
with alterations in cell cycle during the initial post-infection
phase, followed by a phase characterized by ignition of pro-
inflammatory cytokine signaling pathways.

ViroTreat analysis of SARS-CoV infected cells iden-
tifies novel therapeutic targets for drug repurposing.
We have previously developed and validated a systematic ap-
proach (OncoTreat) for identifying drugs and compounds ca-
pable of reversing the aberrant activity of all Tumor Check-
point MRs, representing mechanistic determinants of cell
state, on a patient by patient basis(34). As a direct result
of the high reproducibility demonstrated by VIPER,(37) the
test has been certified by the NYS-CLIA laboratory and is
available in the United States from the Columbia University
Laboratory of Personalized Genomic Medicine(38); and, in
China, from the Xiamen Encheng Group Ltd.

OncoTreat is used routinely to assess potential therapy for
cancer patients who are progressing on standard of care, as
part of the Columbia Precision Oncology Initiative(54). De-
spite the fact that it was originally developed for deployment
and drug prioritization in the setting of precision oncology,
the OncoTreat methodology is fully generalizable and can be
applied to any state transition and any drug collection, in-
cluding transitions related to and induced by viral infection.
To avoid confusion, we will use the term ViroTreat to refer
to the algorithm when used to identify antiviral drugs (see

description in Fig. 3).

ViroTreat requires a tissue-matched drug perturbation
database. For this analysis, we had previously generated a
collection of RNASeq profiles of NCI-H1793 lung adeno-
carcinoma cells, at 24h following treatment with a reper-
toire of 133 FDA approved and 195 late-stage (Phase 2
and 3) drugs—primarily used in or developed for the on-
cology setting—at their highest subtoxic concentration (48h
IC20) or maximum serum concentration (Cmax), whichever
is lower. RNASeq data was generated using a fully auto-
mated, 96-well based microfluidic technology called PLATE-
Seq(55) (Supplementary Table 2). Selection of the NCI-
H1793 cell line as an adequate model for the analysis was
based on the significant overlap of SARS-CoV infection MR
proteins with proteins differentially activated in this cell line
(p < 10−28, 10−38, and 10−24 at 12h, 24h and 48h after in-
fection, by 1-tail aREA test; see Supplementary Fig. 2). In
addition, the main rationale for these assays is the elucida-
tion of protein-level MoA of a drug repertoire and MoA is
generally well-recapitulated in lineage matched cells(56).

Using this predictive model, ViroTreat prioritized 44 FDA-
approved drugs and 49 investigational compounds in on-
cology, based on their ability to significantly invert the Vi-
roCheckpoint protein activity signature, at one or more of
the 3 evaluated time-points following infection (p < 10−10,
BC; see Supplementary Table 3). Based on this analysis, two
FDA-approved drugs—the CDK inhibitor palbociclib and
the MEK inhibitor trametinib—and 4 investigational com-
pounds, including three MAP kinase and one AKT/CHEK1
inhibitors, were able to significantly invert the ViroCheck-
point activity at all three time-points (p < 10−10, BC, Fig.
4a). In addition, six FDA-approved drugs and seven investi-
gational compounds demonstrated the capacity to invert the
ViroCheckpoint protein activity pattern at the two earliest
time points (12h and 24h, p< 10−10, BC, Fig. 4a); while two
FDA-approved drugs—the ALK and EGFR inhibitors briga-
tinib and osimertinib—and five investigational compounds
were predicted to significantly invert the MR signature iden-
tified at later time points (24h and 48h, p < 10−10, BC, Fig.
4a).

Consistent with the pathways enrichment analysis (Fig. 2),
several drug families were enriched among the top ViroTreat
predictions, including MAP kinases, PI3K/AKT/mTOR,
CDK and other cell cycle-related drugs; HDAC and bromod-
omain protein inhibitors; proteasome and HSP90 inhibitors;
and NF-κB and JAK inhibitors (Fig. 4a).

Of special clinical relevance in the context of the COVID-19
pandemic, ViroTreat independently identified the Selective
Inhibitor of Nuclear Export (SINE) drug selinexor—FDA-
approved for the treatment of relapsed or refractory multiple
myeloma—as an extremely potent inverter of SARS-CoV in-
duced ViroCheckpoint activity, in particular, at 12h and 24h
time points after infection (p12h < 10−16 and p24h < 10−19,
BC, Fig. 4).
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Fig. 3. ViroTreat diagram. ViroTreat requires two components: (A) a context-
specific drug Mechanism of Action (MoA) database, which is generated by per-
turbing an appropriate cell model with therapeutically relevant drug concentra-
tions, followed by VIPER analysis of the drug-induced gene expression signa-
tures and identification of the top most differentially active proteins, both activated
and inactivated in response to the drug; and (B) the specific virus-induced pro-
tein activity signature—where the most differentially active proteins constitute the
ViroCheckpoint—dissected by VIPER analysis of a gene expression signature, ob-
tained by comparing an infected tissue or relevant model with non-infected mock
controls. ViroTreat then predicts the effect of the drugs on the ViroCheckpoint by
matching their MoA with the virus-induced protein activity signature, and quantifies
the inverse enrichment using the aREA algorithm. The diagram shows 3 drugs,
where only drug B, by activating the host proteins that are being inactivated dur-
ing virus infection, and inactivating the proteins that are being activated by the virus
infection, effectively acts by inverting the ViroCheckpoint activity pattern; and, there-
fore, would be prioritized as a host cell-targeted antiviral therapeutic option.

