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Abstract

Gene-environment (GxE) interactions are one of the least studied aspects of the genetic archi-

tecture of human traits and diseases. The environment of an individual is inherently high di-

mensional, evolves through time and can be expensive and time consuming to measure. The UK

Biobank study, with all 500,000 participants having undergone an extensive baseline questionnaire,

represents a unique opportunity to assess GxE heritability for many traits and diseases in a well

powered setting. We have developed a non-linear randomized Haseman-Elston (RHE) regression

method applicable when many environmental variables have been measured on each individual.

The method (GPLEMMA) simultaneously estimates a linear environmental score (ES) and its

GxE heritability. We compare the method via simulation to a whole-genome regression approach

(LEMMA) for estimating GxE heritability. We show that GPLEMMA is computationally efficient

and produces results highly correlated with those from LEMMA when applied to simulated data

and real data from the UK Biobank.
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Introduction

The advent of genome-wide association studies1 has catalyzed a huge number of discoveries link-

ing genetic markers to many human complex diseases and traits. For the most part these discoveries

have involved common variants that confer relatively small amounts of risk and only account for a

small proportion of the phenotypic variance of a trait2. This has led to a surge of interest in meth-

ods and applications that measure the joint contribution to phenotypic variance of all measured

variants throughout the genome (SNP heritability), and in testing individual variants within this

framework. Most notably the seminal paper of Yang et al. (2010), who used a linear mixed model

(LMM) to show that the majority of missing heritability for height could be explained by genetic

variation by common SNPs3. When testing variants for association these LMMs can reduce false

positive associations due to population structure, and improve power by implicitly conditioning

on other loci across the genome4–6. These methods model the unobserved polygenic contribution

as a multivariate Gaussian with covariance structure proportional to a genetic relationship matrix

(GRM) 7–9. This approach is mathematically equivalent to a whole genome regression (WGR)

model with a Gaussian prior over SNP effects 4.

Subsequent research has shown that the simplest LMMs make assumptions about the rela-

tionship between minor allele frequency (MAF), linkage disequilibrium (LD) and trait architecture

that may not hold up in practice10, 11 and generalisations have been proposed that stratify variance

into different components by MAF and LD10, 12, 13. Other flexible approaches have been proposed

in both the animal breeding14, 15 and human literature16–18 to allow different prior distributions that
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better capture SNPs of small and large effects. For example, a mixture of Gaussians (MoG) prior

can increase power to detect associated loci in some (but not all) complex traits6, 17. Other methods

have been proposed that estimate heritability only from summary statistics and LD reference pan-

els 19, 20. Heritability can also be estimated using Haseman-Elston regression 21 and has recently

been extended using a randomised approach 22 that has O(NM) computational complexity and

works for multiple variance components 23. Other recent work has shown that LMM approaches

such as these are not able to disentangle direct and indirect genetic effects, the balance of which

will vary depending on the trait being studied. 24.

There has been less exploration of methods for estimating heritability that account for gene-

environment interactions. One interesting approach has proposed using spatial location as a surro-

gate for environment25 using a three component LMM - one based on genomic variants, one based

on measured spatial location as a proxy for environmental effects, and a gene-environment com-

ponent, modeled as the Hadamard product of the genomic and spatial covariance matrices. Other

authors have used this method to account for gene-gene interactions 26, 27.

Modelling gene-environment interactions when many different environmental variables are

measured is a more challenging problem. If several environmental variables drive interactions

at individual loci, or if an unobserved environment that drives interactions is better reflected by

a combination of observed environments, it can make sense to include all variables in a joint

model. StructLMM28 focuses on detecting GxE interactions at individual markers, and models the

environmental similarity between individuals (over multiple environments) as a random effect, and
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then tests each SNP independently for GxE interactions. However this approach does not model

the genome wide contribution of all the markers, which is often a major component of phenotypic

variance.

