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Abstract
Motivation: With an increasing number of patient-derived
xenograft (PDX) models being created and subsequently sequenced
to study tumor heterogeneity and to guide therapy decisions,
there is a similarly increasing need for methods to separate reads
originating from the graft (human) tumor and reads originating
from the host species’ (mouse) surrounding tissue. Two kinds of
methods are in use: On the one hand, alignment-based tools require
that reads are mapped and aligned (by an external mapper/aligner)
to the host and graft genomes separately first; the tool itself then
processes the resulting alignments and quality metrics (typically
BAM files) to assign each read or read pair. On the other hand,
alignment-free tools work directly on the raw read data (typically
FASTQ files). Recent studies compare different approaches and
tools, with varying results.
Results: We show that alignment-free methods for xenograft
sorting are superior concerning CPU time usage and equivalent in
accuracy. We improve upon the state of the art sorting by presenting
a fast lightweight approach based on three-way bucketed quotiented
Cuckoo hashing. Our hash table requires memory comparable
to an FM index typically used for read alignment and less than
other alignment-free approaches. It allows extremely fast lookups
and uses less CPU time than other alignment-free methods and
alignment-based methods at similar accuracy.
Availability: Our software xengsort is available under the MIT
license at http://gitlab.com/genomeinformatics/
xengsort. It is written in numba-compiled Python and comes
with Snakemake workflows for hash table construction and dataset
processing.
Contact: Sven.Rahmann@uni-due.de

1 Introduction

To learn about tumor heterogeneity and tumor progression
under realistic in vivo conditions, but without putting hu-
man life at risk, one can implant human tumor tissue into
a mouse and study its evolution. This is called a (patient-
derived) xenograft (PDX). Over time, several samples of the
(graft / human) tumor and surrounding (host / mouse) tis-
sue are taken and subjected to exome or whole genome se-
quencing in order to monitor the changing genomic features
of the tumor. This information can be used to predict the
response to different chemotherapy alternatives and to moni-
tor treatment success or failure. A key step in such analyses
is xenograft sorting, i.e., separating the human tumor reads
from the mouse reads. A recent study (1) showed that if
such a step is omitted, several mouse reads would be aligned
to certain regions of the human genome (HAMA: human-
aligned mouse allele) and induce false positive variant calls
for the tumor; this especially concerns certain oncogenes.

Table 1. Tools for xenograft sorting and read filtering with key properties. See text
for definition of operations; Lang.: programming language.

Tool Ref. Input Operations Lang.
XenofilteR (2) aligned BAM filter R
Xenosplit (3) aligned BAM filter, count Python
Bamcmp (4) aligned BAM partial sort C++
Disambiguate (5) aligned BAM partial sort Python or C++
BBsplit (6) raw FASTQ partial sort Java
xenome (7) raw FASTQ count, sort C++
xengsort (this) raw FASTQ count, sort Python + numba

Several tools have been developed for xenograft sorting, mo-
tivated by different goals and using different approaches; a
summary appears below. Here we improve upon the existing
approaches in several ways: By using carefully engineered
k-mer hash tables, our approach is both faster and needs less
memory than existing tools. By designing a new decision
function, we also obtain fewer unclassified reads and in some
cases even higher classification accuracy. Since we use a
comprehensive reference of the genome and transcriptome,
we are able to uniformly deal with genome, exome, and tran-
scriptome data of xenografts.
Concerning related work, we distinguish alignmet-based
methods that work on already aligned reads (BAM files), ver-
sus alignment-free methods that directly work on short sub-
sequences (k-mers) of the raw reads (FASTQ files). On the
other hand, we do not distinguish between the type of data
that the tools have been applied to (transcripts, or genomic
DNA), because this does not depend so much on the tool but
rather on the reference sequences used (genome, exome, set
of transcripts, etc.).
Alignment-based methods scan existing alignments in BAM
files and test whether each read maps better to the graft or to
the host genome. Differences result from different parameter
settings used for the alignment tool (often bwa or bowtie2)
and from the way “better alignment” is defined by each of
these tools. Alignment-free methods use a large lookup table
to associate species information with each k-mer.
In Table 1, we list properties of existing tools and of xeng-
sort, our implementation of the method we describe in this
article. These tools support different operations: Operation
“count” outputs proportions of reads belonging to each cate-
gory (host, graft, etc.); operation “sort” sorts reads or align-
ments into different files according to origin, ideally into five
categories: host, graft, both, neither, ambiguous; a “partial
sort” only has three categories: host, graft, both/other; op-
eration “filter” writes only an output file with graft reads or
alignments. The sort operation is more general than the filter
or partial sort operation and allows full flexibility in down-
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stream processing. When available, the count operation is
faster than counting the output of the sort operation, because
it avoids the overhead of creating new BAM or FASTQ files.
XenofilteR, Xenosplit, Bamcmp and Disambiguate all work
on aligned BAM files. This means that the reads must be
mapped and aligned with a supported read mapper first (typi-
cally, ’bwa mem’) and the resulting BAM file must be sorted
in a specific way required by the tool. The tool is typically a
script that reads and compares the mapping scores and qual-
ities in the two BAM files containing host and graft align-
ments. In principle, all of these tools do the same thing; large
differences result rather from different alignment parameters
than the tool itself. We therefore picked XenofilteR as a rep-
resentative of this family, also because it performed well in a
recent comparison (1).
BBsplit (part of BBTools) is special in the sense that it per-
forms the read mapping itself, against multiple references
simultaneously, based on k-mer seeds. Unfortunately, only
up to approximately 1.9 billion k-mers can be indexed be-
cause of Java’s array indexing limitations (up to 231 ele-
ments) and a table load limit of 0.9; so BBsplit was not us-
able for our human-mouse index that contains approximately
4.5 ·109 > 232 k-mers.
The tool xenome (7) is similar to our approach: It is based on
a large hash table of k-mers and sorts the reads into several
categories (host, graft, both, neither, ambiguous). A read is
classified based on its k-mer content according to relatively
strict rules. We found the threading code of xenome to be
buggy, such that the pure counting mode resulted in a dead-
lock and produced no output. The sorting mode produced the
complete output but then did not terminate either.
Recent studies (1, 8, 9) have compared the computational ef-
ficiency of several methods, as well as the classification accu-
racy of these methods and the effects on subsequent variant
calling after running vs. not running xenograft sorting. The
results were contradictory, with some studies reporting that
alignmet-based tools are more efficient than alignment-free
tools, and different tools achieving highest accuracry. Our
interpretation of the results of (1) is that each of the existing
approaches is able to sort with good accuracy and the main
difference is in computational efficiency. Results about ef-
ficiency have to be interpreted with care because sometimes
the time for alignment is included and sometimes not.

