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Modification of forests by people means only 40% of remaining forests have 1 

high ecosystem integrity 2 

 3 

Authors: Grantham, H.S.1*, Duncan, A.1, Evans, T. D.1, Jones, K.1, Beyer, H.2, Schuster, R.3, 4 

Walston, J.1, Ray, J.1, Robinson, J.1, Callow, M.1, Clements, T.1, Costa, H.M.1, DeGemmis, A.1, 5 

Elsen, P.R.1, Ervin, J.4, Franco, P.1, Goldman, E.5, Goetz, S.6, Hansen, A.7, Hofsvang, E.8, Jantz, 6 

P. 6, Jupiter, S. 1, Kang, A.1, Langhammer, P.9,10, Laurance, W.F.11, Lieberman, S., Linkie, M.1, 7 

Malhi, Y.12, Maxwell, S.13, Mendez, M.1, Mittermeier, R.9, Murray, N.11, Possingham, H.2,14, 8 

Radachowsky, J.1, Samper, C.1, Silverman, J.1, Shapiro, A.15, Strassburg, B.17, Stevens, T.1, 9 

Stokes, E.1, Taylor, R.5, Tear, T.1, Tizard, R.1, Venter, O. 16, Visconti, P.18, Wang, S.1, Watson, 10 

J.E.M.1,13 11 

 12 

 13 

Affiliations  14 

1Wildlife Conservation Society, Global Conservation Program, Bronx, New York, 10460 USA. 15 

2School of Biological Sciences, University of Queensland, St. Lucia, Queensland, Australia 16 

3Department of Biology, 1125 Colonel By Drive, Carleton University, Ottawa ON, K1S 5B6 17 

Canada.  18 

4United Nations Development Programme, One United Nations Plaza, New York, NY, 10017, 19 

USA 20 

5World Resources Institute, Washington, DC, USA. 21 

6Global Earth Observation & Dynamics of Ecosystems Lab, School of Informatics, Computing, 22 

and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2020. ; https://doi.org/10.1101/2020.03.05.978858doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.978858
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 2 of 57 
 
 

7Landscape Biodiversity Lab, Ecology Department, Montana State University, Bozeman, MT, 24 

59717, USA 25 

8 Rainforest Foundation Norway, Mariboes gate 8, 0183 Oslo 26 

9Global Wildlife Conservation, P.O. Box 129, Austin, Texas 78767, USA 27 

10School of Life Sciences, Arizona State University, P.O. Box 874501, Tempe, Arizona 85287, 28 

USA 29 

11Centre for Tropical Environmental and Sustainability Science, College of Science and 30 

Engineering, James Cook University, Cairns, QLD 4878, Australia 31 

12Environmental Change Institute, School of Geography and the Environment, University of 32 

Oxford, Oxford, United Kingdom 33 

13School of Earth and Environmental Sciences, University of Queensland, Brisbane, Australia 34 

14The Nature Conservancy, Arlington, VA, USA 35 

15World Wide Fund for Nature Germany, Space+Science 36 

16Natural Resource and Environmental Studies Institute, University of Northern British Columbia, 37 

Prince George, Canada 38 

17International Institute of Sustainability, Rio de Janeiro, 22460-320, Brazil 39 

18International Institute for Applied Systems Analysis, Laxenburg, Austria 40 

 41 

*hgrantham@wcs.org 42 

 43 

Abstract: Many global environmental agendas, including halting biodiversity loss, reversing land 44 

degradation, and limiting climate change, depend upon retaining forests with high ecological 45 

integrity, yet the scale and degree of forest modification remains poorly quantified and mapped. 46 

By integrating data on observed and inferred human pressures and an index of lost connectivity, 47 

we generate the first globally-consistent, continuous index of forest condition as determined by 48 
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degree of anthropogenic modification. Globally, only 17.4 million km2 of forest (40.5%) have 49 

high landscape level integrity (mostly found in Canada, Russia, the Amazon, Central Africa and 50 

New Guinea) and only 27% of this area is found in nationally-designated protected areas. Of the 51 

forest in protected areas, only 56% has high landscape level integrity. Ambitious policies that 52 

prioritize the retention of forest integrity, especially in the most intact areas, are now urgently 53 

needed alongside current efforts aimed at halting deforestation and restoring the integrity of 54 

forests globally. 55 

 56 

MAIN TEXT 57 

 58 

Introduction 59 

 60 

Deforestation is a major environmental issue 1, but far less attention has been given to the degree 61 

of anthropogenic modification of remaining forests, which reduces ecosystem integrity and 62 

diminishes many of the benefits that these forests provide 2,3. This is worrying since modification 63 

is potentially as significant as outright forest loss in determining overall environmental outcomes 64 

4. There is increasing recognition of this issue, for forests and other ecosystems, in synthesis 65 

reports by global science bodies e.g. 5, and it is now essential that the scientific community 66 

develop improved tools and data to facilitate the consideration of levels of integrity in decision-67 

making. Mapping and monitoring this globally will provide essential information for coordinated 68 

global, national and local policy-making, planning and action, to help nations and other 69 

stakeholders achieve the Sustainable Development Goals (SDGs) and implement other shared 70 

commitments such as the United Nations Convention on Biological Diversity (CBD), Convention 71 

to Combat Desertification (UNCCD), and Framework Convention on Climate Change 72 

(UNFCCC).  73 
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 74 

Ecosystem integrity is foundational to all three of the Rio Conventions (UNFCCC, UNCCD, 75 

CBD ). As defined by Parrish et al. 6, it is essentially the degree to which a system is free from 76 

anthropogenic modification of its structure, composition and function. Such modification causes 77 

the reduction of many ecosystem benefits, and is often also a precursor to outright deforestation 78 

7,8. Forests largely free of significant modification (i.e. forests having high ecosystem integrity), 79 

typically provide higher levels of many forest benefits than modified forests of the same type 9, 80 

including; carbon sequestration and storage 10, healthy watersheds 11, traditional homelands for 81 

imperiled cultures 12, contribution to local and regional climate processes 13, and forest-dependent 82 

biodiversity 14-17. Industrial-scale logging, fragmentation by infrastructure, farming (including 83 

cropping and ranching) and urbanization, as well as less visible forms of modification such as 84 

over-hunting, wood fuel extraction and changed fire or hydrological regimes 18,19, all degrade the 85 

degree to which forests still support these benefits, as well as their long-term resilience to climate 86 

change 9. There can be trade-offs however, between the benefits best provided by less-modified 87 

forests (e.g., regulatory functions such as carbon sequestration) and those production services that 88 

require some modification (e.g., timber production). These trade-offs can, at times, result in 89 

disagreement among stakeholders as to which forest benefits should be prioritized 20. 90 

 91 

In recent years, easily accessible satellite imagery and new analytical approaches have 92 

dramatically improved our ability to map and monitor forest extent globally 21-23. However, while 93 

progress has been made in developing tools for assessment of global forest losses and gains, 94 

consistent monitoring of the degree of forest modification has proved elusive 24,25. 95 

Technical challenges include the detection of low intensity and unevenly distributed forest 96 

modification, the wide diversity of changes that comprise forest modification, and the fact that 97 

many changes are concealed by the forest canopy 24. New approaches are emerging on relevant 98 
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forest indicators, such as canopy height, canopy cover and fragmentation, and maps of different 99 

human pressures, which are used as proxies for impacts on forests e.g., 26,27,28. Some binary 100 

measures of forest modification, such as Intact Forest Landscapes 29 and wilderness areas 30, have 101 

also been mapped at the global scale and used to inform policy, but do not resolve the degree of 102 

modification within remaining forests, which we aimed to do with this assessment.  103 

 104 

Human activities influence the integrity of forests at multiple spatial scales, including intense, 105 

localized modifications such as road-building and canopy loss, more diffuse forms of change that 106 

are often spatially associated with these localized pressures (e.g. increased accessibility for 107 

hunting, other exploitation, and selective logging), and changes in spatial configuration that alter 108 

landscape-level connectivity. Previous studies have quantified several of these aspects 109 

individually e.g. 26,27,28, but there is a need to integrate them to measure and map the overall 110 

degree of modification considering these landscape-level anthropogenic influences at each site. 111 

Here, we integrate data on forest extent defined as all woody vegetation taller than 5 m, following 112 

22, ‘observed’ human pressures (e.g. infrastructure) which can be directly mapped using current 113 

datasets, other ‘inferred’ human pressures (e.g. collection of forest materials) that occur in 114 

association with those that are observed but cannot be mapped directly, and alterations in forest 115 

connectivity, to create the “Forest Landscape Integrity Index” (FLII), that describes the degree of 116 

forest modification for the beginning of 2019 (Fig. 1). The result is the first globally applicable, 117 

continuous-measure map of landscape level forest integrity (hereafter, integrity), which offers a 118 

timely indicator of the status and management needs of Earth’s remaining forests, as well as a 119 

flexible methodological framework (Fig. 1) for measuring changes in forest integrity that can be 120 

adapted for more detailed analysis at national or subnational scales.  121 

 122 

Results  123 
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 124 

Forest modification caused by human activity is both highly pervasive and highly variable across 125 

the globe (Fig. 2). We found 31.2% of forests worldwide are experiencing some form of 126 

‘observed’ human pressure. Our models also inferred the likely occurrence of other pressures, and 127 

the impacts of lost connectivity, in almost every forest location (91.2% of forests), albeit 128 

sometimes at very low levels. Diverse, recognizable patterns of forest integrity can be observed in 129 

our maps at a range of scales, depending on the principal forms and general intensity of human 130 

activity in an area. Broad regional trends can be readily observed, for example the overall gradient 131 

of decreasing human impact moving northwards through eastern North America (Fig. 2), and 132 

finer patterns of impact are also clearly evident, down to the scale of individual protected areas, 133 

forest concessions, settlements and roads (Fig. S2).  134 

 135 

FLII scores range from 0 (lowest integrity) to 10 (highest). We discretized this range to define 136 

three broad illustrative categories: low (≤6.0); medium (>6.0 and <9.6); and high integrity (≥9.6) 137 

by benchmarking against reference locations worldwide (see Methods).  Only 40.5% (17.4 138 

million km2) of forest was classified as having high integrity (Fig. 3; Table 1). Moreover, even in 139 

this category of high integrity (36%) still showed at least a small degree of human modification. 140 