We recently proposed a whole genome regression approach called LEMMA applicable to

large human datasets such as UK Biobank, where many potential environmental variables are

available29. The LEMMA regression model includes main effects of each genotyped SNP across

the genome, and also interactions of each SNP with a environmental score (ES), that is a linear

combination of the environmental variables. The ES is estimated as part of the method. The model

uses mixture of Gaussian (MoG) priors on main and GxE SNP effects, that allow for a range of

different genetic architectures from polygenic to sparse genetic effects16–18. The ES can be readily

interpreted and its main use is to test for GxE interactions one variant at a time, typically at a larger

set of imputed SNPs in the dataset. However, the ES can also be used to estimate the proportion of

phenotypic variability that is explained by GxE interactions (SNP GxE heritability), using a two

component randomised Haseman-Elston (RHE) regression 23.

The main contribution of this paper is to combine the estimation of the LEMMA ES into a stand-

alone RHE framework. This results in a non-linear optimization problem that we solve using

the Levenburg-Marquardt (LM) algorithm. The method implicitly assumes a Gaussian prior on

main effect and GxE effect sizes. We also propose a separate RHE method that estimates the

independent GxE contribution of each measured environmental variable. We set out the differences

between these two models and present a simulation study to compare them to LEMMA. We also
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apply the method to UK Biobank data and show that GPLEMMA produces estimates very close

to LEMMA. Software implementing the GPLEMMA algorithm in C++ is available at https:

//jmarchini.org/gplemma/.

Methods

Modeling SNP Heritability The simplest model for estimating SNP heritability has the form

y = Xβ + e, βl ∼ N(0,
σ2
g

M
), e ∼ N(0, σ2

e)

where y is a continuous phenotype, X is an N ×M matrix of genotypes that has been normalised

to have column mean zero and column variance one, and β is an M -vector of SNP effect sizes.

Integrating out β leads to the variance component model

y ∼ N (0, σ2
gK + σ2

eI),

where K = XXT

M
is known as the genomic relationship matrix (GRM)3. Estimating the two

parameters in this model σg and σe leads to an estimate of SNP heritability of h2 =
σ2
g

σ2
g+σ

2
e
. This

is commonly referred to in the literature as the single component model. Subsequent research

has shown that the single component model makes assumptions about the relationship between

minor allele frequency (MAF), linkage disequilibrium (LD) and trait architecture that may not

hold up in practice10, 11. There have been many follow up methods, including; generalizations that

stratify variance into different components by MAF and LD 13, approaches that assign different

weights for the GRM10, 12, methods that replace the Gaussian prior on β with a spike and slab on

SNP effect sizes 30 and methods that estimate heritability only from summary statistics and LD
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reference panels 20, 31.

Haseman-Elston (HE) regression An alternative method used to compute heritability is known

as HE-regression21. HE-regression is a method of moments (MoM) estimator that optimizes vari-

ance components (σ2
g , σ

2
e) in order to minimise the squared difference between the observed and

expected trait covariances. The MoM estimator (σ̂2
g , σ̂

2
e) can be obtained by solving the minimiza-

tion

argmin
σ2
g ,σ

2
e

||yyT − (σ2
gK + σ2

eI)||2F

or equivalently by solving the linear regression problem

vec
(
yyT
)

= σ2
gvec (K) + σ2

evec (I) + ε′

where vec (A) is the vectorization operator that transforms an N ×M matrix into an NM -vector.

In matrix format, both of these forms correspond to solving the following linear systemtr (K2) tr (K)

tr (K) N


σ2

β

σ2
e

 =

yTKy
yTy

 (1)

HE-regression methods are widely acknowledged to be more computationally efficient22, 32, 33 and

do not require any assumptions on the phenotype distribution beyond the covariance structure 32

(in contrast to maximum-likelihood estimators). However, HE-regression based estimates typically

have higher variance 33, thus implying that they have less power.

Recent method developments22, 23 have shown that a randomized HE-regression (RHE) approach

can be used to compute efficiently on genetic datasets with hundreds of thousands of samples.
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Wu et al. (2018) observed that Equation (1) can be solved efficiently without ever having to

explicitly compute the kinship matrix K by using Hutchinson’s estimator 34, which states that

tr (A) = E
[
zTAz

]
for any matrix where z is a random vector with mean zero and covariance

given by the identity matrix. The proposed method involves approximating tr (K) and tr (K2)

using only matrix vector multiplications with the genotype matrix X , to compute the following

expressions

tr (K) ≈ 1

B

1

M2

∑
b

||XT zb||22,

tr
(
K2
)
≈ 1

B

1

M2

∑
b

||XXT zb||22.