2 Methods

2.1 Overview
By considering all available host and graft reference se-
quences (both transcripts and genomic sequences of mouse
and human), we build a large key-value store that allows us
to look up the species of origin (host, graft or both) of each
DNA/RNA k-mer that occurs in either species. A sequenced
dataset (a collection of single-end or paired-end FASTQ files)
is then processed by iterating over reads or read pairs, looking
up the species of origin of each k-mer in a read (host, graft,
both or none) and classifying the read based on a decision
rule.

Our implementation of the key-value store as a three-way
bucketed Cuckoo hashtable makes k-mer lookup faster than
in other methods; the associated value can often be retrieved
with a single random memory access. A high load factor of
the hash table, combined with the technique of quotienting,
ensures a low memory footprint, without resorting to approx-
imate membership data structures, such as Bloom filters.

2.2 Key-value stores of canonical k-mers
We partition the reference genome (plus alternative alle-
les and unplaced contigs) and transcriptome into short sub-
strings of a given length k (so-called k-mers); we evaluated
k ∈ {23,25,27}. For each k-mer (“key”) in any of the refer-
ence sequences, we store whether it occurs exclusively in the
host referece, exclusively in the graft reference, or in both,
represented by “values” 1, 2, 3, respectively. For the host-
and graft-exclusive k-mers, we also store whether a closely
similar k-mer (at Hamming distance 1) occurs in the other
species (add value 4); such a k-mer is then called a weak
(host or graft) k-mer. This idea extends the k-mer classifica-
tion of xenome (7), where a k-mer can be host, graft, both,
or marginal, the latter category comprising both our weak
host and weak graft k-mers. So we store, for each k-mer,
a value from the 5-element set “host” (1), “graft” (2), “both”
(3), “weak host” (5), “weak graft” (6). This value is stored
using 3 bits. While a more compact base-5 representation is
possible (e.g., storing 3 values with 125 < 128 = 27 combina-
tions in 7 bits instead of in 9 bits), we decided to use slightly
more memory for higher speed.
To be precise, we do not work on k-mers directly, but on their
canonical integer representations (canonical codes), such that
a k-mer and its reverse complement map to the same number.
We use a simple base-4 numeric encoding A 7→ 0, C 7→ 1,
G 7→ 2, T/U 7→ 3, e.g. reading the 4-mer AGCG as (0212)4 =
38 and its reverse complement CGCT as (1213)4 = 103. The
canonical code is then the maximum of these two numbers;
here the canonical code of both AGCG and CGCT is thus
103. (In xenome, canonical k-mer codes are implemented
with a more complex but still deterministic function of the
two base-4 encodings; in other tools, it is often the minimum
of the two encodings.) For odd k, there are exactly c(k) :=
4k/2 different canonical k-mer codes, so each can be stored
in 2k− 1 bits in principle. However, implementing a fast
bijection of the set of canonical codes (which is a subset of
size c(k) of {0 ..(4k−1)}) to {0 ..(c(k)−1)} seems difficult,
so we use 2k bits to store the canonical code directly, which
allows faster access. We do use quotienting, described below,
to reduce the size; yet in principle, one additional bit could
be saved.

2.3 Multi-way bucketed quotiented Cuckoo hashing
We use multi-way bucketed Cuckoo hash table as the data
structure for the k-mer key-value store. Let C be the set
of canonical codes of k-mers; as explained above, we take
C = {0 ..(4k − 1)}, even though only half of the codes are
used (for odd k). Let P be the set of locations (buckets) in
the hash table and p their number; we set P := {0 ..(p−1)}.
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Fig. 1. Illustration of (3,4) Cuckoo hashing with 3 hash functions and buckets of
size 4. Left: Each key-value pair can be stored at one of up to 12 locations in 3
buckets. For key x, the bucket given by f1(x) is full, so bucket f2(x) is attempted,
where a free slot is found. Right: If all hb slots are full, key x is placed into one of
these slots at random (blue), and the currently present key-value pair is evicted and
re-inserted into an alternative slot.

Eeach key can be stored at up to h different locations (buck-
ets) in the table. The possible buckets for a code are com-
puted by h different hash functions f1,f2, . . . ,fh : C → P .
Each bucket can store up to a certain number b of key-value
pairs. So there is space for N := pb key-value pairs in the ta-
ble overall, and each pair can be stored at one of hb locations
in h buckets. Together with an insertion strategy as described
below, this framework is referred to as (h,b) Cuckoo hash-
ing. Classical Cuckoo hashing uses h = 2 and b = 1; for this
work, we use h = 3 and b = 4. A visualization is provided
in Figure 1. Using several hash functions and larger buckets
increases the load limit; using h = 3 and b = 4 allows a load
factor of over 99.9% (10, Table 1), while classical Cuckoo
hashing only allows to fill 50% of the table.

