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Abstract

Genome-wide association studies (GWAS) for atrial fibrillation (AF) have uncovered numerous disease-associated
variants. Their underlying molecular mechanisms, especially consequences for mRNA and protein expression remain
largely elusive. Thus, novel multiOMICs approaches are needed for deciphering the underlying molecular networks.
Here, we integrated genomics, transcriptomics, and proteomics of human atrial tissue which allowed for identifying
widespread e�ects of genetic variants on both transcript (cis eQTL) and protein (cis pQTL) abundance. We
further established a novel targeted trans QTL approach based on polygenic risk scores to identify candidates for
AF core genes. Using this approach, we identified two trans eQTLs and four trans pQTLs for AF GWAS hits,
and elucidated the role of the transcription factor NKX2-5 as a link between the GWAS SNP rs9481842 and AF.
Altogether, we present an integrative multiOMICs method to uncover trans-acting networks in small datasets and
provide a rich resource of atrial tissue-specific regulatory variants for transcript and protein levels for cardiovascular
disease gene prioritization.
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INTRODUCTION

Genome-wide association studies (GWAS) have discovered thousands of disease-associated single nucleotide
polymorphisms (SNPs) and improved our understanding of the genetic and phenotypic relationships.[1] In this
regard, GWAS have been applied to investigate atrial fibrillation (AF), which a�ects more than 30 million individuals
worldwide.[2] Various genetic risk loci for AF have been identified[3, 4, 5] and have been integrated into genome-wide
polygenic risk scores (PRS) for AF risk prediction.[6, 7] However, AF risk loci known so far explain less than half of
the estimated disease heritability.[3] In addition, more than 95% of these GWAS variants are localized in noncoding
regions[3] not directly a�ecting the protein sequence but possibly acting through gene-regulatory mechanisms which
are mostly unknown.

A common approach to identify target genes of GWAS variants is to consider tissue-specific cis-acting expression
quantitative trait loci (eQTL), where genetic variants a�ect the transcription of nearby genes. However, cis eQTLs
only explain a fraction of the identified AF risk loci. Therefore, trans eQTLs, where the variant is distant to
the target gene, and more complex genetic or epigenetic mechanisms need to be considered.[6, 5, 8, 9] To date, it
remains di�cult to quantify the contribution of cis and trans variants to the heritability of complex diseases such
as AF.

Recently, the contribution of trans e�ects to the genetic architecture of complex traits was theoretically assessed by
the omnigenic model.[10] Based on this model, it was estimated that trans genetic e�ects explain at least 70% of the
disease heritability by indirect propagation through gene regulatory networks.[10] Within these networks, multiple
trans e�ects can accumulate on just a few central genes, so-called core genes, which in turn are functionally
related to a phenotype. Identifying those core genes by trans eQTLs remains challenging due to the small e�ect
size of each individual locus[11, 12] and the associated large multiple testing burden. Since a PRS summarizes
the genetic risk information, it can act as a proxy for the accumulation of trans e�ects in one score.[12] By
correlating the score with transcript expression (eQTS), the propagation of trans e�ects to mRNA level[12] can be
evaluated. However, not only transcript abundance, but also the abundance of translated proteins can determine
phenotypic consequences. To date, little is known about genetic e�ects on protein levels (pQTLs), e.g. through
post-transcriptional regulation,[10, 13, 14, 15, 16] especially in atrial tissues. It is both challenging and important to
establish methods to identify AF core genes and to integrate data from multiple OMICs levels to improve the
understanding of genotype-phenotype relationships.

Here, we present a multiOMICs analysis that uses genomics, transcriptomics, and proteomics of human atrial tissue
to better understand how genetics are related to molecular mechanisms of AF. The first aim was to systematically
integrate OMICs data and identify genome-wide cis-regulatory mechanisms on transcript as well as protein level.
We reasoned that core genes are key for a better understanding of complex molecular pathomechanisms of AF.
Therefore, the second aim was to identify candidate core genes for AF and the trans-acting regulatory networks
that link them to AF GWAS loci. We developed a novel approach combining the correlation of gene expression
with a PRS for AF[7, 12] and pathway enrichment analysis to identify AF-associated biological processes. Based on
those processes, candidate core genes for targeted trans QTL analyses with AF GWAS SNPs were selected. This
approach allowed the identification of putative core genes, their molecular networks and downstream consequences
in AF.

RESULTS

Cis QTL analysis

We analyzed disease-independent e�ects of genetic variants on transcript (cis eQTLs) and protein levels (cis
pQTL) of nearby genes. All cis QTLs were calculated using expression values for 16 306 genes and 1 337 proteins
(Table 1) with additional PEER factors[17, 18] to adjust for relevant covariates such as technical confounders and
cardiovascular risk factors (see methods and Suppl Figure S1-S2). We assessed the replication rate of our eQTLs
in GTEx[19] atrial appendage tissue. E�ect sizes for the best eQTL (P<1 ◊ 10≠5) per gene showed a correlation of
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0.83 (P=3.6 ◊ 1067) in GTEx, 66% replicated (GTEx P<1 ◊ 10≠5) and 88% showed concordant allelic e�ects
(see also Suppl “Cis QTL replication”, Suppl Figure S3). Furthermore, correlations between transcript and protein
abundances were comparable to previous studies[14] (Suppl Figure S4, Suppl Table S1) indicating high quality of
the proteomics measurements.