Thus an approximate solution can be obtained in O(NMB) time, where B denotes a relatively

small number of random samples. Subsequent work by extended this approach to a multiple com-

ponent model 23

y ∼ N (0,
∑
k

σ2
kKk + Iσ2

e)

With parameter estimates obtained as solution to the linear system given byT b

bT N


σ2

β

σ2
e

 =

 c

N

 (2)

where Tkl = tr (KkKl), bk = tr (Kk) and ck = yTKky. Finally both papers show how to efficiently

control for covariates by projecting them out of of all terms in the system of equations. Thus with

covariates included the multiple component model becomes

y ∼ N (Cα,
∑
k

σ2
kKk + Iσ2

e),

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.18.098459doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.18.098459
http://creativecommons.org/licenses/by/4.0/


and terms in the subsequent linear system are given by Tkl = tr (WKkWKlW ), bk = tr (WKkW )

and ck = yTWKkWy, where W = IN − CT (CTC)−1C.

Modeling GxE heritability We introduce two extensions of the RHE framework for modelling

GxE interactions with multiple environmental variables. In both models we let E be an N ×

L matrix of environmental variables, C is an N × D matrix of covariates, each with columns

normalised to have mean zero and variance one.

MEMMA

The first model assumes that each environmental variable interacts independently with the genome

y = Cα +Xβ +
∑
l

(El �X)λl + ε (3)

where β ∼ N (0,
σ2
β

M
IM), λl ∼ N (0,

σ2
wl

M
IM), ε ∼ N (0, σ2

eIN) andEl�X denotes the element-wise

product of El with each column of X . Integrating out β and λ leads to the variance component

model

y ∼ N

(
Cα,

L+2∑
k=1

θkKk

)
.

where θ = {σ2
β, (σ

2
wl

)Ll=1, σ
2
e}, Fk = Ek �X and

Kk =



XXT

M
if k = 1,

Fk−1F
T
k−1

M
if 1 < k ≤ L+ 1,

I if k = L+ 2,
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Fitting the variance components is done analytically by solving the system of equations Tθ = c

where Tkl = tr (WKkWKlW ), ck = yTWKkWy and W = IN −C(CTC)−1CT . As shown in the

original RHE method22, 23, Hutchinson’s estimator can be used to efficiently estimate Tkl. To do

this our software streams SNP markers from a file and computes yTWXXTWy and the following

N -vectors

ub = XXTWzb, (4)

vb,l = XXTElWzb, (5)

where zb ∼ N(0, IN)for 1 ≤ b ≤ B are random N -vectors. Then

Tkl =
1

M2B

∑
b

(ξkb )T ξkb .

where ξkb is defined as

ξkb =



ub if k = 1,

vb,l if 1 < k ≤ L+ 1,

zb if k = L+ 2.

Finally, the variance components are converted to heritability estimates using the following formula

ĥ2k =
θ̂ktr (Kk)∑
k θ̂ktr (Kk)

We call this approach MEMMA (Multiple Environment Mixed Model Analysis). MEMMA costs

O(NMLB) in compute and O(NLB) in RAM.
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GPLEMMA

The second model involves the estimating a linear combination of environments, or environmetal

score (ES), that interacts with the genome. The model is given by

y = Cα +Xβ + (η �X)γ + ε (6)

where η = Ew is the linear environmental score (ES), β ∼ N (0,
σ2
β

M
IM) and γ ∼ N (0,

σ2
γ

M
IM).