Search and insert. Searching for a key-value pair works as
follows. Given key (canonical code) x, first f1(x) is com-
puted, and this bucket is searched for key x and the associ-
ated value. If it is not found, buckets f2(x) and then f3(x)
are searched similarly. Each bucket access is a random mem-
ory lookup and most likely triggers a cache miss. We can
ensure that each bucket is contained within a single cache
line (by using additional padding bits if necessary). Then,
the number of cache misses is limited to h = 3 for one search
operation.
Because we fill the table well below the load limit (at 88%
of 99.9%), we are able to store most key-value pairs in the
bucket indicated by the first hash function f1, and only in-
cur a single cache miss when looking for them. Unsuccessful
searches (for k-mers that are not present in either host or graft
genome) will always need h memory accesses. However, one
optimization is possible: If, say, the first bucket f1(x) con-
tains an empty slot, we do not need to search further, because
the insertion procedure produced a tight layout, in the sense
that if a single element could be moved to an “earlier” bucket,
it would have been done.
Insertion of a key-value pair works as follows. First, the key
is searched as described above. If it is found, the value is up-
dated with the new value. For example, if an exisiting host
k-mer is to inserted again as a graft k-mer, the value is up-
dated to “both”. If the key is not found, we check whether
any of the buckets f1(x),f2(x),f3(x) contains a free slot. If
this is the case, x and its value are inserted there. If all buck-
ets are full, a random slot among the hb slots is picked, and
the key-value pair stored there is evicted (like a cuckoo re-
moves eggs from other birds’ nests) to make room for x and
its value. Then an alternative location for the evicted element
is searched. This process may continue for several iterations

and is called a “random walk” through the table. If the walk
becomes too long (longer than 5000 steps, say), we declare
that the table is too full, and construction fails and has to be
restarted with a larger table or different random seed.
We require that the final size (number of buckets p) of the
hash table is known in advance, so we can pre-allocate it.
The genome length is a good (over-)estimate of the number
of distinct k-mers and can be used. We recently presented
a practical algorithm (11) to optimize the assignment of k-
mers to buckets (i.e., their hash function choices) such that
the average search cost of present k-mers is minimized to the
provable optimum. This optimization takes significant addi-
tional time and requires large additional data structures; so
we took the opportunity here to evaluate whether it signifi-
cantly improves lookup times in comparison to a table filled
by the above random walk strategy.

Bijective hash functions and quotienting. In principle, we
need to store the 2k bits for the canonical k-mer code x and
the 3 bits for the value at each slot. However, by using hash
functions of the form f(x) := g(x) mod p, where p is the
number of buckets and g is a bijective (randomized) trans-
formation on the full key set {0 ..(4k− 1)}, we can encode
part of x in f(x): Note that from f(x) and q(x) := g(x)//p
(integer division), we can recover g(x) = p ·q(x)+f(x), and
since g is bijective, we can recover x itself. This means that
we only need to store q(x), not x itself in bucket f(x), which
only takes d2k− log2 pe instead of 2k bits. However, since
we have h alternative hash functions, we also need to store
which hash function we used, using 2 bits for h = 3 (0 in-
dicating that the slot is empty). This technique is known as
quotienting. It gives higher savings for smaller buckets (for
constant N = pb, smaller b means larger p), but on the other
hand the load limit is smaller for small b. We find b = 4 to be
a good compromise, allowing table loads of 99.9%.
For the bijective part g(x), we use affine functions of the form

ga,b(x) := [a · (rotk(x) xor b)] mod 4k,

where rotk performs a cyclic rotation of k bits (half the width
of x), moving the “random” inner bits to outer positions and
the less random outer bits (due to the max operation when
taking canonical codes) inside, b is a 2k-bit offset, and a is
an odd multiplier. Picking a “random” hash function means
picking random values for a and b.

Lemma 1. For any 2k-bit number b and any odd 2k-bit num-
ber a, the function ga,b is a bijection on K := {0 ..(4k−1)}.

Proof. Let y = ga,b(x). By definition, the range of ga,b on
K is a subset of K. Because |K| is a power of 2 and a is
odd, the greatest common divisor of |K| and a is 1, and so
there exists a unique multiplicative inverse a′ of a modulo
4k = |K|, such that aa′ = 1 (mod 4k). The other operations
(xor b, rotk) are inverses of themselves; so we recover x =
rotk([(a′ ·y) mod 4k] xor b).

In summary, each stored canonical k-mer needs 2+3+d2k−
log2 pe bits to remember the hash function choice and to store
the value (species), and the quotient, respectively. For k = 25
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and p = 1276595745 buckets, this amounts to 25 bits per k-
mer, or 100 bits for each bucket of 4 k-mers. To ensure cache
line aligned pages, we could insert 28 padding bits to grow
the bucket size to 128 bits; however, we chose less memory
for a small speed decrease, and let some buckets cross cache
line boundaries.

2.4 Annotating weak k-mers
A k-mer that occurs only in the host (graft) reference, but has
a Hamming-distance-1 neighbor in the graft (host) reference,
is called a weak host (graft) k-mer. So for a weak k-mer,
a single nucleotide variation could flip its assigned species,
while a k-mer that is not weak is more robust in this sense.
A similar concept exists in xenome; however, weak host and
graft k-mers are combined into “marginal” k-mers, and their
origin is not stored. After the hash table has been constructed
with all k-mers and their values “host”, “graft” or “both”, we
mark weak k-mers by modifying the value, setting an addi-
tional “weak” bit. In principle, we could scan over the k-mers
and query all 3k neighbors of each k-mer, but this is ineffi-
cient.
Instead, we extract from the hash table a complete list L of
k-mers and their reverse complements (not canonical codes;
approx. 9 ·109 entries for 4.5 ·109 distinct k-mers), together
with their current values. To save memory, this list is cre-
ated and processed in 16 chunks according to the first two
nucleotides of the k-mer, thus needing approx. 4.5 GB of ad-
ditional memory temporarily. Since we use odd k = 2` + 1,
we can partition a k-mer into its `-prefix, its middle base and
its `-suffix. We make use of the following observation.

Observation 1. For k = 2` + 1, two k-mers x,y with Ham-
ming distance 1 differ either in their `-suffix, in the `-suffix of
their reverse complement or in their middle base.