Discussion

ViroTreat presents an application of the extensively validated
OncoTreat algorithm for targeting MR proteins driving virus-
mediated, reprogrammed cell states induced by viral hijack-
ing of the host cell regulatory machinery. It also provides
proof-of-concept of the ability to rapidly prioritize drugs
capable of abrogating the reprogrammed, transcriptionally-
locked state induced by viral infection, responsible for cre-
ating an environment permissive to viral replication and re-
lease. Our analysis identified 44 FDA-approved and 49 in-
vestigational agents capable of virtually abrogating the MR
signature—the ViroCheckpoint protein activity pattern—
induced by SARS-CoV infection.

Consistent with the observation that coronaviruses interfere
with cell cycle progression to benefit from the physiology
of host cells arrested in S phase(26), we show SARS-CoV
infection-induced activation of MRs involved in cell cycle
progression and DNA repair pathways. Notably, it has been
reported previously that coronaviruses inhibit the pRb tumor
suppressor protein, inducing infected cell to progress rapidly
from G1 and to arrest the host cell in S phase(57). SARS-
CoV further favors host cell arrest in S phase by inhibit-
ing CDK4 and CDK6 kinase activity(58). We also observed
activation of PI3K/AKT/mTOR pathway proteins, suggest-
ing that SARS-CoV—similar to other viruses(59), includ-
ing +ssRNA viruses like chikungunya(60), hepatitis C(61),
west nile(62) and dengue(63), as well as other RNA respira-
tory viruses like influenza(64) and the respiratory syncytial
virus(65)—might subvert mTOR pathway activity. Indeed,
temporal kinome analysis of human hepatocytes infected
with MERS-CoV had previously revealed changes in MAPK
and PI3K/AKT/mTOR pathways(20). Finally, we observed
activation of proteins involved in innate immunity, including
interferon response and pro-inflammatory pathways, which
have been also previously described for coronaviruses(26).
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Compound FDA Concentration 12h 24h 48h Known targets
Selinexor Yes 137 nM 16.19 19.74 6.44 XPO1
Trametinib Yes 36 nM 16.01 24.88 14.84 MAP2K1, MAP2K2
Cobimetinib Yes 514 nM 14.47 20.61 3.23 MAP2K1
PD0325901 No 667 nM 19.77 27.24 15.92 MAP2K1
TAK-733 No 268 nM 17.61 25.3 9.02 MAP2K1
Pimasertib No 911 nM 16.81 25.61 21.72 MAP2K1, MAP2K2
Refametinib No 2.3 uM 12.45 19.13 11.13 MAP2K1, MAP2K2
Binimetinib No 1 uM 7.56 17.67 13.27 MAP2K2, MAP2K1

Everolimus Yes 84 nM 13.8 8.91 0 mTOR
Temsirolimus Yes 81 nM 10.9 7.88 0 mTOR
PI3KA Inhibitor IV No 1 uM 15.48 21.12 9.93 PIK3CA
Pictilisib No 599 nM 14.1 10.77 0 PIK3CA, PIK3CD
CC-223 No 931 nM 13.81 7.52 0 mTOR
PF-04691502 No 147 nM 12.61 13.92 8.62 Pan-PI3K, mTOR
PI-103 No 110 nM 12.46 17.81 7.79 Pan-PI3K
UCN-01 No 74 nM 12.06 17.89 11.75 AKT1, PKC
Palbociclib Yes 115 nM 18.49 23.5 15.76 CDK4, CDK6
Dasatinib Yes 345 nM 14.09 13.58 0.8 SRC, ABL1, BCR, KIT
Erlotinib Yes 3.4 uM 11.49 9.2 1.32 EGFR
Brigatinib Yes 3.8 uM 5.93 19.54 18.69 ALK, EGFR
Osimertinib Yes 1.7 uM 2.63 12.32 23.74 EGFR
Motesanib No 1.3 uM 11.51 8.84 0 FLT1, KDR, FLT4, KIT
TAE684 No 5 uM 8.81 23.29 24.23 ALK
Ki8751 No 5 uM 9.69 19.46 7.52 KDR
Dovitinib No 591 nM 7.98 17.39 19.49 FGFR3, FLT3, KIT, FGFR1
LY2835219 No 473 nM 6.4 16.84 21.95 CDK4, CDK6
ENMD-2076 No 1.5 uM 5.64 16.76 23.45 AURKC
Gilteritinib No 2.3 uM 3.26 8.61 11.17 FLT3
Panobinostat Yes 45 nM 14.33 16.71 3.8 pan-HDAC
Belinostat Yes 2.5 uM 12.17 7.44 0 pan-HDAC
Resminostat No 4.4 uM 18.43 18.86 6.31 HDAC1, HDAC3, HDAC6
Rocilinostat No 1.5 uM 12.14 5.36 0 HDAC6
OTX015 No 3.9 uM 1.81 11.75 18.19 BRD2, BRD3, BRD4
Carfilzomib Yes 24 nM 10.94 19.4 5.87 Proteasome
SNX-2112 No 287 nM 9.51 16.84 9.58 HSP90AA1, HSP90AB1
Luminespib No 1.1 uM 5.95 15.45 8.74 HSP90AA1, HSP90AB1
Cyclosporine Yes 1.9 uM 5.34 10.36 0 PPP3R2
Bardoxolone Methyl No 145 nM 10.41 17.55 8.63 CHUK, IKBKB, NFKB1, NFKB2
Momelotinib No 1.6 uM 5.21 8.45 10.83 JAK1, JAK2
Niclosamide Yes 500 nM 14.35 15.26 1.18 Tapeworm
Thapsigargin No 15 nM 8.23 21.32 19.56 SERCA
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Fig. 4. Top drugs and compounds identified by ViroTreat. (a) Table of FDA-approved drugs and investigational compounds identified by ViroTreat as significantly inverting the
pattern of activity of the SARS-CoV induced checkpoint (p < 10−10, BC) for at least one of the three analyzed time points, and being simultaneously significant (p < 10−5,
BC) for at least another time point. The drugs and compounds were organized in blocks according to the biological role or pathway membership of their primary target protein.
For each block, the drugs and compounds significant for each time point (p < 10−10, BC), were sorted by their ViroTreat significant level for 12h, followed by 24h and 48h.
FDA-approved drugs were reported prior to investigational compounds. The table also shows the concentration used to perturb NCI-H1793 cells, the ViroTreat significance
level, as –log10(p-value), BC, indicated by the green heatmap, and the primary target for each of the significant drugs and compounds. (b–d) GSEA plots showing the
enrichment of the top 25 proteins most activated (red vertical lines), and the top 25 proteins most inactivated (blue vertical lines), in NCI-H1793 cells in response to selinexor
perturbation, on the protein activity signatures induced by SARS-CoV infection of Calu-3 cells (x-axis) for 12h (b), 24h (c) and 48h (d). NES and p-value, estimated by 2-tail
aREA test, are indicated on top of each plot.