Table 1: Summary of tested data and discovered QTLs.
Results for a FDR<0.05 (according to Benjamini-Hochberg procedure) and P value <1 ◊ 10≠5.
FDR, false discovery rate; eQTL, expression quantitative trait loci; pQTL, protein quantitative trait loci; ratioQTL,
ratio quantitative trait loci;

Results for all available transcriptomics and proteomics measurements:
Tested: FDR<0.05: P<1◊10≠5:

SNPs Pairs Genes Pairs Genes Pairs Genes
eQTL 4 861 118 56 139 851 16 306 57 403 1 058 40 267 552
pQTL 2 323 504 4 508 654 1 337 4 081 91 2 543 45

Results only for genes with both transcriptomics and proteomics measurements:
eQTL 2 249 758 4 198 168 1 243 4 603 124 3 218 64
pQTL 2 249 758 4 198 168 1 243 3 906 87 2 406 42

ratioQTL 2 249 758 4 198 168 1 243 563 16 575 18

Cis-regulatory patterns specific to atrial tissue

We first sought to functionally characterize the cis-regulatory variants. Local genetic variation can lead to
di�erent modulations in mRNA and protein abundance which are commonly attributed to transcriptional and post-
transcriptional regulation.[14, 15, 20] Protein abundances are suggested as more direct determinants for phenotypic
consequences of expression QTLs[14] emphasizing the need to integrate mRNA and proteomic measurements to
better understand functional genotype-phenotype relationships. Thus, only for the following characterization of
cis genetic variation on transcript and protein, we focused on genes with both transcriptomics and proteomics
measurements (1 243 genes, Table 1). As observed previously,[14, 15, 20] significant eQTLs and pQTLs (FDR<0.05)
di�er considerably, as only 8.2% of significant SNP-gene associations are shared between mRNA and proteins
(Figure 1, Suppl Figure S5, Suppl Table S2).
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Figure 1: Significant cis eQTLs, cis
pQTLs and their overlap.
Depicted are the significant cis eQTLs
(blue) and pQTLs (purple) at a FDR
cuto� of 0.05 (dotted line). Consid-
ering only genes with both transcrip-
tomics and proteomics measurements,
we visualized the overlap of significant
eQTLs and pQTLs in the circle center.
In total, 124 and 87 genes had at least
one significant eQTL or pQTL, respec-
tively. Only 21 of those genes had at
least one overlapping eQTL and pQTL.
The numbers in brackets represent the
number of significant SNP-gene pairs.
eQTL, expression quantitative trait loci;
pQTL, protein quantitative trait loci;
FDR, false discovery rate;

Divergence of mRNA from protein abundance can arise through diverse molecular mechanisms which we additionally
analyzed by calculating protein-per-mRNA ratios (ratioQTLs) (see methods). To identify shared as well as
independent e�ects on mRNA and protein abundance, three simple regulatory categories were analyzed (see
methods, Figure 2, Suppl Figure S6, Suppl Table S3):

(i) For 11 genes, 430 shared eQTLs / pQTLs were identified, where SNPs a�ect both mRNA expression and the
respective protein abundance as depicted in Figure 2a. The corresponding variants were primarily enriched in
cis-regulatory elements such as active transcription start sites (TssA) (Suppl Figure S6a, Suppl Figure S7).

(ii) For 37 genes, 1 593 independent eQTLs were identified, where only transcript levels are associated, but
the respective protein abundance is independent of the genotype (Figure 2b). Corresponding variants were
enriched in elements regulating transcription, e.g. transcription factor binding site (TF BS) or enhancer
regions, and within splicing regions (Suppl Figure S6b, Suppl Figure S7a). Possible mechanisms involved in
unchanged protein levels remain largely elusive and range from adaptation of translational rate to protein
degradation and long-noncoding RNAs.[21, 22]

(iii) For 21 genes, 1 083 independent pQTLs were identified, where the SNP a�ects only protein abundance
(Figure 2c). pQTL variants were enriched for exonic regions and although not significantly, in binding sites
of RNA binding proteins (RBP) (Suppl Figure S6c, Suppl Figure S7a), where they may influence mRNA
translation resulting in an independent pQTL association.[23]

Altogether, we confirmed that QTL variants corresponding to di�erent categories tended to cluster in distinct
genomic regions (Suppl Figure S7, Suppl “Enrichment of functional elements”).[14, 18, 24] By integrating matched
transcriptome and proteome data, we were able to di�erentiate functional regulatory mechanisms not observable
by transcriptomics only.

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2020. ; https://doi.org/10.1101/2020.04.06.021527doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.06.021527
http://creativecommons.org/licenses/by-nc-nd/4.0/


Assum et al., 2020 Tissue-specific multiOMICs analysis of atrial fibrillation May 15, 2020