The remaining 59% (25.6 million km2) of forest was classified as having low or medium integrity, 141 

including 25.6% (11 million km2) with low integrity (Fig. 3; Table 1). When we analyzed across 142 

biogeographical realms defined by 31 not a single biogeographical realm of the world had more 143 

than half of its forests in the high category (Fig. 3; Table 1).  144 

 145 

The biogeographical realms with the largest area of forest with high integrity are the Paleartic, 146 

particularly northern Russia, and the Neartic, in northern Canada, and Alaska. There are also large 147 

areas of forest with high integrity in the Neotropics, concentrated in the Amazon region, including 148 
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within the Guianas (Fig. 3, Table 1). The Afrotropic realm has significant areas with high 149 

integrity, particularly within the humid forests of central Africa (e.g., in Republic of Congo and 150 

Gabon) and in some of the surrounding drier forest/woodland belts (e.g., in South Sudan, Angola 151 

and Mozambique) (Fig. 3). In tropical Asia, the largest tracts of forest with high integrity are in 152 

New Guinea. Smaller but still very significant tracts of forest with high integrity are also scattered 153 

elsewhere in each of the main forested regions, including parts of Sumatra, Borneo, Myanmar and 154 

other parts of the greater Mekong subregion, Madagascar, West Africa, Mesoamerica, the 155 

Atlantic forests of Brazil, southern Chile, the Rocky Mountains, northern Assam, the Pacific 156 

forests of Colombia, the Caucasus, and the Russian Far East (Fig. 3).  157 

 158 

Concentrations of forest with low integrity are found in many regions including west and central 159 

Europe, the south-eastern USA, island and mainland South-East Asia west of New Guinea, the 160 

Andes, much of China and India, the Albertine Rift, West Africa, Mesoamerica and the Atlantic 161 

Forests of Brazil (Fig. 3). The overall extent of forests with low integrity is greatest in the 162 

Paleartic realm, followed by the Neotropics, which are also those biogeographic realms with the 163 

largest forest cover (Table 1). The Indo-Malayan realm has the highest percentage with low 164 

integrity, followed by the Afrotropics (Fig. 3; Table 1).  165 

 166 

These patterns result in variation with forest integrity scores in ways that allow objective 167 

comparisons to be made between locations and at a resolution relevant for policy and 168 

management planning, such as at national and sub-national scales. The global average FLII score 169 

for all countries is 5.48, representing generally low forest integrity, and a quarter of forested 170 

countries have a national average score < 4. National mean scores vary widely, ranging from >9 171 

in Guyana, French Guiana, Gabon, Sudan and South Sudan to <3 in Sierra Leone and many west 172 
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European countries (see Fig 4. and Table S5 for full list of countries). Provinces and other sub-173 

national units vary even more widely (see Fig. S2 and Table S6)  174 

 175 

Over one-quarter (26.1%) of all forests with high integrity fall within protected areas, compared 176 

to just 13.1% of low and 18.5% of medium integrity forests respectively. For all forests that are 177 

found within nationally designated protected areas (around 20% of all forests globally), we found 178 

the proportions of low, medium and high integrity forests were 16.8%, 30.3%, and 52.8% 179 

respectively (Table 2). Within the different protected area categories, we typically found that 180 

there was more area within the high integrity category versus the medium and low except for 181 

Category V (protected landscape/seascape) (Table 2). However, with 47.1% of forests within 182 

protected areas having low to medium integrity overall, it is clear that forests considered 183 

‘protected’ are already often fairly modified (Table 2). Even though they are quite modified, some 184 

of these forests might still have high conservation importance, such as containing endangered 185 

species. 186 

 187 

Discussion 188 

 189 
By providing a transparent and defensible methodological framework, and by taking advantage of 190 

global data on forest extent, human drivers of forest modification, and changes in forest 191 

connectivity, our analysis paints a new, sobering picture of the extent of human impacts on the 192 

world’s forests. This analysis enables the changes that degrade many forest values (8) to be 193 

visualized in a new and compelling way and for policy makers and decision makers to see where 194 

forests that survive in good condition are found. By integrating data on multiple pressures that are 195 

known to modify forests, our analysis is the first to move global quantification beyond the use of 196 

simple categories, or solely using pressure indicators as proxies for integrity, to a more nuanced 197 

depiction of this issue as a continuum, recognising that not all existing forests are in the same 198 
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condition. Our analysis reveals that severe and extensive forest modification has occurred across 199 

all biogeographic regions of the world. Consequently, indices only using forest extent may 200 

inadequately capture the true impact of human activities on forests, and are insensitive to many 201 

drivers of forest modification and the resulting losses of forest benefits. 202 

 203 

A plan is clearly needed to put in place retention strategies for the remaining forests with high 204 

integrity, tailored towards the context in each country or jurisdiction and its different forest types 205 

32,33, because such areas are known to hold exceptional value. Avoiding the loss of integrity is a 206 

better strategy than aiming to restore forest condition after it is lost, because restoration is more 207 

costly, has a risk of failure , and is unlikely to lead to full recovery of benefits 5. For the forests 208 

with highest integrity to be retained they should ideally be mapped using nationally appropriate 209 

criteria by the countries that hold them, formally recognized, prioritized in spatial plans, and 210 

placed under effective management (e.g. protected areas and other effective conservation areas, 211 

lands under Indigenous control etc.). These forests must be protected from industrial development 212 

impacts that degrade them through sensible public and private sector policy that is effective at 213 

relevant scales 12,34. Our global assessment reveals where these places are found, and can be 214 

refined at more local scales where better data are available. 215 

 216 

Around a third of global forests had already been cleared by 2000 35, and we show that at least 217 

59% of what remains has low to medium integrity, with > 50% falling in these two broad 218 

categories in every biogeographical realm. These levels of human modification result partly from 219 

the large areas affected by relatively diffuse anthropogenic pressures whose presence is inferred 220 

near forest edges, and by lost connectivity.  We also map a surprising level of more localized, 221 

observed pressures, such as infrastructure and recent forest loss, which are seen in nearly a third 222 

of forested pixels worldwide.  223 
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 224 

Conservation strategies in these more heavily human-modified forests should focus on securing 225 

any remaining fragments of forests in good condition, proactively protecting those forests most 226 

vulnerable to further modification 7 and planning where restoration efforts might be most 227 

effective 36-38.  In addition, effective management of production forests is needed to sustain yields 228 

without further worsening their ecological integrity 39. More research is required on how to 229 

prioritize, manage, and restore forests with low to medium integrity 38,40, and the FLII presented 230 

here might prove useful for this, for example, by helping prioritize where the best returns on 231 

investment are, in combination with other sources of data 41.  232 

 233 

Loss of forest integrity severely compromises many benefits of forests that are central to 234 

achieving multiple Sustainable Development Goals and other societal targets 42,43. Therefore, 235 

governments must adopt policies and strategies to retain and restore the ecological integrity of 236 

their forests, whilst ensuring that the solutions are also economically viable, socially equitable, 237 

and politically acceptable within complex and highly diverse local contexts. This is an enormous 238 

challenge and our efforts to map the degree of forest modification are designed both to raise 239 

awareness of the importance of the issue, and to support implementation through target setting, 240 

evidence-based planning, and enhanced monitoring efforts. 241 

 242 

Whilst policy targets for halting deforestation are generally precise and ambitious, only vague 243 

targets are typically stipulated around reducing levels of forest modification 9,44. We urgently 244 

need SMART (specific, measurable, achievable, realistic, and time-bound) goals and targets for 245 

maintaining and restoring forest integrity that directly feed into higher-level biodiversity, climate, 246 

land degradation, and sustainable development goals 45. These types of targets should be included 247 

within an over-arching target on ecosystems within the post-2020 Global Biodiversity 248 
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Framework, which is currently being negotiated among Parties to the CBD 46. This target should 249 

be outcome-focused and address both the extent and the integrity of ecosystems (e.g. using FLII 250 

for forests), in a way that enables quantitative, measurable goals to be set but allows flexibility for 251 

implementation between Parties.   252 

 253 

In addition to broader goals in global frameworks, the retention and restoration of forest integrity 254 

should also be addressed in nationally-defined goals embodied in, and aligned between, 255 

Nationally Determined Contributions under the UNFCCC, efforts to stop land degradation and 256 

achieve land degradation neutrality under the UNCCD, and National Biodiversity Strategy and 257 

Action Plans under the CBD. Since no single metric can capture all aspects of a country’s 258 

environmental values, efforts to conserve high levels of forest integrity should be complemented 259 

by consideration of areas support important values according to other measures (e.g. Key 260 

Biodiversity Areas 47 and notable socio-cultural landscapes). 261 

 262 

The overall level and pervasiveness of impacts on Earth’s remaining forests is likely even more 263 

severe than our findings suggest, because some input data layers, despite being the most 264 

comprehensive available, are still incomplete as there are lags between increases in human 265 

pressures and our ability to capture them in spatial datasets e.g., infrastructure, 48,49, see also Fig. S1 and 266 

text S5. For example, roads and seismic lines used for natural resource exploration and extraction in 267 

British Columbia, Canada, are not yet fully reflected in global geospatial datasets Fig. S1; see also 268 