While formal experimental validation is still required, there
are several positive indications this approach may be ef-
fective. Specifically, drugs for SARS-CoV most highly
prioritized by ViroTreat were highly consistent, at least
based on their primary target proteins, with biological pro-
grams and pathways known to be modulated by coronavirus
infection(26, 66). Notably, in this regard, cell cycle progres-
sion/proliferation, PI3K/AKT/mTOR, innate immunity and
inflammation are well represented among the primary target
proteins for those pharmacologic agents strongly predicted
by ViroTreat to possess host cell-targeted, antiviral effects.

A literature search revealed that many of the oncology drugs
and compounds identified by ViroTreat have been considered
previously for their potential antiviral effects. For instance,
the MAPK inhibitor trametinib, one of the top ViroTreat hits
for SARS-CoV, was shown to inhibit MERS-CoV replica-
tion in vitro(5, 20), as well as influenza A virus both in
vitro and in vivo(67). Similarly, everolimus, an mTOR in-
hibitor identified by ViroTreat, has also been shown to in-
hibit MERS-CoV(5, 20) and cytomegalovirus(68) replication
in vitro, as well as to reduce incidence of cytomegalovirus
infections following kidney transplant(69). Among tyrosine
kinase inhibitors identified by ViroTreat, dasatinib was previ-
ously described to inhibit MERS-CoV(5, 19) and HIV-1(70)

replication in vitro; while erlotinib was shown to inhibit
dengue(71), hepatitis C(72) and ebola(73) replication. The
HSP90 inhibitors SNX-2112 and luminespib, as well as the
sarco/endoplasmatic reticulum Ca2+ ATPase inhibitor thapsi-
gargin, all identified by ViroTreat as inverters of the SARS-
CoV induced checkpoint, have been shown to inhibit her-
pes simplex(74), chikungunya(75), foot and mouth disease
virus(76), respiratory syncytial virus(77), rhinovirus(78) and
hepatitis A virus replication(79).

Finally, ViroTreat independently identified the SINE drug
molecule selinexor—an FDA-approved agent for the treat-
ment of relapsed or refractory multiple myeloma—as an ex-
tremely potent inverter of SARS-CoV-induced ViroCheck-
point activity. Selinexor is a potent and highly-specific in-
hibitor of XPO1 activity, which leads to nuclear retention
of its cargo proteins containing leucine rich Nuclear Ex-
port Signals. Based on experimental studies performed by
Karyopharm Therapeutics Inc., low Selinexor concentrations
(leq 100 nM) inhibited viral replication by 90% in green
monkey kidney Vero cells infected with SARS-CoV-2(80).
As a result of these observations and data, which are con-
sistent with the ViroTreat prioritization of selinexor we re-
port in this study, a randomized, placebo-controlled Phase 2
clinical study (NCT04355676 and NCT04349098), evaluat-
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ing low dose oral selinexor in hospitalized patients with se-
vere COVID-19 has been initiated and is currently enrolling
patients, with results anticipated to be reported by August
31st, 2020(80).

This analysis has several limitations that partially restrict its
value as proof of concept. Specifically, infection was con-
ducted in a cancer cell line, rather than in a more physio-
logically relevant context, such as in primary bronchial or
alveolar epithelial cells. In addition, drug perturbations were
also performed in a cancer cell line context, thus potentially
introducing undesired confounding factors, even though use
of mock controls for the infection, and vehicle control for
the drug perturbations, from the same cancer cell line should
have eliminated most of the cancer-related bias and cell line
idiosyncrasies. As a result, extrapolation of this approach
to the clinic may be limited by the following assumptions:
(a) that the host cell regulatory checkpoint hijacked by the
virus is conserved between the Calu-3 adenocarcinoma cell
line and the normal alveolar or bronchial epithelial cells in
vivo; and (2) that the drugs’ and compounds’ MoA is con-
served between the NCI-H1793 lung adenocarcinoma cells
and normal lung epithelial cells in vivo. Moreover, while
for the generation of the perturbational data and the context-
specific MoA database we used subtoxic drug concentrations
that, in most cases, were well below the maximum tolerated
dose for all drugs and compounds, the relevant pharmaco-
logic concentration for their deployment as antiviral therapy
may be much lower than the original recommended concen-
tration for their use as anti-cancer drugs.