We thus partition the sorted list into blocks of constant
(` + 1)-prefixes. Different blocks are processed indepen-
dently in parallel threads. The `-suffixes of all pairs of k-
mers in such a block are queried with a fast bit-vector test for
Hamming distance 1. If a pair is found and the k-mers occur
in different species, the “weak bit” (value 4) is set. It remains
to find pairs of k-mers that differ only in their middle base.
We conceptually partition the list into blocks of constant `-
prefixes and use that such pairs must occur consecutively in a
block and agree in the `-suffix. So these pairs can be identi-
fied within a single linear scan. In the end, updated values are
transferred to the values of the canonical k-mers in the hash
table.

2.5 Reference sequences
To build the k-mer hash table from genomic and transcribed
sequences from human and mouse, we obtained the “toplevel
DNA” genome FASTA files, which include both the primary
assembly, unplaced contigs and alternative alleles, and the
“all cDNA” files, which contain the known transcripts, from
the ensembl FTP site, release 98.
As the alternative alleles of the human and mouse toplevel
references contain mostly Ns to keep positional alignment of

alternative alleles to the consensus reference, they decom-
press to huge FASTA files (over 60 GB for human, over 12
GB for mouse). Therefore we condensed the toplevel refer-
ence sequences by replacing runs of more than 25 Ns by 25
Ns. This does not change the k-mer content, as k-mers con-
taining even a single N are ignored. It does provide an effi-
ciency boost to alignment-based tools because read mappers
build an index of every position in the genome and typically
replace runs of Ns by random sequence.
We used the following files with the following compressed
file sizes and number of contained basepairs, with numbers
after 7→ indicating sizes after condensing Ns:

• Graft (human) genome (1100 MB; 61 Gbp 7→ 885 MB;
3.15 Gbp): ftp://ftp.ensembl.org/pub/
release-98/fasta/homo_sapiens/dna/Homo_
sapiens.GRCh38.dna.toplevel.fa.gz

• Graft (human) transcriptome (67 MB; 0.37 Gbp):
ftp://ftp.ensembl.org/pub/release-98/
fasta/homo_sapiens/cdna/Homo_sapiens.
GRCh38.cdna.all.fa.gz

• Host (mouse) genome (804 MB; 12 Gbp 7→ 776 MB;
2.72 Gbp): ftp://ftp.ensembl.org/pub/
release-98/fasta/mus_musculus/dna/Mus_
musculus.GRCm38.dna.toplevel.fa.gz

• Host (mouse) transcriptome (50 MB; 0.25 Gbp):
ftp://ftp.ensembl.org/pub/release-98/
fasta/mus_musculus/cdna/Mus_musculus.
GRCm38.cdna.all.fa.gz

2.6 Fragment classification
Given a sequenced fragment (single read or read pair), we
query each k-mer of the fragment about its origins; k-mers
with undetermined bases are ignored. Our implementation
reads large chunks (several MB) of FASTQ files and dis-
tributes read classification over several threads (we found that
8 threads saturate the I/O).
We collect k-mer statistics for each fragment (adding the
numbers of both reads for a read pair): Let n be the num-
ber of (valid) k-mers in the fragment. Let h be the number
of host k-mers and h′ the number of weak host k-mers, and
analogously define g and g′ for the graft species. Further, let
b be the number of k-mers occuring in both species, and let x
be the number of k-mers that were not found in the key-value
store. Based on the vector (h,h′,g,g′, b,x;n), we use a tree
of hierarchical rules to classify the fragment into one of five
categories: “host”, “graft”, “both”, “neither” and “ambigu-
ous”. Categories “host” and “graft” are for reads that can be
clearly assigned to one of the species. Category “both” is for
reads that match equally well to both references. Category
“neither” is for reads that contain many k-mers that cannot
be found in the key-value store; these could point to techni-
cal problems (primer dimers) or contamination of the sample
with other species. Finally, category “ambiguous” is for reads
that provide conflicting information. Such reads should not
usually be seen; they could result from PCR hybrids between
host and graft during library preparation. The precise rules
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Fig. 2. Decision rule tree for classifying a DNA fragment from k-mer statistics (h,h′,g,g′, b,x;n), meaning number of k-mers of type “host” (h), “weak host” (h′), “graft”
(g), “weak graft” (g′), “both” (b), and number of k-mers not present in the key-value store (x), respectively; n is the total number of (valid) k-mers in the fragment. We also
use weighted scores Shost := h+ bh′/2c and Sgraft := g+ bg′/2c and thresholds Thost := bn/4c,Tgraft := bn/4c and Tboth := bn/4c. A fragment is thus classified as
“host”, “graft”, “both”, “neither”, or “ambiguous”. Category “ambiguous” is chosen if no other rule applies and no “else” rule is present in a node.

are shown in Figure 2. Category “ambiguous” is chosen if no
“else” rule exists and no other rule applies in any given node.

Quick mode. Inspired by a similar acceleration in the
kallisto software (12) for transcript expression quantification,
we additionally implemented a “quick mode” that initially
looks only at the type of the third and third-last k-mer in ev-
ery read. If the two (for single-end reads) or four (for paired-
end reads) types agree (e.g. all are “graft”), the fragment is
classified on this sampled evidence alone. This results in
quicker processing of large FASTQ files, but only considers
a small sample of the available information.

3 Results
We evaluate our alignment-free xenograft sorting approach
and its implementation xengsort for the common case of
human-tumor-in-mouse xenografts, by using mouse datasets,
human datasets, xenograft datasets and datasets from other
species, and compare against an existing tool with the same
purpose, xenome from the gossamer suite (7), and against
a representative of alignment-based filtering tools, Xenofil-
teR (2). The hardware used for the benchmarks was one
server with two AMD Epyc 7452 CPUs (with 32 cores and
64 threads each), 1024 GB DDR4-2666 memory and one
12 TB HDD with 7200 rpm and 256 MB cache.