Shared eQTL / pQTL

CC CT TT
SNP − rs9664184

m
R

N
A

 −
 M
YO
Z1

eQTL

CC CT TT
SNP − rs9664184

pr
ot

ei
n 
− 

M
YO

Z1

pQTL

CC CT TT
SNP − rs9664184

pr
ot

ei
n/

m
R

N
A

ratioQTL

Genotype
CC
CT
TT

a

Independent eQTL

AA AT TT
SNP − rs2070594

m
R

N
A

 −
 A
TP
5C
1

eQTL

AA AT TT
SNP − rs2070594

pr
ot

ei
n 
− 

AT
P5

C
1

pQTL

AA AT TT
SNP − rs2070594

pr
ot

ei
n/

m
R

N
A

ratioQTL

Genotype
AA
AT
TT

b

Independent pQTL

GG GC CC
SNP − rs3916

m
R

N
A

 −
 A
C
A
D
S

eQTL

GG GC CC
SNP − rs3916

pr
ot

ei
n 
− 

AC
A

D
S

pQTL

GG GC CC
SNP − rs3916

pr
ot

ei
n/

m
R

N
A

ratioQTL

Genotype
GG
GC
CC

c

Figure 2: Di�erent genetic regulatory patterns derived by multiOMICs QTL integration.
a: Shared eQTLs / pQTLs represent QTLs, where the e�ect of transcriptional regulation translates into mRNA
and protein abundances exemplified by the significant SNP - gene pair rs9664184 - MYOZ1. No corresponding
ratio QTL can be observed as the genetic variation is shared across both OMICs levels.
b: Independent eQTLs depict variants with regulation on mRNA but not on protein level displayed by the significant
SNP - transcript pair rs2070594 - ATP5C1.
c: Independent pQTLs represent variants that show regulation only on protein level as shown for the SNP-protein
pair rs3916 - ACADS. Genetic influence is not observable on transcript level.
In the boxplots, the lower and upper hinges correspond to the first and third quartiles (the 25th and 75th
percentiles). The median is denoted by the central line in the box. The upper/lower whisker extends from the
hinge to the largest/smallest value no further than 1.5·IQR (interquartile range) from the hinge.
eQTL, expression quantitative trait loci; pQTL, protein quantitative trait loci; ratioQTL, ratio quantitative trait
loci; TssA, active transcription start site; UTR, untranslated region; TFBS, transcription factor binding site; RBP,
RNA binding protein;

GWAS overlap and enrichment

In order to investigate genotype-phenotype relationships in the context of cardiovascular disease, we used all
available cis QTL data (not only those quantified on both OMICs levels, FDR<0.05) to annotate GWAS variants
for phenotypes either related to cardiovascular measurements or cardiovascular disease (Figure 3a).

Of all the overlaps between GWAS hits and cis QTLs (Suppl Table S4), AF-related loci were most abundant (17
eQTLs, four also with pQTL, see Suppl Table S5). Furthermore, we found an independent pQTL overlapping
with the GWAS hit for creatine kinase levels (Figure 3b). This genetic e�ect was not detected on mRNA level
illustrating the importance of proteomics data. In addition, we systematically assessed whether significant QTLs
are enriched at GWAS loci in the hierarchical groups cardiovascular traits, arrhythmias and AF (two-sided Fisher’s
exact test). We identified a strong significant overrepresentation (P<1 ◊ 10≠5) of eQTLs at GWAS hits for all
three groups, and a significant overrepresentation (P<0.05) of pQTLs in variants annotated with arrhythmias and
AF (Figure 3c). We showed widespread e�ects of cis-acting variants on gene expression and protein abundance in
atrial tissue and a possible relation to AF.
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Figure 3: Overlap of cis QTL associations with GWAS hits annotated in the GWAS catalogue.
a: Overview of significant cis eQTLs and pQTLs (FDR<0.05) overlapping with GWAS hits for di�erent disease
traits.
b: Independent pQTL for GWAS hit creatine kinase levels. Shown are the significant cis eQTL, pQTL and ratio
QTL for the SNP rs1801690 and the gene APOH (FDR<0.05). In the boxplots, the lower and upper hinges
correspond to the first and third quartiles (the 25th and 75th percentiles). The median is denoted by the central
line in the box. The upper/lower whisker extends from the hinge to the largest/smallest value no further than
1.5·IQR (interquartile range) from the hinge.
c: For three di�erent trait categories (cardiovascular traits, arrhythmias and atrial fibrillation) the enrichment of
GWAS hits in significant cis QTLs (FDR<0.05) was evaluated. Enrichments were calculated using Fisher‘s exact
test (two-sided).
QTL, quantitative trait loci; eQTL, expression quantitative trait loci; pQTL, protein quantitative trait loci; ratioQTL,
ratio quantitative trait loci; CI, confidence interval;

Trans QTL analysis

We further extended cis-regulatory analyses by investigating trans e�ects. Specifically, we addressed a key hypothesis
of the omnigenic model,[10] which postulates the existence of core genes. Core genes are central genes with trans
associations to AF GWAS loci, whose expression levels directly a�ect the disease phenotype. Here we sought to
identify candidate core genes for AF to understand the contribution of trans-genetic e�ects in the pathology of AF.
To prioritize genes satisfying the properties predicted by the omnigenic model, we evaluated the accumulation of
trans e�ects, their relevance in gene regulatory networks, and the association with AF by the following strategy
(Figure 4):

1. We evaluated the cumulated trans e�ects of AF-associated variants on expression by ranking genes based on
their correlation of mRNA and protein abundance with the PRS[7] for AF (eQTS, pQTS).[12] Here, the PRS
served as a proxy for an aggregation of AF-related trans e�ects across the whole genome.

2. To identify genes sharing molecular function and representing biological networks that propagate trans e�ects
to core genes, pathway enrichment analysis (GSEA)[25, 26] was performed on the eQTS and pQTS rankings.
Genes driving the enrichment of multiple gene sets were selected as core gene candidates.