This is the same model used by LEMMA29 except the mixture of Gaussians priors on SNP ef-

fects (β and γ) have been replaced with Gaussian priors. For this reason we call this approach

GPLEMMA (Gaussian Prior Linear Environment Mixed Model Analysis). Integrating out the

SNP effects yields the model

y ∼ N (Cα, σ2
βK + σ2

γK2(w) + σ2
eI),

where K2(w) = diag (Ew)Kdiag (Ew) = 1
M

∑
l,mwlwmFlF

T
m and Fl = El � X . Minimizing

the squared loss between the expected and observed covariance is equivalent to the following

regression problem

vec
(
yyT
)

= σ2
βvec (K) +

∑
l,m

σ2
γwlwmvec

(
FlF

T
m

)
+ σ2

evec (I) + ε′. (7)

In this format it is clear that optimising σ2
β, σ

2
γ, w, σ

2
e is a non-linear regression problem. Further,

including a parameter for σ2
γ is no longer necessary. From here on we set w̃l =

√
σ2
γwl and drop

the .̃ parameterisation without loss of generality.
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Levenburg-Marquardt algorithm

We use the Levenburg-Marquardt (LM) algorithm35, which is commonly used for non-linear least

squares problems. The algorithm effectively interpolates between the Gauss-Newton algorithm

and the method of steepest gradient descent, by use of an adaptive damping parameter. In this

manner, it is more robust than the straight forward Gauss-Newton algorithm but should have faster

convergence than a gradient descent approach.

Without loss of generality, consider the model

Y = f(θ) + ε, (8)

where f(θ) is a function that is non-linear in the parameters θ. Given a starting point θ0, LM

proposes a new point θnew = θ0 + δ by solving the normal equations

(
J(θ0)

TJ(θ0) + µI
)
δ = J(θ0)

T ε(θ0), (9)

where J(θ0) = δf(θ0)
δθ0

and ε(θ0) = Y − f(θ0) are respectively the Jacobian and the residual vector

evaluated at θ0.

If θnew has lower squared error than θ0, then the step is accepted and the adaptive damping pa-

rameter µ is reduced. Otherwise, µ is increased and a new step δ is proposed. For small values

of µ Equation (9) approximates the quadratic step appropriate for a fully linear problem, whereas

for large values of µ Equation (9) behaves more like steepest gradient descent. This allows the

algorithm to defensively navigate regions of the parameter space where the model is highly non-
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linear. If θ+ δ reduces the squared error, then the step is accepted and µ is reduced, otherwise µ is

increased and a new step δ is proposed.

In summary the LM algorithm requires computation of the matrices J(θ)TJ(θ), J(θ)T ε(θ)

at each step, as well as the squared error (which we define as S(θ)). We now give statements of

the equations used to compute each of these values, and show that each iteration can be performed

in O(NL2B) time.

We apply the LM algorithm with θ = {σ2
β, w, σ

2
e}, Y = vec

(
yyT
)

and

f(θ) = σ2
βvec (K) +

∑
l,m

wlwmvec
(
FlF

T
m

)
+ σ2

evec (I) .

Several quantities can be pre-calculated and re-used in the LM algorithm. The N -vectors ub, vb,l,

and yTWXXTWy are needed and have been defined above. In addition, GPLEMMA also benefits

from the pre-calculation of

Hl,m = ET
l diag (Wy)XXTdiag (Wy)Em, 1 ≤ l,m ≤ L

which can also be computed as genotypes are streamed from file.

Let (JTJ)θi,θj denote the entry of the JTJ that corresponds to f(θ)
∂θi

T f(θ)
∂θi

for θi, θj ∈ {w, σ2
β, σe}

and define the N -vector vb(w) =
∑

l wlvb,l. Then the (L+ 2)× (L+ 2) matrix J(θ)TJ(θ) is given

12

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2020. ; https://doi.org/10.1101/2020.05.18.098459doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.18.098459
http://creativecommons.org/licenses/by/4.0/


by

(
JTJ

)
wl,wm

= tr (diag (η)Kdiag (El) diag (Em)Kdiag (η)) ,

=
1

M2B

∑
b

(
vb(w)Tdiag (El) diag (Em) vb(w)

)
,

(
JTJ

)
wl,σ

2
β

= tr (diag (η)Kdiag (El)K) =
1

M2B

∑
b

(
vb(w)Tdiag (El)ub

)
,

(
JTJ

)
σ2
β ,σ

2
β

= tr (KK) =
1

M2B

∑
b

||ub||22,

(
JTJ

)
σ2
β ,σ

2
e

= tr (K) =
1

M2B

∑
b

zTb Wub,

(
JTJ

)
wl,σ2

e
= tr (diag (η)Kdiag (El)) =

1

M2B

∑
b

zTb Wvb(w),

(
JTJ

)
σ2
e ,σ

2
e

= tr (W ) .