3.1 Hash table construction
Table size and uniqueness of k-mers. We evaluated k ∈
{23,25,27} and then decided to use k = 25 because it offers
a good compromise between species specificity and memory
requirements. Table 2 shows several index properties. In par-
ticular, moving from k = 25 to k = 27, the small decrease
in k-mers that map to both genomes and in weak k-mers did
not justify the additional memory requirements. In addition,
longer k-mers lead to lower error tolerance against sequenc-
ing errors, as each error affects up to k of the k-mers in a
read.

Table 2. Properties of the k-mer index for different values of k (wk: weak). Under-
lying reference sequences are given in Section 2.5.

k-mers k = 23 (%) k = 25 (%) k = 27 (%)
total 4 396 323 491 (100) 4 496 607 845 (100) 4 576 953 994 (100)
host 1 924 087 512 (43.8) 2 050 845 757 (45.6) 2 105 520 461 (46.0)
graft 2 173 923 063 (49.4) 2 323 880 612 (51.7) 2 395 147 724 (52.3)
both 18 701 862 (0.4) 12 579 160 (0.3) 9 627 252 (0.2)
wk host 132 469 231 (3.0) 52 063 110 (1.2) 32 445 717 (0.7)
wk graft 147 141 823 (3.4) 57 239 206 (1.3) 34 212 840 (0.7)

Table 3. Index construction: CPU times and wall clock times in minutes and memory
in Gigabytes using different tools and different k-mer sizes for xengsort. “Build”
times refer to collecting and hashing the k-mers according to species, but without
marking weak k-mers. “Mark” times refer to marking weak k-mers. “Total” times are
the sum of build and mark times, plus additional I/O times. “CPU” times measure
total CPU work load (as reported by the time command as user time), and “wall”
times refer to actually passed time. Final size (“mem final”) is measured by index
size on disk (GB). Memory peak (“mem peak”) is the highest memory usage during
construction (GB).

build build mark mark total total mem mem
tool k CPU wall CPU wall CPU wall final peak
xengsort 23 50 50 591 176 641 226 12.8 17.3
xengsort 25 53 53 437 158 490 211 15.9 20.4
xengsort 27 51 51 495 214 546 265 17.3 21.8
xenome 25 992 151 2338 356 3626 552 31.2 57.1
XenofilteR – 528 658 – – 528 658 13.0 22.0

Construction time and memory. Table 3 shows time and
memory requirements for building the k-mer hash table or
FM index for bwa (for XenofilteR). The main difference is
that the BWA index is a succinct representation of the suffix
array of the references and not a k-mer hash table. Our hash
table construction is not paralellized; hence CPU times and
wall clock times agree and are less than one hour. The hash
construction of xenome is paralellized; we gave it 8 threads
(but 9 were sometimes used); yet it does about 20 times the
CPU work and takes three times as long as xengsort, even
when using multiple threads.
Marking weak or marginal k-mers is paralellized in both ap-
proaches; wall clock times are measured using 8 threads.
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Table 4. Dataset sizes (number of fragments; M: millions) and CPU times in min-
utes spent on different datasets, measured with the “time” command (user time)
when running with 8 threads (xenome, xengsort, bwa-mem, BAM sorting, except
for XenofilteR (XfR), which is single-threaded). N/A: not applicable; tool could not
be run on this dataset.

dataset / tool size XfR + bwa + sort xenome xengsort
mouse exomes 307 M 310 + 8291 + 179 1823 368
human matepair 1258 M N/A + 222939 + 940 9845 2463
chicken genome 251 M 76 + 6976 + 118 1273 592
leukemia RNA 1760 M 778 + 22111 + 521 5188 1680
PDX RNA 9742 M 16043 + 278329 + 5862 59692 13555

Again, xengsort finds the weak k-mers faster, both in terms
of total CPU work and wall clock time.
The indexing method of bwa is not comparable, as it builds
a complete suffix array (FM index) that is independent of k
and does not include marking weak k-mers. Here the CPU
time is lower than the wall clock time, which indicates an I/O
starved process.
We note that xenome uses a large amount of memory during
hash table construction (it was given up to 64 GB). It works
with less if restricted, but at the expense of longer running
times. BWA indexing also needs significant additional mem-
ory during construction. The additional memory required by
xengsort results from the additional sorted k-mer list required
for detecting weak k-mers. Overall, our construction is fast
(even though serial only) and uses a reasonable amount of
memory.

Load factor and hash choice distribution. As explained in
Section 2.3, 3-way Cuckoo hash tables support very high
loads (fill ratios) over 99.9%. However, such loads come at
the expense of distributing all k-mers almost evenly across
hash function choices. For faster lookup, it is beneficial to
leave part of the hash table empty. We used a load factor of
88% and thus find 76.7% of the k-mers at their first bucket
choice, 15.5% at their second choice and only 7.8% at their
third choice, yielding an average of 1.31 lookups for a present
k-mer.
Applying assignment optimization (11), which takes an addi-
tional 5 hours (serial CPU time, not parallelized) and needs
over 80 GB of RAM, we achieve a slightly better average of
1.17 lookups for a present k-mer.

3.2 Classification results
We applied our method xengsort, xenome and XenofilteR to
several datasets with reads of known origin (except possi-
ble contamination issues or technical artefacts), that however
present certain particular challenges. A summary of running
times for all datasets appears in Table 4.

Human-captured mouse exomes. A recent comparative
study (1) made five mouse exomes accessible, which were
captured with a human-exome capture kit and hence presents
mouse reads that are biased towards high similarity with
human reads. The mouse strains were A/J (two mice),
BALB/c (one mouse), and C57BL6 (two mice); they were
sequenced on the Illumina HiSeq 2500 platform, result-
ing in 11.8 to 12.7 Gbp. The datasets are available un-

Table 5. Detailed classification results on five human-captured mouse exomes from
different mouse strains (2× A/J, 1× BALB/c, 2× C57BL/6). Running times are
reported both in CPU minutes [Cm], measuring CPU work, and wall clock minutes
[Wm], measuring actual time spent. Times for XenofilteR (XfR) do not include align-
ment or BAM sorting time. Classification results report the number and percentage
(in brackets) of fragments classified as mouse (correct), both human and mouse
(likely correct), human (incorrect), ambiguous (no statement) and neither (likely in-
correct). XenofilteR (XfR) only extracts human fragments and does not classify the
remainder; so only the number of fragments classified as human are reported.