3. The link between the core gene candidates and AF was established based on a significant trans eQTL or
pQTL for an AF GWAS hit and further supported by di�erential protein abundance analysis.
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a b

Figure 4: Graphical illustration of the strategy for trans QTL analysis to identify AF-relevant genes.
a: Overview: Based on patient-specific PRS values for AF correlated with transcript and protein expression, we
performed GSEA to preselect genes for trans eQTL and pQTL analyses from the leading edge of enriched pathways.
Core genes were identified as significant trans eQTLs or trans pQTLs. We further assessed their functional targets
to investigate the genotype-phenotype relationship in the context of AF.
b: Identified core genes as trans eQTLs (blue), trans pQTLs (purple) (FDR<0.2) and functional NKX2-5 targets
(light purple).
FDR, false discovery rate; AF, atrial fibrillation; GSEA, gene set enrichment analysis; PRS, genome-wide polygenic
risk score; QTL, quantitative trait loci for mRNA (eQTL) or protein abundance (pQTL); blue, green or gray
dots=core gene candidates; red dots=core genes with trans QTL; stars=functional targets of core genes;

Identification of putative AF core genes

Based on this strategy, we first used the GO biological process gene set annotations, which are not a priori disease
related, to recover processes functionally related to AF. Using all measured transcripts as background for the
gene set enrichment, 97 GO biological processes were enriched (adjusted P value <0.05, Suppl Table S6) mostly
related to heart muscle or energy metabolism, including the processes Generation of precursor metabolites and
energy, Regulation of cardiac muscle contraction, Regulation of heart rate, Cardiac muscle tissue development.
Restricting the background only to those proteins quantified in our dataset, one GO biological process Small
molecule metabolic process connected to metabolism was enriched (adjusted P value <0.05, Suppl Table S7).

Our pathway enrichment approach yielded 25 transcripts (Suppl Table S8) and 145 proteins (Suppl Table S9)
as core gene candidates that we used to calculate trans QTLs with 109 AF GWAS SNPs. On mRNA level, we
identified two trans eQTLs encoding for a cardiac structural protein (rs11658168 - TNNT2) and a transcription
factor (rs9481842 - NKX2-5) (Table 2). On protein level, we discovered four trans pQTLs which are all connected
to metabolism (rs11588763 - CYB5R3/NDUFA9/NDUFB3, rs11658168 - HIBADH) (Table 2). Noticeably, three
out of four identified genes encode for mitochondrial enzymes (HIBADH) or enzyme subunits (NDUFA9, NDUFB3).
Two thirds of the putative core genes have already been mentioned by other studies in the context of arrhythmias
and other cardiovascular diseases (detailed findings see Suppl Table S10) which independently replicates the disease
link.
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Table 2: Trans QTL results.
Significant trans eQTLs and pQTLs for a FDR<0.2 (Benjamini-Hochberg procedure). Trans analyses were
performed on 25 transcripts with 75 samples and 145 proteins with 74 samples for 109 variants associated with
atrial fibrillation from the GWAS catalogqt.
QTL, quantitative trait loci; FDR, false discovery rate; Mutation known to a�ect cardiovascular phenotypes; **Mu-
tation known to a�ect arrhythmias; +Di�erential expression functional impairment for cardiovascular phenotypes;
++Di�erential expression or functional impairment for arrhythmias; For details to disease links in literature see
Suppl Table S10;

Variant Gene trans QTL
SNP Chr Position Symbol Chr QTL — T value P value FDR

rs11658168 chr17 7406134 TNNT2* chr1 transcript -0.517 -4.27 6.43◊10≠5 0.0882
rs9481842 chr6 118974798 NKX2-5** chr5 transcript -0.593 -4.27 6.54◊10≠5 0.0882

rs11588763 chr1 154813584 CYB5R3 chr22 protein -0.797 -4.93 6.00◊10≠6 0.0940
rs11588763 chr1 154813584 NDUFA9++ chr12 protein -0.776 -4.56 2.29◊10≠5 0.129
rs11588763 chr1 154813584 NDUFB3+ chr2 protein -0.937 -4.54 2.47◊10≠5 0.129
rs11658168 chr17 7406134 HIBADH chr7 protein -0.514 -4.42 3.90◊10≠5 0.153

NKX2-5 transcription factor network

In order to get more detailed information about complex molecular mechanisms underlying AF, we further analyzed
the TF network of NKX2-5 (see Figure 5a) since the TF has already been described in the context of cardiac
development,[27] AF,[28, 29, 30] and congenital heart diseases.[31]

To evaluate the downstream e�ects of the SNP rs9481842 via the TF NKX2-5 in AF we analyzed the influence of
NKX2-5 transcript levels on target genes by estimating NKX2-5 TF activity. We annotated NKX2-5 binding sites
in promoter regions based on published iPSC-derived cardiomyocyte ChIPseq and promoter-capture HiC data to
identify almost 10 000 target genes. The number of binding sites per gene in open chromatin regions were counted
for each gene and the TF activity (TFA) was computed as the sum of target transcript expression weighted by the
number of binding sites. We observed a high correlation between the SNP rs9481842 and the NKX2-5 transcript
(cor=-0.43, P=1.4◊10≠4, two-sided Pearson’s correlation, Figure 5b, Suppl Figure S8a) as well as for the direct
molecular link between the NKX2-5 transcript and the TF activity (cor=0.36, P=1.3◊10≠4, one-sided Pearson’s
correlation, Suppl Figure S8c). In addition, there was a weak association between SNP rs9481842 and the TF
activity (cor=-0.13, P=0.145, one-sided Pearson’s correlation, Figure 5b) most likely attributed to the indirect link
through NKX2-5. Partial correlation analysis further supported NKX2-5 being the causal link between SNP and
target expression (Suppl Table S11).