50.  Furthermore, because natural fires are such an important part of the ecology of many forest 269 

systems (e.g. boreal forests) and because we cannot consistently identify anthropogenic fires from 270 

natural fires at a global scales 51 we have taken a strongly conservative approach to fire in our 271 

calculations, treating all tree cover loss in 10 km pixels where fire was the dominant driver (23) as 272 

temporary, and not treating such canopy loss as evidence of observed human pressure. Varying 273 
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these assumptions where human activity is shown to be causing permanent tree cover losses, 274 

increasing fire return frequencies, or causing fire in previously fire-free systems would result in 275 

lower forest extent and/or lower forest integrity scores in some regions than we report.  276 

 277 

We map forest integrity based on quantifiable processes over the recent past (since 2000). In 278 

some areas modification that occurred prior to this (e.g. historical logging) is not detectable by 279 

our methods but may have influenced the present-day integrity of the forest so, in such cases, we 280 

may overestimate forest integrity. This is another reason why our index should be considered as 281 

conservative, and we therefore recommend that the index be used alongside other lines of 282 

evidence to determine the absolute level of ecological integrity of a given area. Moreover, the 283 

definition of forest in this study is all woody vegetation taller than 5 m, following 22 and hence 284 

includes not only naturally regenerated forests but also tree crops, planted forests, wooded 285 

agroforests and urban tree cover in some cases. Users should be mindful of this when interpreting 286 

the results, especially when observing areas with low forest integrity scores. Inspection of the 287 

results for selected countries with reliable plantation maps 52 shows that the great majority of 288 

planted forests have low forest integrity scores, because they are invariably associated with dense 289 

infrastructure, frequent canopy replacement and patches of farmland.  290 

 291 

We note our measure of forest integrity does not address past, current and future climate change. 292 

As climate change affects forest condition both directly and indirectly, this is a clear shortfall and 293 

needs research attention. The same is true for invasive species, as there is no globally coherent 294 

data on the range of those invasive species that degrade forest ecosystems, although this issue is 295 

indirectly addressed since the presence of many invasive species are likely spatially correlated 296 

with the human pressures that we use as drivers in our model 53. If global data became available it 297 

would also be valuable to incorporate governance effectiveness into our model, because there are 298 
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potentially contexts (e.g. well-managed protected areas and community lands, production forests 299 

under ‘sustainable forest management’) where the impacts associated with the human pressures 300 

we base our map on are at least partially ameliorated 39, and enhanced governance is also likely to 301 

be a significant component of some future strategies to maintain and enhance forest integrity.   302 

 303 

The framework we present has great potential to be tailored for use at smaller scales, ranging 304 

from regional to national and sub-national scales, and even to individual management units. 305 

Forest definitions and the relative weights of the global parameters we use can be adjusted to fit 306 

local contexts and, in many cases, better local data could be substituted, or additional variables 307 

incorporated. This would increase the precision of the index in representing local realities, and 308 

increase the degree of ownership amongst national and local stakeholders whose decisions are so 309 

important in determining forest management trajectories. 310 

 311 

Methods 312 

 313 

To produce our global Forest Landscape Integrity Index (FLII), we combined four sets of 314 

spatially explicit datasets representing: (i) forest extent 22; (ii) ‘observed’ pressure from high 315 

impact, localized human activities for which spatial datasets exist, specifically: infrastructure, 316 

agriculture, and recent deforestation 53; (iii) ‘inferred’ pressure associated with edge effects 54, and 317 

other diffuse processes, (e.g. activities such as hunting and selective logging) 55 modelled using 318 

proximity to observed pressures; and iv) anthropogenic changes in forest connectivity due to 319 

forest loss 56 see Table S1 for data sources. These datasets were combined to produce an index score for 320 

each forest pixel (300m), with the highest scores reflecting the highest forest integrity (Fig 1), and 321 

applied to forest extent for the start of 2019. We use globally consistent parameters for all 322 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2020. ; https://doi.org/10.1101/2020.03.05.978858doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.978858
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 14 of 57 
 
 

elements (i.e. parameters do not vary geographically). All calculations were conducted in Google 323 

Earth Engine (GEE) 57.  324 

 325 

Forest extent 326 

 327 

We derived a global forest extent map for 2019 by subtracting from the Global Tree Cover 328 

product for 2000 22 annual Tree Cover Loss 2001-2018, except for losses categorized by Curtis 329 

and colleagues 23 as those likely to be temporary in nature (i.e. those due to fire, shifting 330 

cultivation and rotational forestry). We applied a canopy threshold of 20% based on related 331 

studies e.g. 29,58 and resampled to 300m resolution and used this resolution as the basis for the rest 332 

of the analysis (see text S1 for further mapping methods).  333 

 334 

Observed human pressures 335 

 336 

We quantify observed human pressures (P) within a pixel as the weighted sum of impact of 337 

infrastructure (I; representing the combined effect of 41 types of infrastructure weighted by their 338 

estimated general relative impact on forests (Table S3), agriculture (A) weighted by crop intensity 339 

(indicated by irrigation levels), and recent deforestation over the past 18 years (H; excluding 340 

deforestation from fire, see Discussion). Specifically, for pixel i: 341 

 342 

Pi = exp(-β1Ii) + exp(-β2Ai) + exp(-β3Hi) 343 

 344 

whereby the values of β were selected so that the median of the non-zero values for each 345 

component was 0.75. This use of exponents is a way of scaling variables with non-commensurate 346 

units so that they can be combined numerically, while also ensuring that the measure of observed 347 
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pressure is sensitive to change (increase or decrease) in the magnitude of any of the three 348 

components, even at large values of I, A or H. This is an adaptation of the ‘Human Footprint’ 349 

methodology 53. See text S3 for further details. 350 

 351 

Inferred human pressures 352 

 353 

Inferred pressures are the diffuse effects of a set of processes for which directly observed datasets 354 

do not exist, that include microclimate and species interactions relating to the creation of forest 355 

edges 59 and a variety of intermittent or transient anthropogenic pressures such as: selective 356 

logging, fuelwood collection, hunting; spread of fires and invasive species, pollution, and 357 

livestock grazing 55,60,61.  We modelled the collective, cumulative impacts of these inferred effects 358 

through their spatial association with observed human pressure in nearby pixels, including a 359 

decline in effect intensity according to distance, and a partitioning into stronger short-range and 360 

weaker long-range effects. The inferred pressure (P’) on pixel i from source pixel j is:  361 

 362 

P’i,j  = Pj (wi,j + vi,j) 363 

 364 

where wi,j is the weighting given to the modification arising from short-range pressure, as a 365 

function of distance from the source pixel, and vi,j is the weighting given to the modification 366 

arising from long-range pressures. 367 

 368 

Short-range effects include most of the processes listed above, which together potentially affect 369 

most biophysical features of a forest, and predominate over shorter distances. In our model they 370 

decline exponentially, approach zero at 3 km, and are truncated to zero at 5 km (see text S4). 371 

 372 
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wi,j = α exp (-λ ´ di,j)  [for di,j ≤5 km] 373 

wi,j = 0    [for di,j >5 km] 374 

 375 

where α is a constant set to ensure that the sum of the weights across all pixels in range is 1.85 376 

(see below), λ is a decay constant set to a value of 1 (see 62 and other references in text S4) and di,j 377 

is the Euclidean distance between the centres of pixels i and j expressed in units of km.  378 

 379 

Long-range effects include over-exploitation of high socio-economic value animals and plants, 380 

changes to migration and ranging patterns, and scattered fire and pollution events. We modelled 381 

long-range effects at a uniform level at all distances below 6 km and they then decline linearly 382 

with distance, conservatively reaching zero at a radius of 12 km 55,63 and other references in text S4: 383 

 384 

vi,j = γ    [for di,j ≤6 km] 385 

vi,j = γ ´ (12-di,j)/6  [for 6 km < di,j ≤12 km] 386 

vi,j = 0   [for di,j >12 km] 387 

 388 

Where γ is a constant set to ensure that the sum of the weights across all pixels in range is 0.15 389 

and di,j is the Euclidean distance between the centres of pixels i and j, expressed in kilometres.  390 

 391 

The form of the weighting functions for short- and long-range effects and the sum of the weights 392 

(α+γ) were specified  based on a hypothetical reference scenario where a straight forest edge is 393 

adjacent to a large area with uniform human pressure, and ensuring that in this case total inferred 394 

pressure immediately inside the forest edge is equal to the pressure immediately outside, before 395 

declining with distance. γ is set to 0.15 to ensure that the long-range effects conservatively 396 

contribute no more than 5% to the final index in the same scenario, based on expert opinion and 397 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2020. ; https://doi.org/10.1101/2020.03.05.978858doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.978858
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 17 of 57 
 
 

supported e.g. Berzaghi et al. 64 regarding the approximate level of impact on values that would 398 

be affected by severe defaunation and other long-range effects. 399 

 400 

The aggregate effect from inferred pressures (P’) on pixel i from all n pixels within range (j=1 to 401 

j=n) is then the sum of these individual, normalized, distance-weighted pressures, i.e. 402 

 403 

P’i  = S[j=1….n] P’i,j 404 

 405 

Loss of forest connectivity 406 

 407 

Average connectivity of forest around a pixel was quantified using a method adapted from Beyer 408 

et al. 56. The connectivity Ci around pixel i surrounded by n other pixels within the maximum 409 

radius (numbered j=1, 2…n) is given by: 410 

 411 

Ci = S[j=1…n] (FjGi,j)  412 

 413 

where Fj is the forest extent is a binary variable indicating if forested (1) or not (0) and Gi,j is the 414 

weight assigned to the distance between pixels i and j. Gi,j uses a normalized Gaussian curve, 415 

with s = 20km  and distribution truncated to zero at 4s for computational convenience (see text 416 

S3). The large value of s captures landscape connectivity patterns operating at a broader scale 417 

than processes captured by other data layers. Ci ranges from 0 to 1 (Ci	∈ [0,1]). 418 