A/J-1 xengsort xenome XfR
time 70 Cm 14 Wm 371 Cm 45 Wm 56 Cm 56 Wm

fragmets (%) fragmets (%) fragmets (%)
mouse 46 648 014 (78.03) 45 759 814 (76.54)
both 120 808 (0.20) 65 269 (0.11)
human 12 813 583 (21.43) 12 500 844 (20.91) 6 315 955 (10.56)
ambgs. 58 449 (0.10) 1 383 547 (2.31)
neither 143 775 (0.24) 75 155 (0.13)

A/J-2 xengsort xenome XfR
time 70 Cm 15 Wm 416 Cm 50 Wm 67 Cm 67 Cm
mouse 60 255 189 (95.57) 59 135 489 (93.80)
both 151 396 (0.24) 89 089 (0.14)
human 2 301 384 (3.65) 2 271 131 (3.60) 1 718 545 (2.73)
ambgs. 57 827 (0.09) 1 340 814 (2.13)
neither 279 556 (0.44) 208 829 (0.33)

BALB/c xengsort xenome XfR
time 68 Cm 15 Wm 392 Cm 45 Wm 61 Cm 61 Wm
mouse 62 235 960 (98.99) 61 274 277 (97.46)
both 118 541 (0.19) 68 949 (0.11)
human 342 908 (0.55) 348 154 (0.55) 285 556 (0.45)
ambgs. 45 063 (0.07) 1 098 036 (1.65)
neither 127 035 (0.20) 80 091 (0.13)

C57BL/6-1 xengsort xenome XfR
time 72 Wm 14 Wm 359 Wm 44 Wm 58 Cm 58 Wm
mouse 57 993 361 (98.93) 57 522 446 (98.13)
both 118 984 (0.20) 74 325 (0.13)
human 375 716 (0.64) 376 653 (0.64) 290 894 (0.50)
ambgs. 27 731 (0.05) 571 542 (0.98)
neither 103 895 (0.18) 74 721 (0.13)

C57BL/6-2 xengsort xenome XfR
time 67 Cm 15 Wm 422 Cm 51 Wm 62 Cm 62 Wm
mouse 62 384 448 (99.00) 61 941 783 (98.30)
both 107 019 (0.17) 66 163 (0.10)
human 189 536 (0.30) 208 149 (0.33) 132 535 (0.21)
ambgs. 27 142 (0.04) 562 659 (0.89)
neither 304 677 (0.48) 234 068 (0.37)

der accession numbers SRX5904321 (strain A/J, mouse 1),
SRX5904320 (strain A/J, mouse 2), SRX5904319 (strain
BALB/c, mouse 1), SRX5904318 (strain C57BL/6, mouse
1) and SRX5904322 (strain C57BL/6, mouse 2).
Ideally, all reads should be classified as mouse reads. Table 5
shows detailed classification results and running times. Con-
sidering the BALB/c and C57BL/6 strains first, it is evident
that classification accuracy is high (over 98.9% mouse for
xengsort, over 97.4% for xenome; with less than 0.64% hu-
man reads for both tools). The main difference between the
tools is that xenome is more conservative, assigning a larger
fraction of reads to the “ambiguous” (unclassified) category.
With xenome, this happens for reads that contain two k-mers
x,y, where x maps uniquely to human and y maps uniquely
to mouse. The decision rule of xengsort is more permissive
and tolerant towards small inconsistencies. Therefore, xeng-
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sort assigns more reads correctly to mouse, and fewer to the
ambiguous category. Additionally, xengsort assigns fewer
reads incorrectly to human.
However, the two samples of strain A/J give different re-
sults. Both xengsort and xenome assign a large fraction of
reads (around 21% and 3.6% in the two samples) to the
human genome, while XenofilteR assigns only 10.5% and
2.7%, respectively. While xengsort does assign more reads
to mouse, it also assigns more reads to human, following its
strategy of leaving fewer reads unassigned (ambiguous). In-
spection of these reads revealed that almost all of them are
low-complexity, i.e. consist of repetitive sequence, and a
check with BLAT (13) revealed no hits in mouse and several
gapped hits in the human genome. So the classification as hu-
man reads is not incorrect from a technical standpoint, but in
fact these reads appear to point to techincal problems during
then enrichment step of the library generation. An additional
low-complexity filter would remove most problematic reads.
Concerning running times, we find that xengsort needs
around 70 CPU minutes for one of these datasets, and less
than 15 minutes of wall clock time using 8 threads. The
speed-up being less than 8 results from serial intermedi-
ate I/O steps. While xenome makes better use of paral-
lelism, it is slower overall, requiring 5 to 6 times the CPU
work of xenome. For only scanning already aligned BAM
files, XenofilteR is surprisingly slow, and we see that we
can sort the reads from scratch in almost the same amount
of CPU work that is required to compare alignment scores.
When adding bwa mem alignment times (even without the
time required for sorting the resulting BAM files), XenofilteR
needs an additional 887 to 1424 CPU minutes for the hu-
man alignments and an additional 424 to 777 minutes for the
mouse alignments per dataset, making the alignment-based
approach far less efficient than the alignment-free approach.