Next, to elucidate the role of NKX2-5 as a link between the disease variant and AF, we further analyzed its e�ect
on specific targets, which we also prioritized as putative core genes. Overall, we identified 13 functional targets that
are significantly influenced by the SNP rs9481842 as well as NKX2-5 transcript levels on both mRNA and protein
level (see methods for details, Suppl Table S12). For these 13 targets, we observed a consistent downregulation on
mRNA and protein level with respect to the rs9481842 risk allele (Figure 5d). As the core gene model predicts a
direct e�ect of core gene expression on the phenotype,[10] we evaluated the protein abundance of the NKX2-5 target
genes in patients with AF compared to patients in sinus rhythm to assess functional connection to the disease. For
all targets, AF cases showed lower protein levels (Figure 5d). When adjusting for common risk factors of AF, five
out of 13 targets showed a nominal P value smaller 0.05 (Table 3). More importantly, the identified target set
collectively displayed a strong association with AF on proteomics level (GSEA P=7.17 ◊ 10≠5). This serves as
independent validation of the disease link, since these genes were identified based on molecular data in our cohort
in combination with public AF annotations without using the actual cohort phenotypes. Furthermore, the majority
of the identified proteins are in fact involved in contractile function (MYL4, MYL7, TNNC1, TCAP) or metabolism
(PPIF, CKM, AK1, PGAM2, CYC1, ETFB, ALDOA), two mechanisms linked to processes directly influencing AF.
At this point, our identified putative core gene point to potential novel targets for further experimental research to
better understand molecular consequences of genetics underlying AF.
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Figure 5: NKX2-5 activity controlled by AF GWAS variant rs9481842.
a: Graphical illustration of NKX2-5 TF target gene analysis in AF.
b: Strong trans eQTL of the SNP rs9481842 with the NKX2-5 transcript.
c: NKX2-5 activity estimated based on target mRNA expression is still influenced by the rs9481842 genotype.
d: Depicted are functional NKX2-5 targets with the number of TF binding sites (column 1), trans eQTL strength
(columns 2-4), trans pQTL strength (columns 5-7) and protein level in AF (columns 8-9). The color scale represents
median transcript or protein Z-scores per group.
AF, atrial fibrillation; QTL, quantitative trait loci; BS, binding site;Mutation known to a�ect cardiovascular
phenotypes; **Mutation known to a�ect arrhythmias; +Di�erential expression or functional impairment for
cardiovascular phenotypes; ++Di�erential expression or functional impairment for arrhythmias.
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Table 3: Putative core genes and functional targets with disease association.
Proteomics di�erential abundance results for prevalent AF, corrected for AF-related covariates sex, age, BMI,
diabetes, systolic blood pressure, hypertension medication, myocardial infarction, and smoking status (see methods
di�erential protein analysis, N=78, df=66).
AF, atrial fibrillation; QTL, quantitative trait loci; FDR, false discovery rate; Mutation known to a�ect cardiovascular
phenotypes; **Mutation known to a�ect arrhythmias; +Di�erential expression or functional impairment for
cardiovascular phenotypes; ++Di�erential expression or functional impairment for arrhythmias.

Protein AF association
Gene Chr Type — T value P value FDR

TNNT2* chr1 trans eQTL -0.0609 -1.61 0.113 1.00
NKX2-5** chr5 trans eQTL
CYB5R3 chr22 trans pQTL -0.0212 -0.662 0.511 1.00

NDUFA9++ chr12 trans pQTL -0.0533 -1.20 0.235 1.00
NDUFB3+ chr2 trans pQTL -0.0631 -1.35 0.182 1.00
HIBADH chr7 trans pQTL -0.0454 -1.24 0.218 1.00

PPIF chr10 NKX2-5 target -0.0342 -1.13 0.261 1.00
MYL4 chr17 NKX2-5 target -0.027 -0.664 0.509 1.00

CKM++ chr19 NKX2-5 target -0.0875 -2.78 0.00705 0.120
MYL7 chr7 NKX2-5 target -0.0421 -1.04 0.304 1.00

PGAM2 chr7 NKX2-5 target -0.175 -3.70 0.000452 0.00813
TNNC1 chr3 NKX2-5 target -0.0557 -1.71 0.0929 1.00
CYC1 chr8 NKX2-5 target -0.0946 -2.14 0.036 0.545

ETFB++ chr19 NKX2-5 target -0.0553 -1.65 0.105 1.00
PRDX5 chr11 NKX2-5 target -0.0524 -1.79 0.0789 1.00

AK1 chr9 NKX2-5 target -0.0669 -2.17 0.0341 0.545
ALDOA++ chr16 NKX2-5 target -0.0646 -2.17 0.0341 0.545

TCAP chr17 NKX2-5 target -0.0178 -0.282 0.779 1.00
TOM1L2 chr17 NKX2-5 target -0.0771 -1.75 0.0849 1.00

DISCUSSION

We present a comprehensive multiOMICs analysis that integrates genomics, transcriptomics, and proteomics in
human atrial tissue to better understand how genetics are related to molecular mechanisms of AF.