 419 

Current Configuration (CCi) of forest extent in pixel i was calculated using the final forest extent 420 

map and compared to the Potential Configuration (PC) of forest extent without extensive human 421 

modification, so that areas with naturally low connectivity, e.g. coasts and natural vegetation 422 
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mosaics, are not penalized. PC was calculated from a modified version of the map of Laestadius 423 

et al. 35 and resampled to 300 m resolution (see text S2 for details). Using these two measures, we 424 

calculated Lost Forest Configuration (LFC)  for every pixel as: 425 

 426 

LFCi =  1 - (CCi/PCi)   427 

 428 

Values of CCi/PCi  >1 are assigned a value of 1 to ensure that LFC is not sensitive to apparent 429 

increases in forest connectivity due to inaccuracy in estimated potential forest extent – low values 430 

represent least loss, high values greatest loss (LFCi	∈ [0,1]). 431 

 432 

Calculating the Forest Landscape Integrity Index 433 

 434 

The three constituent metrics, LFC, P and P’, all represent increasingly modified conditions the 435 

larger their values become. To calculate a forest integrity index in which larger values represent 436 

less degraded conditions we therefore subtract the sum of those components from a fixed large 437 

value (here, 3). Three was selected as our assessment indicates that values of LFC + P + P’ of 3 or 438 

more correspond to the most severely degraded areas. The metric is also rescaled to a convenient 439 

scale (0-10) by multiplying by an arbitrary constant (10/3). The FLII for forest pixel i is thus 440 

calculated as:  441 

 442 

FLIIi = [10/3] * (3- min(3, [Pi+P’i+ LFCi])) 443 

 444 

where FLIIi  ranges from 0 - 10, forest areas with no modification detectable using our methods 445 

scoring 10 and those with the most scoring 0.  446 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2020. ; https://doi.org/10.1101/2020.03.05.978858doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.978858
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 19 of 57 
 
 

 447 

Illustrative forest integrity classes  448 

 449 

Whilst a key strength of the index is its continuous nature, the results can also be categorized for a 450 

range of purposes. In this paper three illustrative classes were defined, mapped and summarized 451 

to give an overview of broad patterns of integrity in the world’s forests. The three categories were 452 

defined as follows.  453 

 454 

High Forest Integrity (scores ≥9.6) Interiors and natural edges of more or less unmodified 455 

naturally-regenerated (i.e. non-planted) forest ecosystems, comprised entirely or almost entirely 456 

of native species, occurring over large areas either as continuous blocks or natural mosaics with 457 

non-forest vegetation; typically little human use other than low intensity recreation or spiritual 458 

uses and/or low intensity extraction of plant and animal products and/or very sparse presence of 459 

infrastructure; key ecosystem functions such as carbon storage, biodiversity and watershed 460 

protection and resilience expected to be very close to natural levels (excluding any effects from 461 

climate change) although some declines possible in the most sensitive elements (e.g. some high 462 

value hunted species). 463 

 464 

Medium Forest Integrity (scores >6.0 but <9.6) Interiors and natural edges of naturally-465 

regenerated forest ecosystems in blocks smaller than their natural extent but large enough to have 466 

some core areas free from strong anthropogenic edge effects (e.g. set asides within forestry areas, 467 

fragmented protected areas), dominated by native species but substantially modified by humans 468 

through a diversity of processes that could include fragmentation, creation of edges and proximity 469 

to infrastructure, moderate or high levels of extraction of plant and animal products, significant 470 

timber removals, scattered stand-replacement events such as swidden and/or moderate changes to 471 
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fire and hydrological regimes; key ecosystem functions such as carbon storage, biodiversity, 472 

watershed protection and resilience expected to be somewhat below natural levels (excluding any 473 

effects from climate change). 474 

 475 

Low Forest Integrity (score ≤6.0): Diverse range of heavily modified and often internally 476 

fragmented ecosystems dominated by trees, including (i) naturally regenerated forests, either in 477 

the interior of blocks or at edges, that have experienced multiple strong human pressures, which 478 

may include frequent stand-replacing events, sufficient to greatly simplify the structure and 479 

species composition and possibly result in significant presence of non-native species, (ii) tree 480 

plantations and, (iii) agroforests; in all cases key ecosystem functions such as carbon storage, 481 

biodiversity, watershed protection and resilience expected to be well below natural levels 482 

(excluding any effects from climate change).  483 

 484 

The numerical category boundaries were derived by inspecting FLII scores for a wide selection of 485 

benchmark locations whose forest integrity according to the category definitions was known to 486 

the authors, see text S6 and Table S4.  487 

 488 

Protected areas analysis 489 

 490 

Data on protected area location, boundary, and year of inscription were obtained from the 491 

February 2018 World Database on Protected Areas 65. Following similar global studies e.g. 66, we 492 

extracted protected areas from the WDPA database by selecting those areas that have a status of 493 

“designated”, “inscribed”, or “established”, and were not designated as UNESCO Man and 494 

Biosphere Reserves. We included only protected areas with detailed geographic information in 495 

the database, excluding those represented as a point only. To assess integrity of protected forest, 496 
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we extracted all 300m forest pixels that were at least 50% covered by a formal protected area and 497 

measured the average FLII score.   498 

 499 
 500 
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Figures and Tables 733 

 734 

Table 1. A summary of the Forest Landscape Integrity Index scores for each biogeographic realm 735 

globally, measuring the mean score, in addition to the area and proportion of realm for each 736 

category of integrity. Scores are divided into three categories of integrity: high, medium and low. 737 

 738 

Table 2. A summary of the Forest Landscape Integrity Index scores for each type of protected 739 

area designation based on the IUCN Protected Areas categories measuring mean score, in 740 

addition  to the area and proportion of realm for each category of integrity. Scores are divided into 741 

three categories of integrity: high, medium and low. 742 

 743 

Figure 1. The Forest Landscape Integrity Index was constructed based on three main data inputs: 744 

1) observed pressures (infrastructure, agriculture, tree cover loss), 2) inferred pressure modelled 745 

based on proximity to the observed pressures, and 3) change in forest connectivity. 746 

 747 

Figure 2. A global map of Forest Landscape Integrity for 2019. Three regions are highlighted 748 

including A) USA, B) Equatorial Guinea C) Myanmar. For a) shows the edge of Smoky 749 

Mountains National Park in Tennessee b) shows a logging truck passing through some partially 750 

degraded forest along a newly constructed highway in Shan State, c) shows an intact mangrove 751 
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forest within Reserva Natural del Estuario del Muni, near the border with Gabon. The stars 752 

indicate approximately where the photos were taken (A2, B2 and C2). 753 

 754 

Figure 3. The Forest Landscape Integrity Index for 2019 categorized into three broad, illustrative 755 

classes and mapped for across each biogeographic realm (A – G). The size of the pie charts 756 

indicates the relative size of the forests within each realm (A - G), and H shows all the world’s 757 

forest combined. 758 

 759 

Figure 4. The Forest Landscape Integrity Index for 2019 categorized into three broad, illustrative 760 

classes for each major forested country in the world. (A) countries with a forest extent larger than 761 

1 million km2, and (B) countries with forest extent between 1 million km2 and 100,000 km2 of 762 

forest. The size of the bar represents the area of a country’s forests.  763 

 764 

 765 

 766 
  767 
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Table 1 768 
 769 

Biogeographic  
Realm 

Total 
forest  FLII High  

(9.6 - 10)   
Medium  
(6 – 9.6) 

 Low  
 (0 - 6) 

  Km2 Mean Km2 % of 
realm Km2 % of 

realm 

 
Km2 % of 

realm 

Afrotropic 7,362,740  7.34 2,450,953 33.3 2,903,483 39.4  2,008,304  27.3 

Australasia 1,711,684  8.05 656,701 38.4 753,188 44.0  301,796  17.6 

Indo-malayan 3,596,249  5.9 420,977 11.7 1,599,049 44.5  1,576,223  43.8 

Neotropic 10,271,519  7.81 4,579,406 44.6 3,122,706 30.4   2,569,407  25.0 

Oceania 23,389  7.66 5,279 22.6 14,331 61.3   3,780  16.2 

Palearctic 12,172,668  8 5,571,997 45.8 3,910,629 32.1   2,690,042  22.1 

Nearctic 7,794,117  7.84 3,716,855 47.7 2,257,518 29.0   1,819,744  23.3 

Total 42,932,367 7.76 17,402,170  14,560,903   10,969,294  

  770 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2020. ; https://doi.org/10.1101/2020.03.05.978858doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.978858
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
 
 

Page 29 of 57 
 
 

Table 2. 771 
  772 
 773 

774 

Protected Area  
Category 

Total 
forest FLII High 

(score 9.6 - 10)   
Medium 

(score 6 – 9.6) 
Low 

 (score 0 - 6) 

 Km2 Mean Km2 
% of 

protected 
area 

Km2 
% of 

protected 
area 

Km2 
% of 

protected 
area 

Ia (strict nature reserve) 439,082 9.27 304,329 69.31 106,703 24.3 28,049 6.39 

Ib (wilderness area) 367,330 9.22 240,453 65.46 102,096 27.79 24,780 6.75 

II (national park) 1,900 9.14 1,223,138 64.38 540,805 28.46 136,056 7.16 

III (natural monument or feature) 113,805 8.49 54,476 47.87 40,021 35.17 19,308 16.97 

IV (habitat/species management area) 838,707 8.69 432,828 51.61 268,027 31.96 137,850 16.44 

V (protected landscape/seascape) 840,919 6.4 224,491 26.7 295,769 35.17 320,658 38.13 
VI (Protected area with sustainable use of 
natural resources) 

1,472,278 9.21 1,026,169 69.7 344,617 23.41 101,491 6.89 

Not Applicable / Not Assigned / Not Reported 2,613,541 8.29 1,030,430 39.42 906,745 34.69 676,365 25.88 