Further research is necessary to benchmark the ViroTreat ap-
proach. Specifically, better reporters of SARS-CoV infection
should be established, ideally directly from nasopharyngeal
swabs or bronchial lavage of SARS-CoV patients. More rel-
evant to the current pandemic, such samples are starting to
emerge from COVID-19 patients and may lead to elucida-
tion of critical entry points for COVID-19 therapeutic inter-
vention. Similarly, drug profiles should be generated in a
more physiologic context, including primary airway epithe-
lial cells. It is also important to establish whether virus-
induced transcriptional lock states are similar across all cell
and tissue contexts infected by the virus, or whether the hi-
jacked states are cell context-specific. Finally, appropriate
environments for in vitro and in vivo validation of prioritized
drugs should be developed(56).

To our knowledge, this is the first time a virus-induced MR
module (i.e., the ViroCheckpoint) is proposed as a pharma-
cological target to abrogate the virus’s ability to hijack the
cellular machinery of host cells, a strategy that coronaviruses
are known to employ to prime the host cell environment so it
is amenable to viral replication and release(26). In addition,
ViroTreat represents a unique method for the systematic and
quantitative prioritization of mechanism-based, host-directed
drugs capable of abrogating this critical, and previously un-
addressed component of viral infection. If effectively vali-
dated, this approach presents several advantages: First, Vi-
roTreat is tailored to target the entire repertoire of host pro-

teins hijacked by the virus to create a permissive environ-
ment, rather than a single host or viral protein. As such, we
anticipate drugs identified by ViroTreat to have more univer-
sal applications, including being effective against a broader
viral repertoire, while also being more effective at eluding
virus adaptation mechanisms arising from rapid mutation un-
der drug selection stress. Indeed, drug-mediated reprogram-
ming of host cell to a transcriptional state that confers resis-
tance against coronavirus-induced reprogramming presents
the opportunity to identify drugs that are potentially effec-
tive for a broader class of viruses, as long as they share sim-
ilar pathobiological strategies for host cell takeover. Second,
the ViroTreat analysis can be performed expeditiously—as
soon as the ViroCheckpoint signature of a novel virus be-
comes available. Therefore, this methodology is especially
well-suited to the urgency characteristic of epidemics and
pandemics.

Developing effective treatments for respiratory tract
infections—i.e., those that reduce such hard end points
as hospitalization, need for mechanical ventilation, and
mortality—exclusively through direct viral targeting has
been historically challenging. Drugs identified specifically
for host cell-targeting have the potential therapeutic advan-
tage of acting in a mechanistically complementary—even
synergistic—way with readily available antivirals, thereby
suggesting roadmaps for developing and testing combination
regimens that may mitigate viral replication by acting upon
the infected system as a whole. Such multi-mechanistic
pharmacologic approaches targeting both the virus and host
cell proteins that are critically dysregulated as a result of viral
infection may be required to optimize clinical outcomes,
especially in challenging and vulnerable patients exposed to
lethal pathogens with high virulence and viral load.
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Methods

Cell lines. NCI-H1793 cells were obtained from ATCC (CRL-
5896), mycoplasm tested and maintained in DMEM:F12 medium
supplemented with 5 µg/ml insulin, 10 µg/ml transferrin, 30 nM
sodium selenite, 10 nM β-estradiol, 4.5 mM L-glutamine and 5%
fetal bovine serum. Cells were grown in a humidified incubator at
37°C and 5% CO2.

Lung epithelium context-specific drug mechanism of action
database. The drug-perturbation dataset was generated as follows.
First, the ED20 for each of the 133 FDA-approved drugs and
195 investigational compounds in oncology was estimated in NCI-
H1793 cells by performing 10-point dose-response curves in tripli-
cate, using total ATP content as read-out. Briefly, 2,000 cells per
well were plated in 384-well plates. Small-molecule compounds
were added with a 96-well pin-tool head 12h after cell plating. Vi-
able cells were quantified 48h later by ATP assay (CellTiterGlo,

Promega). Relative cell viability was computed using matched
DMSO control wells as reference. ED20 was estimated by fitting
a four-parameter sigmoid model to the titration results. NCI-H1793
cells, plated in 384-well plates, were then perturbed with a library
of 328 FDA-approved drugs and small-molecule compounds at their
corresponding ED20 concentration. Cells were lysed at 24h after
small-molecule compound perturbation and the transcriptome was
profiled by PLATE-Seq(55). RNA-Seq reads were mapped to the
human reference genome assembly 38 using the STAR aligner(81).
Expression data were then normalized by equivariance transforma-
tion, based on the negative binomial distribution with the DESeq R-
system package (Bioconductor(82)). At least two replicates for each
condition were obtained. Differential gene expression signatures
were computed by comparing each condition with plate-matched
vehicle control samples using a moderated Student’s t-test as imple-
mented in the limma package from Bioconductor(83). Individual
gene expression signatures were then transformed into protein ac-
tivity signatures with the VIPER algorithm(37), based on the a lung
adenocarcinoma context-specific regulatory network available from
the aracne.networks package from Bioconductor.