Human genome (GIAB) matepair library. We obtained
FASTQ files of an Illumina-sequenced 6kb matepair li-
brary from the Genome In A Bottle (GIAB) Ashkenazim
trio dataset according to the provided sequence file in-
dex (ftp://ftp-trace.ncbi.nlm.nih.gov/
giab/ftp/data_indexes/AshkenazimTrio/
sequence.index.AJtrio_Illumina_6kb_
matepair_wgs_08032015). The data represents a
family (mother, father, son). Ideally, we see only human
reads.
Figure 3A shows the classification results for xengsort and
xenome. XenofilteR reported that the BAM files were too
large to be processed and did not give a result (400 GB to-
tal for human and mouse; each BAM file over 30 GB in size).
We see that almost all reads are correctly identified as hu-
man, while a small fraction is neither, which could be adapter
dimers or other technical issues. However, xenome classifies
a similarly small fraction as ambiguous. We observe the same
wall clock time ratio (about 3.5) between xenome and xeng-
sort as for the mouse exome dataset.
Because this is a very large dataset (112 GB gzipped
FASTQ), we additionally evaluated the effects of using xeng-
sort’s “quick mode”. We observed a significant reduction

in processing time (by about 33%) and almost unchanged
classification results. We also ran the xengsort classification
with the optimized hash table (using an optimized assignment
computed using the methods from (11) and found a small re-
duction (9%) in running time.
We conclude that both alignment-free tools accurately rec-
ognize that this is a pure human dataset, and that xengsort
is again more CPU-efficient and faster, given the same re-
sources.

Chicken genome. We obtained a paired-end (2x101bp) Il-
lumina whole genome sequencing run of a chicken genome
from a whole blood sample (accession SRX6911418) with a
total of 251 million paired-end reads. Ideally, none of these
reads are recognized as mouse or human reads. Figure 3B
shows divergent results. For XenofilteR, we can only say
that almost no reads are extracted as human; the remainder is
unclassified. Xenome assigns a small number of reads to each
category and only around 90% into the “neither” category,
while xengsort assigns 98.11% of the reads as “neither”.
Concerning running time (cf. Table 4), the scan of XenofilteR
here beats the alignment-free tools because both BAM files
are essentially empty, as very few reads align against human
or mouse. Also, the speed advantage of xengsort over xenome
is less on this dataset, mainly because most k-mers are not
found in the index and require h = 3 memory lookups and
likely cache misses. Such a dataset that contains neither graft
nor host reads is aversarial for our design of xengsort; it is
also unlikely to be encountered in practice.

Human lymphocytic leukemia tumor RNA-seq data. We
obtained single-end FASTQ files from RNA-seq data of
5 human T-cell large granular lymphocytic leukemia sam-
ples, where recurrent alterations of TNFAIP3 were observed,
and 5 matched controls (13.4 Gbp to 27.5 Gbp). The
files are available from SRA accession SRP059322 (datasets
SRX1055051 to SRX1055060). Surprisingly, not all frag-
ments were recognized as originating from human tissue
(Figure 3C). While xenome and xengsort agreed that the hu-
man fraction is close to 75%, XenofilteR assigned consider-
ably fewer reads to human origins (less than 70%).
For this and other RNA-seq datasets, we trimmed the Illu-
mina adapters using cutadapt (14) prior to classification, as
some RNA fragments may be shorter than the read length.
If this step is omitted, even fewer fragments are classified
as human (graft): just below 70% for xenome and xengsort,
and only about 53% for XenofilteR. The number of fragments
classified as neither increases correspondingly.
We investigated the reads classified by xengsort as neither
human nor mouse. Quality control with FastQC (15) re-
vealed nothing of concern, but showed an unusual biomodal
per-fragment GC content distribution with peaks at 45% and
55%. BLASTing the fragments against the non-redundant
nucleotide database (16) yielded no hits at all for 97% of
these fragments. A small number (2%) originated from the
bacteriophage PhiX, which was to be expected, because it is
a typical spike-in for Illumina libraries. The remaining 1%
of fragments showed random hits over many species with-
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Fig. 3. Classification results of different tools (XenofilteR, xenome, xengsort, and partially xengsort with “quick” option) on several datasets: A: GIAB human matepair dataset
(XenofilteR did not run on this dataset); B: Chicken genome; C: Human lymphocytic leukemia RNA-seq data; D: Patient-derived xenograft (PDX) RNA-seq data. E: CPU
times on the PDX RNA-seq dataset with different tools and different xengsort parameters (see text).
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out a distinctive pattern. We therefore concluded that the
neither fragments mainly consisted of artefacts from library
construction, such as ligated and then sequenced random
primers.
Concerning running times (Table 4), we observed again that
xengsort is more than 3 times faster than xenomeand that
xengsort needs time comparable to XenofilteReven when only
the time for sorting and scanning existing BAM files is taken
into account. Producing the alignments takes much longer.

Patient-derived xenograft (PDX) RNA-seq samples from hu-
man pancreatic tumors. We evaluated 174 pancreatic tu-
mor patient-derived xenograft (PDX) RNA-seq samples that
are available internally at University Hospital Essen. Fig-
ure 3D shows that all three tools classify between 70% and
74% as graft (human) fragments. Again, XenofilteR seems to
be the most conservative tool with about 70%, and xenome
classifies about 72% as human and xengsort 74%. The re-
maining reads are not classified by XenofilteR, while xenome
and xengsort both assign about 25% to host (mouse). Fur-
thermore, xenome classifies about 2% and xengsort less than
1% as ambiguous. So we observe that on all datasets, xeng-
sort is more decisive than xenome and, judging from the pure
human and mouse datasets, mostly correct about it. Because
this is a large dataset, we also applied xengsort’s quick mode
and found essentially no differences in classification results
(less than 0.001 percentage points in each class; e.g. for graft:
quick 74.0111% vs. standard 74.0105% of all reads; differ-
ence 0.0006%; cf. Fig. 3D).
Concerning running time, Figure 3E shows that the alignment
using bwa-mem and the sorting of the BAM file for Xenofil-
teR took over 284 191 CPU minutes (close to 200 days). Af-
ter that, XenofilteR required an additional 16 043 CPU min-
utes (over 11 days) to classify the aligned and sorted reads.
In comparison, xenome with 59 691 CPU minutes (41.5 days)
took only 20% of the time used by bwa-mem and XenofilteR,
and xengsort needed 13 555 CPU minutes (9.5 CPU days) to
sort all reads and is therefore even faster than the classifica-
tion by XenofilteR alone, even excluding the alignment and
sorting steps, and over 4 times faster than xenome. Using
the “quick mode” with an optimized hash table at 88% load
needed only 5 713 CPU minutes (less than 4 CPU days), i.e.,
less than half of the time of a full analysis.
We additionally examined some trade-offs for this dataset.
First, we note that only counting proportions without out-
put (“count” operation) is not much faster than sorting the
reads into different output files (“sort” operation): 13285 vs.
13555 CPU minutes (2% faster). We additionally measured
the running time of the xengsort’s count operation on hash
tables with different load factors (88% and 99%) using both
the standard assignment by random walk and an optimal as-
signment (11). As expected, a load factor of 99% was slower
than 88% (by 10.4% on the random walk assignment, but
only by 2.6% on the optimized assignment). Using the op-
timal assignment gives a speed boost (13.3% faster at 88%
load; 19.3% at 99% load). The optimized assignment at 99%
load yields an even faster running time than the random walk
assignment at 88% load by 11% (11 824 vs. 13 285 CPU min-