J(θ)T ε(θ) is given by

(
J(θ)T ε(θ)

)
σ2
β

= tr
(
yTWKWy

)
− J(θ)TJ(θ)σ2

β,(
J(θ)T ε(θ)

)
wl

= tr
(
yTWdiag (El)Kdiag (Ew)Wy

)
− J(θ)TJ(θ)wl,(

J(θ)T ε(θ)
)
σ2
e

= tr
(
yTWy

)
− J(θ)TJ(θ)σ2

e .

where

tr
(
yTWdiag (El)Kdiag (Ew)Wy

)
=
∑
m

Hl,m
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Finally the squared error, which we define as S(θ), is given by

S(σ2
β, w) = ||(yyT − Cov (y))||2F ,

= tr
(
(yyT − Cov (y))(yyT − Cov (y))

)
,

= tr
(
yyTyyT

)
− 2


σ2
β

1

σ2
e



T 
tr
(
yTKy

)
tr
(
yTK2(w)y

)
tr
(
yTy
)



+


σ2
β

1

σ2
e



T 
tr (KK) tr (KK2(w)) tr (K)

tr (KK2(w)) tr (K2(w)K2(w)) tr (K2(w))

tr (K) tr (K2(w)) N




σ2
β

1

σ2
e


where

tr (K2(w)K2(w)) ≈ 1

M2B

∑
b

||vb(w)||22

The initial preprocessing step has costsO(NMLB+NML2) in compute andO(NLB) in RAM.

The remaining algorithm does not require much RAM in addition to that required in the preprocess-

ing step, so also costsO(NLB) in RAM. Construction of the summary variable vb(w) =
∑

l wlvb,l

costs O(NLB) in compute. Each iteration of the LM algorithm costs O(NL2B).

It is possible to parallelise GPLEMMA using OpenMPI by partitioning samples across cores, in a

similar manner to that used by LEMMA 29. Given that evaluating the objective function S(σ2
β, w)

is characterised by BLAS level 1 array operations, a distributed algorithm using OpenMPI should

have superior runtime versus an the same algorithm using OpenMP as well as providing RAM

limited only by the size of a researchers compute cluster.
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We perform 10 repeats of the LM algorithm with different initialisations, and keep results from the

solution with lowest squared error S(θ̂). Each run is initialised with a vector of interaction weights

w̃, where each entry set to 1
L

and a small amount of Gaussian noise is added.

w̃ =
1

L
~1 +N (0,

2

L2
IL).

To transform the initial weights vector w̃ to the initial parameters θ0 we let (σ̂2
β, σ̂

2
γ, σ̂

2
e) be solutions

to

(σ̂2
β, σ̂

2
γ, σ̂

2
e) = min

σ2
β ,σ

2
γ ,σ

2
e

||yyT −
(
σ2
βK + σ2

γK2(w̃) + σ2
eI
)
||2F .

The GPLEMMA algorithm is then initialized with θ0 = (σ̂2
β, w, σ̂

2
e) where w = σγw̃.

Relationship between MEMMA and GPLEMMA

Comparing Equation (3) with Equation (6), suggests that the GPLEMMA model can be expressed

at the MEMMA model with the added constraint that

Λ = wγT

where Λ = {λ1, . . . , λM} is the L×M matrix of GxE effect sizes in MEMMA for the L environ-

ments and M SNPs.

We can expect the two models to give similar heritability estimates, under the simplifying assump-

tions that GxE interactions do occur with a single linear combination of the environments and

that the set of random variables {g, (El � g)Ll=1} is mutually independent. Let g ∼ N (0, K) and
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ε ∼ N (0, σ2
eI). Then connection between the two models is revealed by observing

y = N (Cα, σ2
βK + σ2

γK2(w) + σ2
eI),

= σβg +

(
σγ
∑
l

wlEl

)
� g + ε,

= σβg +
∑
l

σwlEl � g + ε,

= N

(
0, σ2

βK +
∑
l

σ2
wl
El �K � ET

l + σ2
eI

)
,

where σ2
wl

= σ2
γw

2
l . Thus we should expect both models to have the same estimate for the propor-

tion of variance explained by GxE interaction effects.