Computational analysis. Enrichment of gene-sets for biological
hallmarks was performed using Gene Set Enrichment Analysis(52)
with the Molecular Signatures Database MSigDB v7.1(53). En-
richment analysis for virus-interacting host proteins (PPI) on
SARS-CoV induced protein activity signatures, as well as the
OncoMatch(56) analysis to assess the conservation of the virus-
induced MR protein activity on NCI-H1793 lung adenocarcinoma
cells were performed with the aREA algorithm(37).

ViroTreat analysis. ViroTreat was performed by computing the en-
richment of the top/bottom 50 most differentially active proteins
in response to drug perturbation—the context-specific mechanism
of action—on the virus-induced protein activity signature using the
aREA algorithm(37). P-values for significantly negative enrichment
were estimated using 1-tail aREA analysis, and multiple hypothesis
testing was controlled by the Bonferroni’s correction.

Code availability. All the code used in this work is freely available
for research purposes. VIPER and aREA algorithms are part of the
“viper” R-system’s package available from Bioconductor. The lung
adenocarcinoma context-specific interactome is available as part of
the “aracne.networks” R-system’s package from Bioconductor.

10 | bioRχiv Alvarez et al. | Identification and Targeting the SARS-CoV ViroCheckpoint

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2020. ; https://doi.org/10.1101/2020.05.12.091256doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.12.091256
http://creativecommons.org/licenses/by-nd/4.0/


Supplementary Figures and Tables
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Supplementary Figure 1. Enrichment of SARS-CoV- and SARS-CoV2-interacting host proteins among the most differen-
tially active proteins after SARS-CoV infection. (a–f) Enrichment of 12 SARS-CoV-interacting host proteins, or (g–l) 89
SARS-CoV2-interacting proteins on SARS-CoV induced protein activity signatures at 12h (a, d, g and j), 24h (b, e, h and k)
and 48h (c, f, i and l) after infection. GSEA plots show the enrichment score (y-axis) and the SARS-CoV induced protein activ-
ity signature (x-axis), where 6,054 regulatory proteins were rank-sorted from the one showing the strongest inactivation (left)
to the one showing the strongest activation (right) in response to SARS-CoV infection (a–c and g–i); or where the regulatory
proteins were sorted from the most differentially active (left) to the least differentially active (right) after SARS-CoV infection.
NES and p-value were estimated by 2-tail aREA test and shown on top of each plot.
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Supplementary Figure 2. Conservation of the SARS-CoV induced checkpoint in NCI-H1793 cells. GSEA plots for the
enrichment of the top 25 most activated proteins (red vertical lines), and top 25 most inactivated proteins (blue vertical lines)
by SARS-CoV infection at 12h (a), 24h (b) and 48h (c) after infection. The x-axis shows 6,054 proteins rank-sorted from the
most inactivated ones (left) to the most activated ones (right) in NCI-H1793 cells when compared against 86 non-small cell
lung cancer cell lines. The y-axis shows the GSEA enrichment score. NES and p-value, estimated by 2-tail aREA test, are
indicated on top of each plot.
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Supplementary Table 1. Proteins differentially active in response to SARS-CoV infection. Shown are 236 proteins differen-
tially active (p < 10−5, BC, 2-tail aREA test) at any of the three evaluated time points. The table includes the EntrezID, and
symbol of the genes coding for the differentially active proteins, the VIPER-inferred NES and Bonferroni’s corrected p-value.
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Supplementary Table 2. FDA-approved drugs and late-stage (phase 2 and 3) investigational compounds in oncology covered
by the lung epithelium context-specific MoA database. The table lists the drug/compound name, concentration used to perturb
NCI-H1793 lung adenocarcinoma cells, FDA-approval status known primary targets.