All Protected Areas 8,585,661 8.55 4,536,314 52.83 2,694,784 30.34  1,444,562  16.82 
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Fig 1  775 

 776 
 777 
  778 
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Fig 2  779 
 780 

 781 
  782 
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Fig 3  783 
 784 

 785 
  786 
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Fig 4. 787 
 788 

 789 
 790 
  791 
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Supplementary Materials 792 

 793 

Text S1. Mapping forest extent  794 

 795 

We generated a preliminary base map of global forest extent for the start of 2019 at 30 m 796 

resolution by subtracting annual Tree Cover Loss 2001-2018 (with exceptions noted in the next 797 

paragraph) from the Global Tree Cover 2000 product 22 using a canopy cover threshold of 20%. 798 

This is one of the most widely used tree cover datasets globally, so it has been widely tested in 799 

many settings and its strengths and constraints are well understood. It has many advantages, 800 

including its high resolution, high accuracy, global coverage, annual time series and good 801 

prospects of sustainability in the coming years. The definition of forest in the source dataset is all 802 

woody vegetation taller than 5 m and hence includes naturally regenerated forests as well as tree 803 

crops, planted forests, wooded agroforests and urban tree cover. No globally consistent dataset 804 

was available that allowed natural and planted tree cover to be consistently distinguished in this 805 

study. Therefore, we should be mindful of the many differences between planted and natural tree 806 

cover (e.g.67). 807 

 808 

More than 70% of the tree cover loss shown by the Hansen et al. 22 products has been found to be 809 

in 10 km pixels where the dominant loss driver is temporary and so tree cover is expected to 810 

return above the forest definition threshold within a short period 23. It is important to take account 811 

of this issue as treating all such areas as permanent loss would severely under-estimate current 812 

forest cover in many regions. However, no global map of forest cover gain exists for the study 813 

period other than the 2000-2012 gain product from Hansen et al. 22, so we developed an 814 

alternative approach. When removing annual loss shown by the Global Tree Cover Loss product 815 

cited above we elected not to remove any loss that was in a 10 km pixel categorized by Curtis et 816 
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al. 23 as dominated by temporary loss under the categories of fire, shifting cultivation or rotational 817 

forestry. This resulted in the adjusted preliminary forest base map. The balance of evidence is that 818 

the great majority of such areas would have begun to regenerate and hence qualify as forest by 819 

our definition again by 2019 or soon after 23. The anthropogenically disturbed nature of many of 820 

these areas of temporary tree cover loss and recovery is reflected in scoring within the index, 821 

because temporary tree cover loss in the categories of shifting cultivation or rotational forestry is 822 

treated as an observed pressure. We do not treat tree cover loss through fire as an observed 823 

pressure, because fires are often part of natural processes, especially in the boreal zone. This 824 

makes our global index conservative as a measure of degradation in these zones, because in some 825 

locations fires are anthropogenic in nature.    826 

 827 

The adjusted preliminary base map was then resampled to a final base map for 2019 at 300m 828 

resolution using a pyramid-by-mode decision rule, with the resulting pixels simply classified as 829 

forest or non-forest based on a majority rule. The FLII was calculated for every forest pixel but 830 

not for non-forest pixels. GEE performs calculations in WGS84. Supplementary analyses outside 831 

GEE were applied using a Mollweide equal-area projection.  832 

 833 

Text S2. Mapping potential forest configuration  834 

 835 

Potential connectivity (PC) is calculated from an estimate of the potential extent of the forest zone 836 

taken from Laestadius et al. 35, treating areas below 25% crown cover (this was the nearest class 837 

to the threshold used in our tree cover dataset of 20%) as non-forest and resampling to 300 m 838 

resolution. To minimize false instances of lost connectivity and ensure measures of forest 839 

modification are conservative we masked from this data layer areas which we believe to include a 840 

significant proportion of naturally unforested land using selected land-cover categories in ESA 841 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2020. ; https://doi.org/10.1101/2020.03.05.978858doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.978858
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 36 of 57 
 
 

(68; see Table S1). Because these natural non-forest patches are shown in the Hansen et al. 22 842 

dataset but not Laestadius et al. 35, not excluding such classes would result in an inflated estimate 843 

of the loss of connectivity and hence the level of degradation. We have elected to remain 844 

conservative in our estimate of modification. 845 

 846 

Text S3. Mapping observed human pressure 847 

 848 

Several recent analyses have developed composite, multi-criteria indices of human pressure to 849 

provide assessments of ecosystem condition for the USA 69 or globally 26,70,71. Thompson et al. 72 850 

set out a framework specific to forest ecosystems that could indicate modification through a 851 

balanced mix of available pressure and state variables. We adapted the methodology of Venter et 852 

al. 26, informed by the other studies cited, to generate measures of (i) the modification of forest 853 

associated with observed human pressure from infrastructure, agriculture and deforestation and 854 

(ii) the more diffuse inferred modification effects (e.g. edge effects) whose presence is inferred 855 

from proximity to these focal areas of human activity. Edge effects resulting entirely from natural 856 

processes are excluded, because they do not represent modification by our definition, although, 857 

like many other natural factors, they do also have a role in determining ecosystem benefits. 858 

 859 

Infrastructure 860 

 861 

We generated the infrastructure (I’) data layer by rasterizing the OpenStreetMap data 73 from Feb 862 

2018, using weights for each type of infrastructure as noted in Table S3. The weights were 863 

derived from authors’ expert opinion and experimentation with weights according to their relative 864 

impact on forest condition.   865 

 866 
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Agriculture 867 

 868 

For agriculture (A’) we made a global binary composite of the croplands datasets produced by the 869 

USGS (Table 1) at 30 m resolution, and weighted each cropped pixel at this resolution by the 870 

likely intensity of cropping using the global irrigation dataset at 1km resolution (Teluguntla et al, 871 

74), with values of Irrigation Major = 2, Irrigation Minor = 1.5,  Rainfed = 1. The average 872 

cropping intensity (including uncropped areas, which score zero) was then calculated across the 873 

whole of each 300 m pixel of our final basemap. 874 

 875 

Deforestation 876 

 877 

For deforestation (H’) we made a binary composite of tree cover loss 2001-2018 at 30 m 878 

resolution 22, masked out 30 m pixels already classified as agriculture in the preceding step to 879 

avoid double-counting, and excluded loss predicted by Curtis et al. 23 to be most likely caused by 880 

fires, to give a conservative data layer of recent permanent and temporary tree cover loss 881 

indicative of human activity in the immediate vicinity. We excluded small clusters of 6 or fewer 882 

pixels (0.54 ha) because they may have been natural tree cover loss (e.g. small windthrows) or 883 

classification errors. Each 30 m pixel was then weighted by its year of loss, giving higher weight 884 

to the most recent loss (2001 = 1, 2002 = 2, etc.). The average ‘recentness’ of deforestation 885 

(including areas not deforested, which score zero) was then calculated across the whole of each 886 

300 m pixel of our base map. 887 

 888 

Transformations 889 

 890 
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The exponential transformations described in the main text were used to convert I’, A’ and H’ to 891 

the variables I, A and H respectively. 892 

 893 

Text S4. Modelling inferred pressures using proximity to observed pressures 894 

 895 

Each cell also experiences modification as a result of pressures originating from nearby cells that 896 

have observed human pressures, largely through the family of processes known as ‘edge effects’ 897 

54. Edge effects are partly a result of the changes relating to biophysical factors (such as humidity, 898 

wind, temperature and the increased presence of non-forest species) that accompany the creation 899 

of new edges in formerly continuous forest (as exemplified by the carefully controlled studies in 900 

tropical forests summarized by Laurance et al. 59). They also result in part from the increased 901 

pressure associated with human activities within tropical forest near to edges such as logging 61, 902 

anthropogenic fire 60, hunting 55, livestock grazing, pollution, visual and auditory disturbances, 903 

etc. These multiple factors are synergistic and so we model them together, notwithstanding 904 

regional and local variations in the relative intensity of each one. 905 

 906 

We model the inferred effect caused by each nearby source cell as a function of (a) the observed 907 

human pressure observed in that source cell and (b) a decline in the intensity of edge effects with 908 

distance from the source cell, based on a review of the literature. We then determine the total 909 

inferred effect on a given cell by summing the individual effects from all source cells within a 910 

certain range. 911 

 912 

Two complementary types of inferred effect are modelled and added together. One relates to the 913 

diverse, strong, relatively short-range edge effects which decay to near zero over a few kilometers 914 

and have the potential to affect most biophysical features of a forest to a greater or lesser extent. 915 
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The other relates to weaker, longer-range effects such as over-hunting of high-value animals that 916 

affect fewer biophysical features of a forest (and so have a much smaller maximum effect on 917 

overall integrity) but can nonetheless have detectable effects in locations more than 10 km from 918 

the nearest permanent human presence.  919 

 920 

The literature on the spatial influence of short-term effects uses a variety of mathematical 921 

descriptors, in two broad categories – continuous variables and distance belts. As we wish to 922 

model edge effects as a continuous variable we concentrated on studies that have taken a similar 923 

approach, and used distance-belt studies as ancillary data. 924 

 925 

Chaplin-Kramer et al. 62 is a good example of a continuous variable approach, estimating detailed 926 

biomass loss curves near tropical forest edges. Because they analyze a key forest condition 927 

variable with a very large pantropical dataset we hypothesize that the exponential declines in 928 

degradation with distance that they find are likely to be a common pattern and so we use a similar 929 

framework for our more general model of degradation. We consider that a model of exponential 930 

decay is also a sufficient approximation to the evidence presented by some authors as graphs 931 

without an associated mathematical model (e.g., 60,75) or analyzed using logistic regression (e.g., 932 