Even in that case that MEMMA and GPLEMMA have the same expected heritability estimate,

there are still some differences between the two. GPLEMMA is a constrained model, so the vari-

ance of its heritabiity estimates may be smaller. Further, although σ̂2
wl

is proportional to the square

of the weights used to construct the ES the sign of the interaction weight wl has been lost. Thus it

is not possible to reconstruct an ES for use in single SNP testing using MEMMA.

Results

Simulated data We carried out a simulation study to assess the relative properties of MEMMA

and GPLEMMA. In addition, we compared to running the whole genome regression model in

LEMMA, which estimates an ES and then uses it to estimate the GxE heritability.

The simulations use real data subsampled from genotyped SNPs in the UK Biobank36, drawing
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SNPs from all 22 chromosomes in proportion to chromosome length and using unrelated samples

of mixed ancestry (N = 25k; 12500 white British, 7500 Irish and 5000 white European, N = 50k;

29567 white British, 7500 Irish and 12568white European, N = 100k; 79567 white British, 7500

Irish and 12568 white European; using self-reported ancestry in field f.21000.0.0). All samples

were genotyped using the UKBB genotype chip and were included in the internal principal com-

ponent analysis performed by the UK Biobank. Environmental variables were simulated from a

standard Gaussian distribution.

Phenotypes for the baseline simulations were all simulated according to the LEMMA model 29.

Let N be the number of individuals, M the total number of SNPs, Mg the number of causal main

effect SNPs, MGxE the number of SNPs with GxE effects, L the total number of environmental

variables, Lactive the number of ’active’ environments with non-zero contribution to the ES vector

w, and h2g and h2GxE the herirtability of main effects and GxE effects. The model used to simulate

data is

y = Cα +Xβ + (η �X)γ + ε,

η = Ew,

ε ∼ N (0, I),

where X represents the N × M genotype matrix after columns have been standardised to have

mean zero and variance one, C is the first principle component of the genotype matrix and E is the

N ×L matrix of environmental variables. In all simulations α was set such that Cα explained one

percent of trait variance.
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Non-zero elements of the interaction weight vector w were drawn from a decreasing sequence

wi =


(−1)i(1− i

2Lactive ) i ≤ Lactive,

0 o/w.

The effect size parameters β and γ were simulated from a spike and slab prior such that the number

of non-zero elements was governed by Mg and MGxE for main and interaction effects respectively.

Non-zero elements were drawn from a standard Gaussian, and then subsequently rescaled to en-

sure that the heritability given by main and interaction effects was h2g and h2GxE respectively. We

chose a set of baseline parameter choices : N = 25K;M = 100K;L = 30;Lactive = 6,Mg =

2500;MGxE = 1250;h2g = 20%;h2GxE = 5%, and then varied one parameter at a time to ex-

amine the effects of sample size, number of environments, number of non-zero SNP effects and

GxE heritability. In addition, we investigated performance using a larger baseline simulation with

N = 100K samples and M = 300K variants. The first genetic principal component was provided

as a covariate to all methods.

Figure 1 compares estimates of the percentage variance explained (PVE) by GxE effects from

all three methods. In general, all methods had upwards bias that decreased with sample size

and increased with the number of environments. While heritability estimates from LEMMA and

GPLEMMA appeared quite similar, estimates from MEMMA had much higher variance and also

appeared to have higher upwards bias as the total number of environments increase. All the meth-

ods exhibited less bias in the larger simulations with N = 100K samples and M = 300K variants

(Figure 1 (e-g)).
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Figure 2 compares the absolute correlation between the simulated ES and the ES inferred by

LEMMA and GPLEMMA. Models like MEMMA do not provide an estimate of the ES. In general,

the estimated ES from GPLEMMA had slightly lower absolute correlation with the true ES than

the estimated ES from LEMMA, likely due to the data having been simulated from the LEMMA

model, with sparse main and GxE SNP effects, whereas the GPLEMMA model assumes a poly-

genic or infinitesimal model. In large sample sizes (N = 100k), both methods achieve a correlation

of over 0.98 with the simulated ES.