Compound Concentration FDA-approved Known targets

Acalabrutinib 1.9 µM Yes BTK
Afatinib 187 nM Yes EGFR, ERBB2
Albendazole 900 nM Yes
Alectinib 1 µM Yes ALK
Alexidine 1 µM Yes PTPMT1
Alpelisib 370 nM Yes PIK3CA, PIK3CB, PIK3CD, PIK3CG
Aminopterin 1.1 µM Yes
Amsacrine 2.4 µM Yes
AP26113 3.8 µM Yes ALK, EGFR
Apremilast 450 nM Yes
Arsenic trioxide 400 nM Yes TXNRD1, PML
Axitinib 144 nM Yes FLT1, FLT4, KDR
Azacitidine 4.1 µM Yes DNMT1, DNMT3A
Belinostat 2.5 µM Yes pan-HDAC
Benzethonium chloride 5 µM Yes
Bexarotene 1.6 µM Yes RXRA, RXRB, RXRG
Bleomycin 276 nM Yes LIG1, LIG3
Bortezomib 68 nM Yes Proteasome
Bosentan 833 nM Yes EDNRA, EDNRB
Bosutinib 377 nM Yes ABL1, SRC
Busulfan 296 nM Yes
Cabazitaxel 3 nM Yes Tubulin
Cabergoline 0 pM Yes
Cabozantinib 1.1 µM Yes KDR, RET, MET
Calcitriol 5 nM Yes
Carboplatin 1 µM Yes
Carfilzomib 24 nM Yes Proteasome
Carmustine 1.6 µM Yes GSR
Ceritinib 1.4 µM Yes ALK
Cetylpyridinium Chloride 3 µM Yes
Cinacalcet 2.4 µM Yes
Cladribine 718 nM Yes
Clarithromycin 1 µM Yes
Clofarabine 437 nM Yes
Clofoctol 4.5 µM Yes
Cobimetinib 514 nM Yes MAP2K1
Copanlisib 674 nM Yes PIK3CA, PIK3CB, PIK3CD, PIK3CG
Crizotinib 193 nM Yes MET, ALK
Cyclosporine 1.9 µM Yes
Dabrafenib 1.6 µM Yes BRAF, RAF1
Dacomitinib 53 nM Yes EGFR, ERBB2
Dactinomycin 3 nM Yes TOP2A, TOP2B
Dasatinib 345 nM Yes SRC, ABL1, BCR, KIT
Daunorubicin 134 nM Yes TOP2A, TOP2B
Decitabine 644 nM Yes DNMT1, DNMT3A
Digoxigenin 285 nM Yes
Disulfiram 14 nM Yes ALDH2, DBH
Domiphen Bromide 2.5 µM Yes
Doxorubicin 239 nM Yes TOP2A
Dronedarone 2 µM Yes
Enasidenib 1.9 µM Yes IDH2, IDH1
Epigallocatechin 436 nM Yes
Epirubicin 162 nM Yes TOP2A, CHD1
Erlotinib 3.4 µM Yes EGFR
Estramustine 3.9 µM Yes
Etoposide 2 µM Yes TOP2A, TOP2B
Everolimus 84 nM Yes MTOR
Exemestane 1.5 µM Yes CYP19A1
Fedratinib 1.5 µM Yes
Fludarabine 209 nM Yes POLA1, RRM1, RRM2
Fulvestrant 32 nM Yes ESR1, ESR2
Gefitinib 571 nM Yes EGFR
Gemcitabine 316 nM Yes TYMS
Gentian Violet 45 nM Yes
Homoharringtonine 9 nM Yes
Hydroxychloroquine 434 nM Yes
Ibrutinib 354 nM Yes BTK
Idarubicin 24 nM Yes TOP2A
Idelalisib 1 µM Yes PIK3CD, PIK3CA, PIK3CB, PIK3CG
Irinotecan 2.9 µM Yes TOP1
Ixabepilone 153 pM Yes Tubulin
Ixazomib 43 nM Yes PSMB5
Lanatoside 65 nM Yes
Lenalidomide 1.7 µM Yes TNF, TNFSF11
Lenvatinib 647 nM Yes FLT4, KDR, FLT1
Letrozole 1.9 µM Yes CYP19A1
Leucovorin 2.1 µM Yes
Leuprolide 76 nM Yes GNRHR
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Compound Concentration FDA-approved Known targets

Mechlorethamine 883 nM Yes
Megestrol acetate 49 nM Yes
Melphalan 819 nM Yes
Mercaptopurine 867 nM Yes
Miconazole 2.5 µM Yes
Midostaurin 700 nM Yes FLT3, PRKCA
Mitomycin 4.2 µM Yes
Mitoxantrone 62 nM Yes TOP2A
Mycophenolate mofetil 1.8 µM Yes IMPDH1, IMPDH2
Nebivolol 2.7 µM Yes ADRB1
Neratinib 230 nM Yes ERBB2, EGFR
Niclosamide 500 nM Yes
Nilotinib 2.3 µM Yes ABL1, BCR, PDGFRA, PDGFRB
Nintedanib 139 nM Yes FLT4, KDR, PDGFRA, PDGFRB, FGFR1, FGFR2, FLT1
Octreotide 5 nM Yes SSTR2, SSTR3, SSTR5
Osimertinib 1.7 µM Yes EGFR
Oxaliplatin 2.7 µM Yes
Palbociclib 115 nM Yes CDK4, CDK6
Panobinostat 45 nM Yes pan-HDAC
Penfluridol 1 µM Yes
Pentostatin 1 µM Yes ADA
Phenelzine 1.3 µM Yes MAOA, MAOB
Pimozide 3 µM Yes DRD3, DRD2
Pomalidomide 212 nM Yes TNF
Ponatinib 80 nM Yes ABL1, BCR, FGFR1, KDR, FLT1, TEK, FLT3, FGFR2, FGFR3, FGFR4
Pralatrexate 64 nM Yes DHFR, TYMS
Prednisone 845 nM Yes
Procarbazine 2.3 µM Yes MAOB, MAOA
Propranolol 1.6 µM Yes ADRB1
Raloxifene 9 nM Yes ESR1
Romidepsin 697 nM Yes pan-HDAC
Rosiglitazone 2.2 µM Yes
Rucaparib 3.2 µM Yes PARP1, PARP2, PARP3
Selinexor 137 nM Yes XPO1
Sorafenib 4.9 µM Yes RAF1, BRAF, KDR, PDGFRB
Sunitinib 49 nM Yes KIT, PDGFRB, KDR, FLT3
Tacrolimus 5 µM Yes
Talazoparib 61 nM Yes PARP2
Tamoxifen 1.1 µM Yes ESR1
Temsirolimus 81 nM Yes MTOR
Teniposide 212 nM Yes TOP2A, TOP2B
Thioguanine 871 nM Yes DNMT1
Thiotepa 3.6 µM Yes
Tofacitinib 309 nM Yes JAK3, JAK1, STAT3
Topotecan 162 nM Yes TOP1
Toremifene 1.6 µM Yes ESR1
Trametinib 36 nM Yes MAP2K1, MAP2K2
Valproic Acid 2.4 µM Yes HDAC9
Vemurafenib 1 nM Yes BRAF, RAF1
Verteporfin 2 µM Yes
Vinblastine 222 nM Yes Tubulin
Vinorelbine 2 nM Yes Tubulin
Vitamin A 2.1 µM Yes
Vorinostat 1.4 µM Yes pan-HDAC
Zinc Pyrithione 500 nM Yes
10-DEBC 3.9 µM No AKT1, AKT2, AKT3
2,3-DCPE 3.5 µM No
7-Desacetoxy-6,7-dehydrogedunin 2 µM No
Abexinostat 339 nM No HDAC1, HDAC8
ABT-751 5 µM No
AC-93253 190 nM No
AEE788 175 nM No ERBB2, KDR, EGFR
Akt Inhibitor IV 255 nM No AKT1, AKT2, AKT3
Alisertib 1.1 µM No AURKA
AMG-208 2.7 µM No MET
AMG-900 2.5 µM No AURKC, AURKA, AURKB
Amuvatinib 24 nM No KIT, FLT3, MET, RET, PDGFRA, RAD51
AP1903 903 nM No
AT9283 936 nM No JAK2, JAK3, AURKA, AURKB
Atrasentan 1.7 µM No EDNRA
AVN-944 3.7 µM No
AZD1480 131 nM No JAK2
AZD1775 156 nM No WEE1
AZD5363 1.6 µM No AKT1, AKT2, AKT3
Bardoxolone Methyl 145 nM No CHUK, IKBKB, NFKB1, NFKB2, NFE2L2, NFKBIA
Baricitinib 415 nM No JAK1, JAK2, TYK2
Bax channel blocker 2.5 µM No BAX
BAY 11-7082 5 µM No
Bay 11-7085 15 nM No IKBKB
Bay 11-7821 5 µM No NFKBIA
BI 2536 250 nM No
BI-78D3 3 µM No MAPK8
BI-87G3 3.5 µM No MAPK8
Binimetinib 1 µM No MAP2K2, MAP2K1
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Compound Concentration FDA-approved Known targets