76). In our model we set the exponential decay constant to be broadly consistent with these four 933 

studies, resulting in degradation at 1 km inside a forest that is approximately 37% of that at the 934 

forest edge, declining to 14% at 2 km and near zero at 3 km. We truncate the distribution at 5 km 935 

to minimize computational demands. 936 

 937 

Distance-belt studies define the width of a belt within which edge effects are considered to occur, 938 

and beyond which forests are considered to be free of edge effect. Belts of 1 km are commonly 939 

used (e.g., 54) but smaller distances may be used for specific parameters (e.g. 300 m for biomass 940 
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reduction near edges in DRC’s primary forests; 27). Our continuous variable approach is broadly 941 

consistent with these studies, with the majority of our modelled degradation within a 1 km belt 942 

and little extending beyond 2 km. While most individual edge effects reported in the literature 943 

penetrate less than 100-300 m (e.g., 59,77) most of the effects reported on in these studies relate to 944 

the changed natural factors mentioned in an earlier paragraph, and are likely to be dwarfed in both 945 

intensity and extent by edge effects relating to spillovers of human activity, so our model 946 

emphasizes the spatial distribution of the latter (e.g., 60). We consider our model of the levels of 947 

modification to be conservative. 948 

 949 

For the weaker, more widespread long-range effects we use recent large-scale studies of 950 

defaunation, which is one of the key long-range pressures and also acts as a proxy for other 951 

threats including harvest of high value plants (such as eaglewood Aquilaria spp. in tropical Asia), 952 

occasional remote fires, pollution associated with artisanal mining, etc. We adopt a simplified 953 

version of the distribution used by Peres et al. 55 to model hunting around settlements in the 954 

Amazon, which sets 2σ=12 km; this is likely conservative compared to evidence for hunting-955 

related declines in forest elephants in central Africa up to 60 km from roads 63 and the extensive 956 

declines in large-bodied quarry species in remote areas in many regions modelled by Benitez-957 

Lopez et al. 78.  958 

 959 

Text S5. Limitations in data: example with infrastructure data in British Columbia, Canada 960 

 961 

OpenStreetMap (OSM) represents the most detailed publicly available relevant global dataset but 962 

is nonetheless noted to be incomplete, even for one of the most heavily used categories of 963 

infrastructure, paved roads 48. No global assessment is available for the completeness of other 964 

categories in the dataset. One of the key categories for forest integrity, unpaved roads used for 965 
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resource extraction, has been shown to be incomplete over much of insular South-east Asia 49. In 966 

Canada, for example, roads and other linear corridors used to explore, access and extract natural 967 

resources (e.g., logging, oil and gas, and minerals) are sometimes missing. Government data for 968 

the province of British Columbia (available at  https://catalogue.data.gov.bc.ca/dataset/digital-969 

road-atlas-dra-master-partially-attributed-roads) demonstrates, for example, the larger extent and 970 

density of regional roads as compared to OSM (Fig S1).  971 

 972 

Text S6. Classification of Forest Landscape Integrity Index scores 973 

 974 

In this paper, three illustrative classes were defined, mapped and summarized to give an overview 975 

of broad patterns of degradation in the world’s forests. Three categories were defined as set out in 976 

the Materials and Methods. To determine the approximate levels of the FLII associated with these 977 

three categories, benchmark locations were selected in sites that could unambiguously be assigned 978 

to one of the categories using the authors’ personal knowledge. At each site a single example 979 

pixel was selected within a part of the area with relatively uniform scores. The sample points are 980 

summarized in Table S4; they are widely spread across the world to ensure that the results are not 981 

only applicable to a limited region. The scores at these points suggest the following category 982 

boundaries: 983 

 984 

• High FLII – 9.6-10 985 

• Medium FLII – 6-9.6 986 

• Low FLII – 0-6  987 

 988 

 989 

  990 
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Table S1. The datasets used to develop the Forest Ecosystem Integrity Index. The factor column 991 
indicates the component of the index the dataset was used in. 992 
 993 
 994 

Dataset Factor Sources 
Tree cover and 
tree cover loss  

Forest extent, 
connectivity, 
observed and  
inferred 
pressures 

Global Forest Cover datasets; Hansen et al. 22; updates to 
2018 available on-line from: 
http://earthenginepartners.appspot.com/science-2013-
global-forest.  

Major tree cover 
loss driver 

Forest extent, 
observed and 
inferred 
pressures, 
connectivity 

Curtis et al. 23 

Landover and 
ocean extent 

Forest extent Lamarche et al. 79 

Potential forest 
cover 

Connectivity Laestadius et al. 35 

Natural non-
forest areas 
within extent of 
potential forest 

Connectivity ESA-CCI Land Cover dataset; ESA 68 

Infrastructure Observed and 
inferred 
pressures 

Open Street Map (selected elements) as of 2018; 
OpenStreetMap contributors 73  

Cropland Observed and 
inferred 
pressures 

GFSAD 2015 Cropland Extent; Gumma et al. 80, Massey et al. 
81, Oliphant et al. 82, Phalke et al. 83, Teluguntla et al. 84, Xiong 
et al. 85 and Zhong et al. 86 

Cropping intensity 
(irrigation) 

Observed and 
inferred 
pressures 

GFSAD 2010 Cropland Mask;  Teluguntla et al. 74 

Water surface  Observed and 
inferred 
pressures 

JRC Global Surface Water Occurrence (all classes with >75% 
occurrence); Pekel et al. 87 

 995 

  996 
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Table S2. Classes in ESA-CCI dataset excluded from our potential forest cover layer because 997 
they overlap extensively with potential forest cover mapped by Laestadius et al. 35 but contain 998 
significant areas of natural non forest 999 
 1000 
 1001 
Legend 
code 

Class name 

60 Treecover, broadleaved, deciduous, closed to open, >15% 
100 Mosaic tree and shrub (>50%]/ Herbaceous cover (<50%) 
120 Shrubland 
121 Evergreen shrubland 
122 Deciduous shrubland 
130 Grassland 
140 Lichens and mosses 
150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%) 
152 Sparse shrub (<15%) 
180 Shrub or herbaceous cover, flooded, fresh/saline/brackish water 
200 Bare areas 
201 Consolidated bare areas 
202 Unconsolidated bare areas 
220 Permanent snow and ice 

 1002 

  1003 
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Table S3. Weightings used for Open Street Map (OSM) to combine into the Infrastructure data 1004 
layer. 1005 
 1006 
 1007 

OSM Category OSM Subcategory Weighting applied for FPI 
Aeroway Apron / Helipad / Runway / Taxiway 8 
 Hangar / Terminal 4 
 Aerodrome / Heliport / Spaceport 3 
Amenity / Landuse / 
Man-made object 

Fuel station / Gasometer / Petroleum well / Pipeline / Adit / 
Mineshaft / Quarry / Landfill / Sanitary dump station / 
Wastewater plant 

15 

 Chimney 10 
 Industrial 8 
 Basin / Covered Reservoir / Pumping station / Water tower / 

Water well / Water works / Watermill 
7 

 Silo / Storage tank / Works 6 
 Aerialway / Beacon / Lighthouse / Breakwater / Dyke / 

Embankment / Groyne / Pier / Communications tower / Mast / 
Observatory / Tower / Telescope 

5 

 Salt pond 4 
 Alpine hut / Beach resort / Camp site / Cemetery / Golf course / 

Marina / Pitch / Village green / Wilderness hut 
3 

Barrier City wall / Retaining wall / Wall 5 
 Ditch / Snow fence / Snow net 3 
 Hedge 2 
Road Motorway / Motorway link / Raceway 15 
 Trunk / Trunk link 11 
 Primary / Primary link 9 
 Secondary / Secondary link 7 
 Tertiary / Tertiary link 6 
 Bus guideway / Service 5 
 Living street / Mini roundabout / Residential / Turning circle / 

Unclassified / Unknown/ Elevator / Rest area 
4 

 Escape / Track 3 
 Bridleway / Cycleway/ Footway / Path / Pedestrian / Steps 2 
Military Nuclear explosion site 30 
 Danger area / Range / Trench 15 
 Ammunition / Barracks / Bunker / Checkpoint 7 
 Airfield / Military-owned land / Naval base / Training area 3 
Power Plant/generator - coal 20 
 Plant/generator - oil 15 
 Plant/generator – gas/ Plant/generator - bio / waste 10 
 Plant/generator – hydro; nuclear; other / Line, Substation 7 
 Plant/generator - solar / Heliostat / wind / Windmill 5 
 Cable 3 
Railway Funicular / Preserved / Rail / Monorail / Subway 10 
 Light rail / Miniature / Narrow gauge/ Tram 7 
 Station 5 
 Halt / Platform 4 
 Abandoned / Disused 2 
Waterway Dam / Lock gate 20 
 Canal 13 
 Ditch/ Drain / Weir 3 

 1008 

  1009 
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Table S4. Points assessed to determine category boundaries for classifying the FHI into high, 1010 
medium and low classes. 1011 
 1012 
 1013 

Category Code Point description Country Point 
Score 

High 103 Interior of Lopé National Park Gabon 10.000 
High 106 Interior of Taï National Park Cote d'Ivoire 10.000 
High 108 Interior of Pacaya-Samiria National Reserve Peru 10.000 
High 109 Interior of Central Suriname Nature Reserve Suriname 10.000 
High 116 Interior of Liard River area Canada 10.000 
High 101 Interior of Okapi Faunal Reserve DRC 9.997 
High 104 Interior of Nyungwe National Park Rwanda 9.992 
High 111 Interior of Rio Platano Biosphere Reserve Honduras 9.990 
High 102 Interior of Odzala National Park RoC 9.974 
High 117 Interior of Wells Gray Provincial Park Canada 9.972 
High 119 Interior of Øvre Pasvik National Park Norway 9.944 
High 115 Interior of Tasmania Wilderness World Heritage Area Australia 9.918 
High 107 Interior of Marojejy National Park Madagascar 9.910 
High 112 Interior of Khao Yai National Park Thailand 9.908 
High 105 Interior of Niassa Special Reserve Mozambiuque 9.819 
High 110 Interior of Maya Biosphere Reserve Guatemala 9.798 
High 114 Interior of Batang Ai National Park Malaysia 9.756 
High 118 Interior of Quetico Provincial Park Canada 9.750 
High 113 Interior of Sundarbans National Park Bangladesh 9.606 
Medium 215 Interior of Bialowieża National Park Poland 9.086 
Medium 208 Interior of Mabira Central Forest Reserve Uganda 9.067 
Medium 211 Area of selective logging Gabon 8.840 
Medium 219 Near main tourism corridor, Mt Myohyang National 