Figure 3 compares MEMMA, GPLEMMA and LEMMA in a simulation where the functional

form of a heritable environmental variable was misspecified (or more specifically; the phenotype

depended on the squared effect of a heritable environment). All methods were first tested without

any attempt to control for model misspecification, and second using a preprocessing strategy where

each environment was tested independently for squared effects on the phenotype and any squared

effects with p-value < 0.01/L were included as covariates. These are referred to as (-SQE) and

(+SQE) respectively in the figures. Using the (-SQE) strategy, all methods showed upwards bias in

estimates of GxE heritability that increased with the strength of the squared effect on the phenotype

(Figure 3b). Model misspecification also caused bias in the ES of both GPLEMMA and LEMMA,

however bias in the ES from GPLEMMA appeared to be much worse (Figure 3a). Using the

(+SQE) strategy, all GxE heritability estimates were unbiased, consistent with earlier simulation

results.

Figure 4 displays simulation results on the computational complexity of GPLEMMA. Figures 4a
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Figure 1: PVE estimation. Estimates of the proportion of variance explained by GxE effects by

LEMMA, MEMMA and GPLEMMA on baseline simulations with using N = 25K samples and

M = 100K variants, whilst varying sample size (a), the number of environments (b), the number

of non-zero SNP effects (c) and GxE heritability (d). Panels (e-g) shows results of simulations

with N = 100K samples and M = 300K variants, whilst varying the number of environments

(e), the number of non-zero SNP effects (f) and GxE heritability (g).

and 4b show that GPLEMMA achieved perfect strong scaling1 on the range of cores tested. This

suggests that GPLEMMA has superior scalability to LEMMA, as for LEMMA the speedup due to

increased cores began to decay after the number of samples per core dropped below 3000 29.

1A parallel algorithm has perfect strong scaling if the runtime on T processors is linear in 1
T , including communi-

cation costs.
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Figure 2: Comparison on baseline simulations. Absolute correlation between the true ES and the

ES inferred by LEMMA and GPLEMMA whilst varying the number of environments, the number

of active environments, the number of non-zero SNP effects and GxE heritability. The top row

contains simulations using N = 25K samples and M = 100K variants, the bottom row containhs

simulations using N = 100K samples and M = 300K variants. Results from 15 repeats shown.

Time to compute the preprocessing step and solve the non-linear least squared problem are shown

in Figures 4c to 4f, while the number of environments and sample size were varied. As expected,

the preprocessing step appeared to be linear in both the number of environments and sample size.

Time to solve the non-linear least squares problem appeared to be quadratic in the number of

environments and approximately linear in sample size N . As a single LM iteration should have

complexity O(NL2B), this suggests that the number of iterations required for convergence of the
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Figure 3: Comparison on simulations with a misspecified heritable environment Estimated

proportion of trait variance explained by GxE effects is shown on the left, absolute correlation be-

tween the inferred ES and the true ES shown in the right. Results shown using LEMMA, MEMMA

and GPLEMMA. Phenotypes simulated with a squared effect from a heritable confounder (see ??).

Results from 20 repeats shown. Abbreviations; (-SQE), no attempt to control for squared effects;

(+SQE), squared effects with p < 0.01 (Bonferroni correction for multiple envs) included as co-

variates

LM algorithm was independent of sample size and the number of environments (at least for the

range of values tested).

Finally, to give a direct comparison between LEMMA and GPLEMMA, we ran each method on

simulated data with N = 100k samples, M = 100k SNPs and L = 30 environmental variables

using 4 cores for each run. Over 20 repeats, LEMMA took an average of 648 minutes to run

whereas GPLEMMA took an average of 233 minutes.