Birinapant 5 µM No BIRC2, XIAP
BMS-833923 1.1 µM No
Buparlisib 300 nM No PIK3CA
Calcimycin 340 nM No
Calmidazolium 500 nM No CALM1
Camptothecin 4 nM No
Canertinib 640 nM No EGFR, ERBB2, ERBB4
CC-223 931 nM No MTOR
Cediranib 222 nM No FLT4, KDR, FLT1, KIT, PDGFRA, CSF1R, FLT3, PDGFRB
CGP-71683 1.3 µM No NPY5R
Chlorothalonil 3.9 µM No
Combretastatin A4 1 µM No Tubulin
CP-100356 3.5 µM No ABCB1
Crenolanib 149 nM No PDGFRA, PDGFRB, CSF1R, FLT3, KIT
Cyproterone 166 nM No
Dacinostat 145 nM No HDAC1
Diallyl trisulfide 880 nM No
Dinaciclib 4 nM No CDK2, CDK5, CDK1, CDK9
Dovitinib 591 nM No FGFR3, FLT3, KIT, FGFR1, FLT1, PDGFRA, PDGFRB
Elesclomol 54 nM No
Eniluracil 4 µM No
ENMD-2076 1.5 µM No
Entinostat 1.7 µM No HDAC1, HDAC3, HDAC2, HDAC9
Entospletinib 1.4 µM No SYK
Enzastaurin 2.2 µM No
Epothilone B 251 nM No
Epothilone D 1 µM No
EPZ-6438 2.4 µM No EZH2
ER-27319 1.5 µM No SYK
Evans blue 500 nM No
Ezatiostat 2.5 µM No GSTP1
Flavopiridol 90 nM No CDK1, CDK2, CDK4, CDK6
Fluspirilene 5 µM No
Foretinib 116 nM No MET, KDR
Galeterone 3.6 µM No
Galunisertib 2.7 µM No TGFBR1
Gambogic acid 425 nM No
GBR-12909 2.5 µM No
Gedatolisib 12 nM No PIK3CA, PIK3CG, MTOR
Gilteritinib 2.3 µM No FLT3
Gitoxigenin diacetate 70 nM No
Givinostat 235 nM No pan-HDAC
Go6976 3 µM No PRKCA, PRKCB, PRKCG, PRKCD
Gossypol 2.4 µM No BCL2, BCL2L1
GSK-3 inhibitor IX 3.5 µM No GSK3A, GSK3B
GSK1059615 2 µM No
GSK461364 514 nM No PLK1
GW-843682X 1 µM No PLK1, PLK3
Halofuginone 1 nM No
HMN-214 515 nM No
Homidium bromide 3.3 µM No
IKK-16 2.2 µM No CHUK, IKBKB
IMD0354 500 nM No
INCA-6 2.3 µM No NFATC2, NFATC1
INK-128 17 nM No MTOR
Ipatasertib 459 nM No AKT1, AKT3, AKT2
Ispinesib 543 nM No
JTC-801 2 µM No
Ki8751 5 µM No KDR
Kinetin riboside 4.9 µM No
Leelamine 2 µM No
Lexibulin 354 nM No
Linifanib 1.4 µM No FLT1, FLT3, KDR, PDGFRA, PDGFRB
Luminespib 1.1 µM No HSP90AA1, HSP90AB1
LY-2183240 900 nM No FAAH
LY2228820 3 µM No
LY2603618 4.6 µM No
LY2835219 473 nM No
LY3023414 87 nM No MTOR
Mangostin 500 nM No
Methyl 2,5-dihydroxycinnamate 864 nM No
MGCD-265 1.1 µM No FLT1, FLT4, KDR, MET, MST1R, TEK
MK-2206 756 nM No AKT1, AKT2, AKT3
Mocetinostat 391 nM No HDAC1
Momelotinib 1.6 µM No JAK1, JAK2
Motesanib 1.3 µM No FLT1, KDR, FLT4, PDGFRA, PDGFRB, KIT, RET
MST-312 4 µM No TERT
Navitoclax 460 nM No BCL2, BCL2L1, BCL2L2
NH125 1.5 µM No EEF2
Niguldipine 2.7 µM No ADRA1A
NSC-95397 2.5 µM No CDC25A, CDC25C, CDC25B
Obatoclax mesylate 145 nM No BCL2
Onalespib 4.4 µM No
ONO-4059 2.2 µM No BTK
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Compound Concentration FDA-approved Known targets