Park 
DPR Korea 8.762 

Medium 203 Interior of Phnom Kulen Wildlife Sanctuary Cambodia 8.710 
Medium 210 Area of selective logging Guyana 8.364 
Medium 202 Interior of Dong Hua Sao National Protected Area Lao PDR 8.078 
Medium 212 Area of selective logging DRC 7.981 
Medium 206 Interior of Manga Forest Reserve Tanzania 7.960 
Medium 207 Near margin of Nyungwe National Park Rwanda 7.938 
Medium 204 South part of Nagarahole National Park India 7.759 
Medium 213 Area of selective logging Cameroon 7.379 
Medium 201 Tat Leuk, Phou Khaokhoay National Protected Area Lao PDR 7.251 
Medium 216 Interior of Loch Garten Nature Reserve UK 7.146 
Medium 209 Area of selective logging Congo 6.734 
Medium 217 Tourism area, Lamington National Park Australia 6.729 
Medium 214 Lowlands of Guanacaste National Park Costa Rica 6.719 
Medium 218 Near margin of Sepilok Forest Reserve Malaysia 6.353 
Medium 205 Interior of Similajau National Park Malaysia 6.130 
Low 305 Dong Nathat Lao PDR 5.638 
Low 317 Foothills of Mt Makiling Philippines 5.395 
Low 310 Suburban woodlot, Dobbs Ferry USA 4.710 
Low 309 Jozani Forest Reserve Tanzania 4.680 
Low 316 Foothills of Mt Canlaon Philippines 4.597 
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Low 320 Forest fragment near Paramaribo Suriname 4.566 
Low 302 Central Park, New York USA 3.575 
Low 301 Bagley Wood, Oxford UK 3.525 
Low 307 Boeng Yeak Lom Protected Area Cambodia 3.323 
Low 304 Angkor Thom Cambodia 3.122 
Low 315 Forest in rural complex, Mambasa area DRC 2.689 
Low 312 Woodland in Beaumont area USA 2.581 
Low 318 Swidden near Andoung Kraloeng village Cambodia 2.304 
Low 319 Forest mosaic near Kaev Seima village Cambodia 2.187 
Low 303 Thetford Forest UK 2.082 
Low 313 Woodland in Augusta area USA 0.686 
Low 314 Woodland in Emporia area USA 0.589 
Low 311 River Park, Chicago USA 0.566 
Low 306 Houei Nhang Forest Reserve Lao PDR 0.000 
Low 308 Pugu Forest Reserve Tanzania 0.000 

 1014 
  1015 
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Table S5. Mean Forest Landscape Integrity Index scores and areas for forest integrity categories 1016 

by country. 1017 

 1018 

Country Mean 
FLII 

Low 
integrity 

(km2) 

Medium 
integrity (km2) 

High integrity 
(km2) 

Total forest 
area (km2) 

Afghanistan 8.85 111.06 1805.58 1196.73 3113.37 
Albania 6.77 3237.21 7026.39 163.35 10426.95 
Algeria 5.22 9259.92 7531.20 99.27 16890.39 
Andorra 4.45 229.32 67.68 0.00 297.00 
Angola 8.35 108197.91 290844.45 323760.87 722803.23 
Antigua and Barbuda 4.72 119.61 97.56 0.00 217.17 
Argentina 7.21 111224.79 215792.01 87866.01 414882.81 
Armenia 5.46 2498.04 2193.84 3.96 4695.84 
Australia 7.22 144234.00 285344.46 119484.45 549062.91 
Austria 3.55 54325.17 18342.09 31.05 72698.31 
Azerbaijan 6.55 6347.07 9443.88 2030.85 17821.80 
Bahamas 7.35 833.40 2203.83 459.09 3496.32 
Bangladesh 5.45 10978.29 7947.09 2408.76 21334.14 
Belarus 3.63 130730.13 35230.14 156.51 166116.78 
Belgium 1.36 13773.69 460.89 0.00 14234.58 
Belize 6.15 7359.93 8386.02 2930.67 18676.62 
Benin 5.86 4808.07 3775.05 1800.99 10384.11 
Bhutan 8.85 1831.05 18972.99 11465.10 32269.14 
Bolivia 8.47 82523.97 293482.08 283959.81 659965.86 
Bosnia and 
Herzegovina 5.99 18702.00 23575.86 800.28 43078.14 

Botswana 9.13 13.50 197.64 396.36 607.50 
Brazil 7.52 1436919.93 1397839.41 2371950.81 5206710.15 
Brunei Darussalam 7.71 1121.94 2852.55 1484.55 5459.04 
Bulgaria 6.09 25747.47 35630.19 1138.32 62515.98 
Burundi 4.50 6940.98 3869.55 45.72 10856.25 
Cabo Verde 6.37 28.44 39.51 0.00 67.95 
Cambodia 6.31 31219.02 33111.90 16912.17 81243.09 
Cameroon 8.00 66885.66 183345.03 120519.72 370750.41 
Canada 8.99 757333.89 1665037.71 5425523.73 7847895.33 
Central African 
Republic 9.28 30544.38 141167.79 384162.12 555874.29 

Chad 6.18 5346.09 6106.32 1921.32 13373.73 
Chile 7.37 72883.71 58430.97 155976.66 287291.34 
China 7.14 616917.24 1183840.56 428279.22 2229037.02 
Colombia 8.26 152687.43 276273.45 432726.30 861687.18 
Comoros 7.69 292.95 1185.21 84.06 1562.22 
Congo 8.89 24640.65 124894.35 159425.82 308960.82 
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Congo DRC 7.56 538620.93 946469.97 735239.16 2220330.06 
Costa Rica 4.65 27763.02 13180.14 4256.28 45199.44 
Cote d'Ivoire 3.64 160151.13 41653.08 7391.79 209196.00 
Croatia 4.92 22590.90 15160.68 539.55 38291.13 
Cuba 5.40 24565.77 20003.76 1811.79 46381.32 
Cyprus 7.06 481.95 1255.50 21.42 1758.87 
Czechia 1.71 49709.88 2486.34 0.00 52196.22 
Denmark 0.50 10352.43 64.17 0.00 10416.60 
Dominica 1.06 591.75 2.79 0.00 594.54 
Dominican Republic 4.19 21149.55 9961.02 551.34 31661.91 
Ecuador 7.66 49251.51 78506.55 74394.99 202153.05 
Egypt 0.56 5592.33 256.32 81.18 5929.83 
El Salvador 4.05 9124.29 3062.34 0.99 12187.62 
Equatorial Guinea 7.99 4019.58 17713.71 5039.19 26772.48 
Estonia 3.05 46906.92 9402.30 103.14 56412.36 
Ethiopia 7.16 53527.23 85895.28 45185.85 184608.36 
Fiji 8.35 1927.98 11744.55 4058.91 17731.44 
Finland 5.08 318983.85 203019.66 25287.84 547291.35 
France 4.52 10389752.64 15048176.67 23436533.52 48874462.83 
Gabon 9.07 11902.77 119341.17 121752.99 252996.93 
Gambia 4.56 186.12 86.49 0.36 272.97 
Georgia 7.79 9438.30 24075.18 13284.54 46798.02 
Germany 2.28 192510.09 17617.05 0.00 210127.14 
Ghana 4.53 58271.94 29285.91 2194.47 89752.32 
Greece 6.60 18874.71 36245.97 1440.45 56561.13 
Grenada 4.22 232.38 91.26 1.44 325.08 
Guatemala 3.85 61286.58 19636.20 5910.03 86832.81 
Guinea 4.90 83471.40 56188.71 3058.56 142718.67 
Guinea-Bissau 5.70 9599.49 9055.35 911.25 19566.09 
Guyana 9.58 4304.25 41380.47 148565.61 194250.33 
Haiti 4.01 7602.48 3032.91 13.59 10648.98 
Honduras 4.48 60292.08 24862.95 3861.09 89016.12 
Hungary 2.25 27551.70 3055.86 0.00 30607.56 
India 7.09 128431.98 280694.52 60265.89 469392.39 
Indonesia 6.60 545281.65 522602.73 437797.35 1505681.73 
Iran 7.67 4207.41 16193.16 2710.26 23110.83 
Iraq 3.59 128.79 10.98 0.00 139.77 
Ireland 0.92 8752.95 160.92 0.00 8913.87 
Israel 4.14 204.75 101.52 0.00 306.27 
Italy 3.65 108803.25 37366.47 34.02 146203.74 
Jamaica 5.01 5681.70 3445.92 167.22 9294.84 
Japan 5.80 170329.86 169714.08 17655.48 357699.42 
Jordan 2.79 14.49 0.00 0.00 14.49 
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Kazakhstan 8.23 9668.70 29090.52 23105.88 61865.10 
Kenya 4.20 28634.85 13695.39 4769.10 47099.34 
Kyrgyzstan 8.86 447.12 3799.53 3696.12 7942.77 
Laos 5.59 98929.80 85493.97 20386.08 204809.85 
Latvia 2.09 69714.27 3956.94 0.00 73671.21 
Lebanon 3.76 656.10 138.96 0.00 795.06 
Lesotho 7.40 1.26 4.68 0.00 5.94 
Liberia 4.79 52735.32 31575.78 11164.77 95475.87 
Libya 4.85 17.64 2.16 0.00 19.80 
Liechtenstein 4.50 86.49 61.83 0.00 148.32 
Lithuania 1.62 43005.87 1618.02 0.00 44623.89 
Luxembourg 1.12 1808.28 0.00 0.00 1808.28 
Macedonia 7.42 2725.56 9427.50 611.91 12764.97 
Madagascar 4.63 127788.57 70740.54 12641.94 211171.05 
Malawi 5.74 12955.41 12547.98 2463.12 27966.51 
Malaysia 5.01 132119.64 93287.70 23173.20 248580.54 
Maldives 5.33 1.53 2.61 0.00 4.14 
Mali 7.16 460.26 1023.84 143.55 1627.65 
Mauritius 5.46 610.47 516.33 0.00 1126.80 
Mexico 6.82 206323.11 302065.38 133944.39 642332.88 
Micronesia 7.55 10.44 57.78 2.43 70.65 
Moldova 2.20 4581.63 295.83 0.00 4877.46 
Mongolia 9.36 788.94 18346.68 42134.13 61269.75 
Montenegro 6.41 4021.20 6498.63 110.07 10629.90 
Morocco 6.74 2754.45 4934.43 542.70 8231.58 
Mozambique 6.93 158568.57 199312.20 120282.75 478163.52 
Myanmar 7.18 140223.78 239440.77 105996.69 485661.24 
Namibia 8.43 5.76 15.66 17.91 39.33 
Nepal 7.23 15633.90 47852.91 4292.01 67778.82 
Netherlands 0.60 8510.58 105.57 0.00 8616.15 
New Zealand 7.12 45310.59 59378.76 49047.84 153737.19 
Nicaragua 3.63 67465.35 18267.03 5038.02 90770.40 
Nigeria 6.20 65466.18 66157.20 24612.03 156235.41 
North Korea 8.02 11023.56 52964.73 11127.87 75116.16 
Norway 6.98 83005.02 151888.32 42608.70 277502.04 
Pakistan 7.42 2526.84 9588.87 1394.64 13510.35 
Palau 8.09 46.62 346.68 9.63 402.93 
Panama 6.37 25908.21 22010.58 15083.55 63002.34 
Papua New Guinea 8.84 38120.13 187115.94 220457.88 445693.95 
Paraguay 6.39 86292.27 111883.50 33028.20 231203.97 
Peru 8.86 87361.11 193986.45 517323.60 798671.16 
Philippines 5.91 96097.50 106269.84 9013.05 211380.39 
Poland 2.24 165950.64 11333.16 0.00 177283.80 
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Portugal 8.82 34239.15 768.69 0.00 35007.84 
Romania 5.95 55364.31 69757.65 860.04 125982.00 
Russian Federation 9.02 1351531.17 4230704.43 10390434.30 15972669.90 
Rwanda 3.85 5714.91 2214.27 627.21 8556.39 
Saint Kitts and Nevis 4.55 101.07 53.10 0.00 154.17 
Saint Lucia 6.17 244.44 329.22 0.00 573.66 
Saint Vincent and the 
Grenadines 6.95 109.89 232.11 0.00 342.00 