We found widespread genetic e�ects related to the expression of nearby genes on transcript and protein level.
Our integrated eQTL and pQTL analysis allowed the distinction between functional regulatory mechanisms with
consequences for mRNA and protein levels. For example, we found many genetic variants exclusively a�ecting
mRNA or protein abundances contributing to a modest overlap between both molecular levels using stringent
statistical criteria. Compared to other studies, a similar extent of co-regulation between mRNA and protein levels
was previously documented by comparing cis pQTLs in human plasma to cis eQTLs in GTEx tissue[15] (see Suppl
“Overlap of eQTLs and pQTLs”, Suppl Table S2). We assume that the use of less stringent significance cuto�s or
multiple testing correction as well as more sensitive measurement techniques might achieve a higher overlap as
observed by Battle and colleagues for cell-type specific transcriptomics and proteomics in the same lymphoblastoid
cell lines.[14] We and others[14] found that proteome-specific pQTLs are enriched in the coding sequence, where
post-transcriptional regulatory elements might be a�ected by sequence variants, which may at least partially
explain the divergence between eQTLs and pQTLs. In line with prior studies,[14, 15, 20] we observed large di�erences
in transcript and protein expression as well as their regulation, emphasizing the necessity and benefit of taking
multiple molecular entities into account to investigate genotype-phenotype relationships.

To extend the cis QTL analysis, we assessed trans-associations by applying a candidate selection strategy based
on the correlation of gene expression with a PRS, a concept termed eQTS.[12] PRS accumulate small genetic
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e�ects at many individual genome-wide loci. In the theoretical omnigenic model[10] it has been suggested that
these loci are linked to the phenotype by weak trans e�ects on gene expression, which accumulate in so called
core genes. It has been shown that this accumulation of trans e�ects would lead to strong eQTS associations for
core genes.[12] Here we used eQTS and pQTS in combination with gene set enrichment analysis to identify core
gene pathways and putative core genes for AF. As core genes are postulated to have trans associations with AF
GWAS SNPs we subsequently performed a targeted trans QTL analysis. This strategy allowed the investigation of
tissue-specific trans-acting genetic mechanisms underlying AF using a relatively small clinical dataset by reducing
the multiple testing burden. The PRS-based gene set enrichment approach revealed cardiac-specific biological
pathways associated with the genetic susceptibility for AF which are similar to results identified by Wang and
colleagues.[32] We identified di�erent pathways on transcriptome and proteome level which is probably not only
caused by biological but also technological reasons like protein coverage. On transcriptome level, the majority of the
identified pathways were involved in contractile function and metabolism. In general, these mechanisms have been
reported by clinical and experimental studies to play a major role in the pathology of AF.[33, 34, 35] As expected,
also the putative core genes identified by trans eQTLs and trans pQTLs were involved in those mechanisms. In
addition, all identified transcripts and some of the proteins have been described in the context of arrhythmias or
cardiovascular disease (Suppl Table S10). As observed for the cis QTL analysis, the trans analysis revealed similar
di�erences between transcriptomics and proteomics level. Interestingly, none of the trans pQTLs had a significant
association on expression level (see Suppl “Trans eQTL / pQTL overlap”, Suppl Table S13). Di�erences between
trans eQTLs and pQTLs for the same gene have previously not been discussed in detail in the literature. Sun and
colleagues analyzed overlapping cis QTLs but not trans QTLs.[15] Yao and colleagues analyzed overlaps of cis and
trans eQTLs and pQTLs in plasma,[16] however no overlaps were found in trans. Suhre and colleagues validated
plasma pQTL findings in other proteomics datasets, but did not evaluate corresponding trans eQTLs.[13] Possible
reasons besides the small sample size might be the e�ect of other genetic variants, post-transcriptional regulation
or environmental factors.

To investigate more complex molecular mechanisms underlying AF, we further analyzed the TF network of NKX2-5,
since the TF has been described in the context of heart development and arrhythmias. For instance, Benaglio and
colleagues discovered that changes in NKX2-5 binding can contribute to electrocardiographic phenotypes.[30] In
addition, a NKX2-5 loss-of-function mutation has been reported to be associated with an increased susceptibility
to familial AF[28] emphasizing its relevance in the pathology of AF. Although we did not detect NKX2-5 on protein
level, we were able to investigate downstream e�ects by inferring NKX2-5 TF activity based on target transcript
expression and functional binding sites. The high correlation between the estimated NKX2-5 TF activity and its
mRNA levels shows that NKX2-5 modulates target gene expression. Thus, we also expect altered NKX2-5 protein
abundance. These TF activity analyses could only be achieved because of tissue- and cell-type specific annotations,
available for NKX2-5. Our analysis suggests that NKX2-5 acts as a transcriptional activator for the majority
of genes. The role as activator is consistent with other studies.[27, 30] However, the TF can also function as a
transcriptional repressor of genes like ISL1.[27, 36] We were able to detect strong e�ects of the NKX2-5 transcript on
various target transcript and protein levels. Most of the identified target genes are involved in contractile function
or metabolism, two mechanisms highly linked to processes involved in AF. Our unique trans QTL approach revealed
direct disease-relevant associations between candidate core genes, NKX2-5 target genes and AF. This finding
was confirmed by di�erential protein abundance between AF patients and controls, which serves as independent
validation of the disease relevance of NKX2-5 target genes, since these genes were identified based on molecular
data in our cohort in combination with public AF annotations without using the actual cohort phenotypes.

Overall, we successfully integrated multiOMICs data and established a unique approach to investigate not only
cis- but also trans-regulatory e�ects. This provided a platform to generate hypotheses on functional interactions
underlying the genetic associations that can be further experimentally investigated.