Oprozomib 380 nM No
OTX015 3.9 µM No
P276-00 444 nM No
Pacritinib 573 nM No JAK2
Pararosaniline 355 nM No
PD-166285 75 nM No SRC, FGFR1, PDGFRB
PD0325901 667 nM No MAP2K1
Perifosine 5 µM No MAPK1, AKT1
Pevonedistat 2.7 µM No NAE1
PF-04691502 147 nM No PIK3CA, PIK3CB, PIK3CD, PIK3CG, MTOR
Phenylmercury 435 nM No
PI-103 110 nM No
PI3KA Inhibitor IV 1 µM No PIK3CA
Picoplatin 2.2 µM No
Pictilisib 599 nM No PIK3CA, PIK3CD
Pimasertib 911 nM No MAP2K1, MAP2K2
Pirarubicin 8 nM No
Plicamycin 182 nM No
Plinabulin 1.6 µM No Tubulin
Plumbagin 2 µM No
PP-121 350 nM No
Pracinostat 420 nM No HDAC3, HDAC1, HDAC2, HDAC6
Prenylamine 2.5 µM No
Prinomastat 468 nM No MMP2, MMP9, MMP13, MMP14
Pristimerin 855 nM No MGLL
Proscillaridin A 5 nM No
Puromycin 1 µM No
PX-12 3 µM No TXN
Pyrvinium 270 nM No
Quizartinib 577 nM No
RAF265 4.9 µM No
Raltitrexed 11 nM No TYMS
Refametinib 2.3 µM No MAP2K1, MAP2K2
Resminostat 4.4 µM No
Rigosertib 90 nM No PLK1
Ro 31-8220 Mesylate 2 µM No
RO4929097 1.1 µM No
Rocilinostat 1.5 µM No HDAC6
RS-17053 2.9 µM No ADRA1A
Ryuvidine 3.6 µM No SETD8
Sanguinarine 1 µM No
Sappanone A dimethyl ether 2.4 µM No
Saracatinib 1.1 µM No SRC, ABL1
Satraplatin 1.7 µM No
SB-216641 4 µM No HTR1B
SB-224289 1 µM No HTR1B
SB-743921 250 nM No
SCIO-469 4.8 µM No MAPK14
Serdemetan 156 nM No
SGI-1776 4 µM No PIM1, PIM2, PIM3
SNX-2112 287 nM No HSP90AA1, HSP90AB1
Sphingosine 3 µM No
SRT1720 1.5 µM No
Sulconazole Nitrate 3.1 µM No
Suloctidil 1.5 µM No
Tacedinaline 1.1 µM No HDAC1, HDAC2, HDAC3
TAE684 5 µM No ALK
TAK-733 268 nM No MAP2K1
Talampanel 1.1 µM No
Tandutinib 1 µM No FLT3, KIT, PDGFRB
Tariquidar 1.9 µM No ABCB1
Tasquinimod 520 nM No S100A9
Telatinib 2.4 µM No FLT4, KIT, KDR
Terfenadine 2.5 µM No HRH1
Thapsigargin 15 nM No
Thymoquinone 988 nM No
Tivantinib 227 nM No MET
Tivozanib 176 nM No FLT4, KDR, FLT1
Totarol 4.3 µM No
Trichostatin A 120 nM No
Triciribine 782 nM No AKT1, AKT2, AKT3
Tyrothricin 210 nM No
UCN-01 74 nM No AKT1, CHEK1, PDK1, PRKCA, PRKCB
Valinomycin 200 pM No
Vatalanib 119 nM No KDR, FLT1
Vindesine 23 nM No Tubulin
Vistusertib 108 nM No MTOR, PIK3CA, PIK3CB, PIK3CD, PIK3CG
Volasertib 1.3 µM No PLK1
Voreloxin 1.2 µM No
Voxtalisib 504 nM No PIK3CG, MTOR, PRKDC
YM155 16 nM No BIRC5
Zibotentan 1.7 µM No
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Supplementary Table 3. FDA-approved drugs and investigational compounds identified by ViroTreat as significantly in-
verting the SARS-CoV ViroCheckpoint (p < 10−10, BC, 1-tail aREA test). The drugs/compounds were sorted according
to ViroTreat-inferred statistical significance as inverters of SARS-CoV 12h-, 24h- and 48h-ViroCheckpoints. The table lists
the drug/compound name, FDA-approval status, concentration used to perturb the NCI-H1793 lung adenocarcinoma cells,
ViroTreat-estimated statistical significance—expressed as –log10(p-value)—and know primary targets.
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