San Marino 0.01 9.45 0.00 0.00 9.45 
Sao Tome and Principe 6.64 31.50 141.93 0.00 173.43 
Senegal 7.11 858.51 2529.90 166.68 3555.09 
Serbia 5.29 27890.73 21965.76 778.32 50634.81 
Seychelles 10.00 0.00 0.00 78.39 78.39 
Sierra Leone 2.76 53423.73 12096.45 670.05 66190.23 
Singapore 1.11 172.98 2.16 0.00 175.14 
Slovakia 4.34 26753.76 12414.96 0.00 39168.72 
Slovenia 3.78 15942.42 5424.48 0.00 21366.90 
Solomon Islands 7.19 7316.10 16504.20 3497.31 27317.61 
Somalia 7.16 347.85 1390.32 47.25 1785.42 
South Africa 4.94 52634.34 40570.02 3678.75 96883.11 
South Korea 6.02 31312.08 40391.91 1152.45 72856.44 
South Sudan 9.45 5119.83 59602.77 145246.86 209969.46 
Spain 4.23 110666.25 61013.70 174.51 171854.46 
Sri Lanka 5.83 20865.78 22739.76 1637.37 45242.91 
Sudan 9.80 3.33 468.09 3383.73 3855.15 
Suriname 9.39 6865.74 25298.37 108694.26 140858.37 
Swaziland 4.21 5665.77 2820.69 15.21 8501.67 
Sweden 5.35 357516.90 250928.64 58454.01 666899.55 
Switzerland 3.53 19952.01 6415.38 14.04 26381.43 
Syria 3.64 1039.68 348.21 0.00 1387.89 
Tajikistan 8.65 44.01 177.84 168.30 390.15 
Tanzania 7.13 125997.30 162371.97 124836.39 413205.66 
Thailand 6.00 89501.49 94098.42 35254.08 218853.99 
Timor-Leste 7.11 1791.81 7093.62 55.89 8941.32 
Togo 5.88 5142.42 4600.35 1093.86 10836.63 
Trinidad and Tobago 6.62 1520.01 2256.66 431.64 4208.31 
Tunisia 5.14 1690.11 1233.36 2.61 2926.08 
Turkey 6.39 56223.81 89560.17 4627.62 150411.60 
Turkmenistan 6.31 5.76 41.67 0.00 47.43 
Uganda 4.36 77922.09 36665.64 7558.29 122146.02 
Ukraine 3.30 139402.08 30859.11 274.59 170535.78 
United Kingdom 1.65 49948.56 5249.61 68.04 55266.21 
United States 6.65 1696283.64 1555466.22 1329637.50 4581387.36 
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Uruguay 3.61 14079.42 4735.89 0.00 18815.31 
Uzbekistan 6.77 288.90 301.32 269.46 859.68 
Vanuatu 8.82 977.04 6376.32 4942.53 12295.89 
Venezuela 8.78 65812.77 173850.84 355617.09 595280.70 
Vietnam 5.35 87315.75 80364.24 10073.88 177753.87 
Zambia 7.50 99898.65 169435.53 114448.50 383782.68 
Zimbabwe 6.31 10032.21 15273.45 1735.92 27041.58 
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Table S6. Mean Forest Landscape Integrity Index scores for provinces of Democratic Republic of 1020 
Congo (DRC), Indonesia and Canada.  1021 

 1022 

DRC Indonesia Canada 

Province Mean FHI Province Mean FHI Province Mean FHI 

Lualaba 8.57 Papua 9.34 Northwest 
Territories 

9.90 

Tshuapa 8.55 West Papua 9.00 Yukon 9.86 

Tshopo 8.39 Kalimantan 
Utara 

8.52 Newfoundland 
and Labrador 

9.66 

Bas-Uélé 8.38 Maluku 8.03 Nunavut 9.65 

Équateur 8.37 Maluku 
Utara 

7.41 Manitoba 9.58 

Haut-
Lomami 

8.29 Nusa 
Tenggara 
Barat 

6.86 Saskatchewan 9.40 

Tanganyika 8.24 Aceh 6.83 Ontario 8.94 

Nord-
Ubangi 

8.19 Nusa 
Tenggara 
Timur 

6.80 Québec 8.80 

Haut-
Katanga 

8.05 Gorontalo 6.60 Alberta 8.46 

Kwango 7.83 Sulawesi 
Utara 

6.58 British 
Columbia 

8.22 

Maï-
Ndombe 

7.58 Sulawesi 
Tengah 

6.54 Nova Scotia 6.07 

Haut-Uélé 7.46 Kalimantan 
Timur 

6.42 New 
Brunswick 

5.15 

Maniema 7.44 Sulawesi 
Barat 

6.31 Prince 
Edward Island 

2.74 

Sankuru 7.34 Sumatera 
Barat 

6.20   

Lomami 7.20 Sulawesi 
Tenggara 

5.99   

Kasaï 7.11 Kalimantan 
Tengah 

5.84   

Ituri 6.70 Sulawesi 
Selatan 

5.63   

Mongala 6.23 Banten 4.97   
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Nord-Kivu 6.22 Bengkulu 4.94   

Sud-Kivu 6.20 Sumatera 
Utara 

4.89   

Kasaï-
Central 

5.95 Kalimantan 
Barat 

4.87   

Sud-Ubangi 5.93 Kepulauan 
Riau 

4.86   

Kwilu 5.65 Jawa Barat 4.76   

Kinshasa 4.75 Lampung 4.73   

Kasaï-
Oriental 

4.13 Jawa 
Tengah 

4.59   

Kongo-
Central 

3.95 Bali 4.43   

  Jawa Timur 4.40   

  Jambi 4.01   

  Riau 3.92   

  Kalimantan 
Selatan 

3.24   

  Sumatera 
Selatan 

2.86   

  Yogyakarta 2.83   

  1023 
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 1024 
 1025 

Figure S1. A map overlaying the Open Street Maps data (blue) and provincial government data 1026 

(green) for roads and other linear infrastructure associated with resource access.  1027 

  1028 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2020. ; https://doi.org/10.1101/2020.03.05.978858doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.05.978858
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 55 of 57 
 
 

 1029 

 1030 

Figure S2. A global map of Forest Landscape Integrity for 2019. Highlighted regions show A. A 1031 

remote road in Russia, B. Clearcut logging in Canada, C. Selective logging in Borneo, D. 1032 

Swidden agriculture in Madagascar, E. Forest fragmentation in Western Australia, F. Remote 1033 

settlements in the Brazilian Amazon.  1034 
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