utes).

4 Discussion and Conclusion
We revisited the xenograft sorting problem and improved
upon the state of the art in alignment-free methods with our
implementation of xengsort.
On typical datasets (PDX RNA-seq), it is is at least four times
faster and needs less memory than the comparable xenome
tool. Our experiments show that it provides accurate classifi-
cation results, and classifies more reads than xenome, which
more often bails out when uncertain. Surprisingly, on PDX
datasets, our approach is even faster than scanning already
aligned BAM files. This favorable behavior arises because
almost every k-mer in every read can be expected to be found
in the key-value store, and lookups of present keys are faster
than lookups of absent keys with our data structure.
On adversarial datasets (e.g., a sequenced chicken genome,
where almost none of the k-mers can be found in the hash
table), xengsort is 2 times faster than xenome and about 8
times slower than scanning pre-aligned and pre-sorted BAM
files (which are mostly empty).
However, given that producing and sorting the BAM files
takes significant additional time, especially for computing
the (non-existing) alignments, our results show that overall,
alignment-free methods require significantly less computa-
tional resources than alignment-based methods. In view of
the current worldwide discussions on climate change and en-
ergy efficiency, we advocate that the most resource-efficient
available methods should be used for a task, and we propose
that xengsort is preferable to existing work in this regard.
Even though one could argue that alignments are needed later
anyway, we find that this is not always true: First, to ana-
lyze PDX samples, typically only the graft reads are further
considered and need to be aligned. Second, recent research
has shown that more and more application areas can be ad-
dressed by alignment-free methods, even structural variation
and variant calling (17), so alignments may not be needed at
all.
On the methodological side, we developed a general key-
value store for DNA/RNA k-mers that allows extremely fast
lookups, often only a single random memory access, and that
has a low memory footprint thanks to a high load factor and
the technique of quotienting.
Thus this work might be seen as a blueprint for implemen-
tations of other alignment-free methods (for gene expression
quantification, metagenomics, etc.). In principle, one could
replace the underlying key-value store of each published k-
mer based method by the hashing approach presented here
and probably obtain a speed-up of factor 2 to 4, while at the
same time saving some space for the hash table. In practice,
such an approach may be difficult because the code in ques-
tion is often deeply nested in the application. However, we
would like to suggest that for future implementations, three-
way bucketed Cuckoo hash tables with quotienting should be
given serious consideration.
A (small) limitation of our approach is that the size of the
hash table must be known (at least approximately) in ad-
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vance. (Growing it would mean re-hashing everything). For-
tunately, the total length of the sequences in the k-mer key-
value store provides an easily calculated upper bound. The
advantage of such a static approach is that only little addi-
tional memory is required during construction.
The software xengsort is available at http://gitlab.
com/genomeinformatics/xengsort under the MIT
license. Installation and usage instructions are provided
within the README file of the repository. The software is
written in Python, but makes use of just-in-time compilation
at runtime using the numba package (18). While requiring an
additional 1–2 seconds of startup time, this allows for many
optimizations, because certain parameters that become only
known at run time, such as random parameters for the hash
functions, can be compiled as constants into the code. These
optimizations yield savings that can exceed the initial compi-
lation effort.
Further variants of our approach can be explored and eval-
uated: We already introduced a “quick mode”, similar to
the one in kallisto (12), that is faster, but may falsely clas-
sify problematic (amiguous) reads as belonging to a specific
species. In practice, this does not appear to be a problem.
In the future, we may alternatively reduce the number of k-
mer lookups by not examining every k-mer, but only mini-
mizers in windows of fixed size, using min-hashing or other
sampling methods. Another alternative is to base the classifi-
cation not on the number of (overlapping) k-mers belonging
to each species, but on the number of basepairs covered by
k-mers of each species. Such investigations are ongoing.
While we have indications that classification results agree
well overall among all methods and variants, we concur with
a recent study (1) that there exist subtle differences, whose
effects can propagate through computational pipelines and
influence, for example, variant calling results downstream,
and we believe that further evaluation studies are neces-
sary. In contrast to their study, we however suggest that
a best practice workflow for PDX analysis should start (af-
ter quality control and adapter trimming on RNA-seq data)
with alignment-free xenograft sorting, followed by aligning
the graft reads and the reads that can originate from both
genomes to the graft genome. In any workflow, the latter
reads, classified as “both”, may pose problems, because one
may not be able to decide the species of origin. Indeed, ul-
traconserved regions of DNA sequence exist between human
and mouse. In this sense we believe that full read sorting
(into categories host, graft, both, neither, ambiguous, as op-
posed to extracting graft reads only) gives the highest flex-
ibility for downstream steps and is prefereable to filter-only
apporaches.
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