We acknowledge some limitations that are attributed to common biological and technical factors. First, the use of
human heart tissue came with several challenges including restricted sample sizes and heterogeneity of cellular
composition. Importantly, changes in cell-type composition and structural remodeling have been described for the
pathology of AF.[37] To take di�erences in the cellular composition into account, we used a fibroblast-score based
on a fibroblast-specific gene signature to adjust expression levels in eQTL/pQTL analyses.[38] Second, expression
data were generated using microarrays, however, to date, more information can be generated by RNA-seq. Third,
human cardiac muscle tissue is dominated by mitochondrial and sarcomere proteins[39] which a�ects the detection
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of less abundant proteins such as TFs (e.g. NKX2-5). Therefore, missing TF coverage was not due to data quality
but biological and technological restrictions. In addition, only limited functional genomic annotations specific
for atrial tissue are currently available including TF-, miRNA- and RBP binding sites. Therefore, we integrated
multiple sources to render functional annotations as reliable and accurate as possible. Replication in an independent
dataset was not feasible, since this was the first study investigating pQTLs in atrial tissue.

In this study we suggest a novel, integrative analysis of genomics, transcriptomics and proteomics data of human
atrial tissue to identify genome-wide genetic e�ects on intermediate molecular phenotypes in the context of AF. Our
multiOMICs approach permits the identification shared and independent e�ects of cis-acting variants on transcript
expression and protein abundance. Furthermore, we proposed a PRS-guided analysis strategy to successfully
investigate complex genetic networks even with a limited sample size. By providing these unique tissue-specific
OMICs results as a publicly accessible database in an interactive browser, we hope to extend the availability of
valuable resources for hypothesis generation, experimental design and target prioritization.

Methods

Data and preprocessing

Patient cohort Patients were enrolled in the ongoing observational cohort study AFHRI-B (Atrial fibrillation in
high risk individuals-biopsy). Participants were older than 18 years of age and were scheduled to undergo open
heart coronary bypass surgery. For the current analyses, N=118 patients with multiOMICs data were available.
Cardiovascular risk factor information was collected by questionnaire and from medical records. Baseline blood
samples were aliquoted and stored prior to surgery. Atrial appendage tissue remnants were collected when the
extracorporeal circulation was started and shock frozen immediately. Follow-up for AF and other cardiovascular
disease outcomes was by questionnaire and medical chart review. The observational cohort study was approved by
Ethikkommission Ärztekammer Hamburg (PV3982). The study was performed in compliance with the Declaration
of Helsinki. The study enrollment and follow-up procedures were in accordance with institutional guidelines.
All participants provided written informed consent. Sex stratification of the results was not possible due to
the inherently small number of women in the study (Suppl Table S14). Analyses were adjusted for sex where
appropriate.

Genotypes The genotype data was generated using the A�ymetrix GeneChips Genome-Wide Human SNP Array
6.0, with quality control (QC) at di�erent levels. Using the Birdseed v2 algorithm, PLINK 1.9 and standard
quality control procedures,[40] 749 272 SNP were identified in 83 blood samples with a MAF>0.01, HWE exact
test P>1 ◊ 10≠6 and a call rate >98%. Genotypes were further imputed with IMPUTE2[41] based on the 1000
genomes Phase 3 genotypes[42, 43] (per SNP: confident genotype calls with genotype probability >95%, percentage
of confident genotype calls across samples >95%) and filtered for HWE P>1 ◊ 10≠4 resulting in 5 050 128 SNPs
for 83 individuals. For QTL analyses, for SNPs with less than 3 individuals with the homozygous-minor-allele
genotype, all samples with homozygous-minor-allele genotype were recoded to heterozygous genotype.

PRS for AF The polygenic risk score was calculated based on the LDpred omnigenic score for AF published
by Khera et al.[7] To account for a realistic representation of risk score values across the general population, we
calculated risk score values together with unrelated 1000 genomes[42, 43] CEU individuals. Phase 3 1000 genomes
genotypes were filtered for variants in the risk score and merged with our AFHRI genotypes, resulting in SNP data
for 6 730 540 variants out of 6 730 541 in the score. The PRS per individual was computed using the Plink 1.9
score function, imputing missing variants based on the frequency of the risk allele. From this, percentiles across all
490 individuals (1000 genomes: 407, AFHRI cohort: 83) were further used as PRS values for further analysis.

mRNA The mRNA data was generated from human heart atrial appendage tissue samples obtained during
heart bypass surgery. They were frozen in liquid nitrogen and pulverized for further analysis. RNA isolation was
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performed with subsequent assessment of the RNA integrity number (RIN) for quality determination of the samples.
HuGene 2.0 ST Arrays were used with the A�ymetrix® GeneChip WT Plus Reagent Kit. The R Bioconductor
package oligo[44] was used to create expression sets, perform the background correction and quantile-normalization
per sample, as well as log-transform the data. Left atrial appendage tissues and samples with a RIN-score smaller
than 6 were excluded, in case of replicates the one with the highest RIN-score was used. The mean of multiple
transcript clusters annotated to the same gene symbol was used to derive gene level expression values for 26 376
genes in 102 samples.