Analysis of UK Biobank data To compare GPLEMMA and LEMMA on real data we ran both

methods on body mass index (log BMI), systolic blood pressure (SBP), diastolic blood pressure
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Figure 4: Computational complexity of GPLEMMA in simulation. Strong scaling of

GPLEMMA using OpenMPI to parrallelise across cores with (a) N = 25k samples and (b)

N = 50k samples. Comparison of the runtime of the Levenburg-Marquardt algorithm (c, d) and

runtime of the preprocessing step (e, f). By default each run used; four cores, N = 25k samples,

L = 30 environments and 10 random starts of the Levenburg-Marquardt algorithm. Results from

15 repeats shown.

(DBP) and pulse pressure (PP) measured on individuals from the UK Biobank. We filtered the

SNP genotype data based on minor allele frequency (≥ 0.01) and IMPUTE info score (≥ 0.3),

leaving approximately 642,000 variants per trait. We used 42 environmental variables from the

UK Biobank, similar to those used in previous GxE analyses of BMI in the UK Biobank 28, 37.

After filtering on ancestry and relatedness, sub-setting down to individuals who had complete

data across the phenotype, covariates and environmental factors we were left with approximately

280, 000 samples per trait. The sample, SNP and covariate processing and filtering applied is the

same as that reported in the LEMMA paper29.
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Table 1 shows the estimates and standard errors for SNP main effects (h2G) and GxE effects

(h2GxE) for GPLEMMA and LEMMA applied to the 4 traits. In all cases there is good agreements

between the estimates from both methods.

Trait h2G (s.e) h2GxE (s.e)

GPLEMMA LEMMA GPLEMMA LEMMA

log BMI 0.256 (0.078) 0.259 (0.069) 0.074 (0.008) 0.071 (0.009)

PP 0.230 (0.042) 0.233 (0.039) 0.063 (0.007) 0.075 (0.018)

SBP 0.237 (0.057) 0.240 (0.053) 0.036 (0.003) 0.033 (0.003)

DBP 0.273 (0.037) 0.277 (0.034) 0.021 (0.003) 0.014 (0.001)

Table 1: Comparison of GPLEMMA and LEMMA on 4 UK Biobank traits. Heritability

estimates obtained using genotyped SNPs.

Discussion

Primarily this paper develops a novel randomized Haseman-Elston non-linear regression approach

for modelling GxE interactions in large genetic studies with multiple environmental variables.

This approach estimates GxE heritability at the same time as estimating the linear combination

of environmental variables (called an ES) that underly that heritability. This general idea was

pioneered in our previous approach LEMMA 29 which used a whole-genome regression approach

to learn the ES, and this was then used in a randomized Haseman-Elston approach to estimate GxE

heritability. The GPLEMMA approach introduced in this paper does not need that first whole-
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genome regression step, and this leads to substantial computational savings. The model underlying

GPLEMMA is very similar to that in LEMMA, but implicity assumes a Gaussian distribution for

main SNP effects and GxE effects at each SNP.

We compared GPLEMMA to a simpler approach, which we called MEMMA, that estimates

GxE heritability of each environmental variable in a joint model, but does not attempt to find the

best linear combination of them. We found that estimates of GxE heritability from MEMMA

had higher variance than estimates from LEMMA and GPLEMMA, suggesting that the usefulness

of MEMMA might be limited. Results from LEMMA and GPLEMMA were very similar, both

in terms of estimating the ES and GxE heritability. The primary advantage of GPLEMMA over

LEMMA is in computational complexity, as the empirical complexity of GPLEMMA appeared to

be linear in sample size whereas LEMMA was shown to be super-linear 29.

In the future it may also be interesting to explore the idea of further partitioning variance using

multiple orthogonal linear combinations of environmental variables. This could be expressed using

the model

y = Cα +Xβ +
J∑
j=1

(ηj �X)γj + ε (10)

where ηj = Ewj is an N-vector, wj is an L-vector and wj ⊥⊥ wk∀j, k ∈ {1, . . . , J}.

LEMMA is also able to perform single SNP hypothesis testing whereas GPLEMMA (currently)

does not. The linear weighting parameter w from GPLEMMA could be used to initialize LEMMA,

or the estimated ES could be used as a single environmental variable in LEMMA. Exploring these,
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and other, approaches is future work.
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