Protein To measure the protein concentrations of the 102 samples, the tissues were homogenized using a micro
dismembrator (Braun, Melsungen, Germany) at 2 600 rpm for 2 minutes in 100µl of 8M urea/2M thiourea (UT).
Then homogenates were resuspended in 300µl of UT. Nucleic acid fragmentation was gained by sonication on
ice three times for 5s each with nine cycles at 80% energy using a Sonoplus (Bandelin, Berlin, Germany). The
homogenates were centrifuged at 16 000 x g for one hour at 4°C. After that, protein concentration was determined
by Bradford with BSA as standard (SE). 3µg protein were reduced and alkylated and digested with LysC (1:100)
for 3h followed by tryptic digestion overnight both at 37°C. Subsequently peptide solutions were desalted on C18
material (ZipTip). Finally mass spectrometry analysis was performed on a LC-ESI-MS/MS machine (LTQ Orbitrap
Velos). The Elucidator workflow was used to extract feature intensity and derive protein intensities by summing of
all isotope groups with the same peptide annotation for all peptides annotated to one protein (further parameters:
Uniprot_Sprot_human_rel. 2016_05: static modification: carbamidomethylation at Cys, variable modification:
oxidation at methionine, 2 missed cleavages, fully tryptic, filtered for peptides with FDR<0.5 % corr. to Peptide
Teller probability >0.94 and shared peptides were excluded). Intensities for 1 419 proteins with one or more
peptides (877 with 2 or more peptides) were quantified for 96 samples, median-normalized and log10-transformed.
The original protein concentration was determined as an important technical covariate and therefore used in further
analyses.

Protein-per-mRNA ratios mRNA and protein measurements were already per-sample quantile-normalized and
log-transformed. Both mRNA and protein measurements were additionally quantile-normalized per gene and the
ratio was computed as the di�erence between protein and transcript values.

Residuals Per-sample quantile-normalized, log-transformed mRNA and protein values were used to compute
residuals. mRNA residuals were derived as the residuals from a linear model explaining mRNA by protein levels,
i.e. mRNA ~ —0 + —1·protein + Á. Protein residuals were derived as the residuals from a linear model explaining
protein by mRNA levels, i.e. protein ~ —0 + —1·mRNA + Á. Covariates were used for further analyses but not for
the calculation of residuals.

Correction for cell type composition - fibroblast-score Tissue samples consist of di�erent cell-type composi-
tions. Samples with more fibroblasts probably contain less cardiomyocytes, one of the functionally most relevant
cell-types in primary atrial appendage tissue. We used a fibroblast-score based on the sum of expression values of
genes upregulated in fibroblasts compared to cardiomyocytes in rats:[38] ELN, FGF10, FOSB, FCRL2, SCN7A,
ARHGAP20, CILP, FRAS1, DCDC2, NRG1, AFAP1L2, ITGBL1, NOV, CLEC3B. Cardiomyocyte specific gene
signatures were avoided to prevent interfering e�ects due to structural remodeling common in AF.

Annotations

Genome annotations Ensembl BioMart[45] GRCh37.p13 hg19 annotations were used as genome annotations
(http://feb2014.archive.ensembl.org/biomart/martview/).

GWAS catalogue GWAS annotations were based on the GWAS catalog[46] (https://www.ebi.ac.uk/gwas/,
2019-11-26). We looked at the traits annotated to cardiovascular measurements (EFO_0004298) and cardiovascular
disease (EFO_0000319), further referred to as “cardiovascular traits”. We also distinguished the subcategories

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2020. ; https://doi.org/10.1101/2020.04.06.021527doi: bioRxiv preprint 

http://feb2014.archive.ensembl.org/biomart/martview/
https://www.ebi.ac.uk/gwas/
https://doi.org/10.1101/2020.04.06.021527
http://creativecommons.org/licenses/by-nc-nd/4.0/


Assum et al., 2020 Tissue-specific multiOMICs analysis of atrial fibrillation May 15, 2020

“arrhythmias”, i.e. all traits annotated to atrial fibrillation, cardiac arrhythmia, sudden cardiac arrest, supraventricular
ectopy, early cardiac repolarization measurement, heart rate, heart rate variability measurement, P wave duration,
P wave terminal force measurement, PR interval, PR segment, QRS amplitude, QRS complex, QRS duration, QT
interval, R wave amplitude, resting heart rate, RR interval, S wave amplitude or T wave amplitude and “AF”,
i.e. all traits annotated to Atrial fibrillation or QT interval based on the EFO-mapping (https://www.ebi.ac.uk/
gwas/api/search/downloads/trait_mappings, 2019-11-26).

VEP Ensembl Variant E�ect Predictions[47] were downloaded from the Ensembl Biomart GRCh37.p13 based
on SNP rs-IDs. The label “Missense” was used to summarize all possible missense consequences of the variant
(gained stop codon, a frameshift/amino-acid altering/protein-altering variant, a lost start/stop codon, an inframe
insertion/deletion).

Chromatin states Roadmap Epigenomics ChromHMM 15 state model coremarks for human heart right atrial
appendage[48] E104_15_coreMarks_dense.bed were used to annotate tissue specific chromatin states.

Promoter-capture HiC Promoter-capture HiC data from human iPSC-derived cardiomyocytes[49] (E-MTAB-
6014, capt-CM-replicated-interactions-1kb.bedpe) was used to annotate linked promoter regions.

Binding sites TF BS were based on ChIPseq data from the ReMap TF database[50] (ReMap2018 v1.2, bed)
filtered for highly expressed genes (log(TPM+1) Ø 1) in GTEx atrial appendage tissue. Additionally, NKX2-5
binding sites from human iPSC-derived cardiomyocytes[30] (GSE133833) were used. All TF BS were filtered
for a minimal overlap of 25 bp with open chromatin regions, i.e. chromatin states “1_TssA”, “2_TssAFlnk”,
“10_TssBiv”, “6_EnhG”, “7_Enh”, “11_BivFlnk”, or “12_EnhBiv”.
Fine mapping for functional NKX2-5 BS was done integrating promoter, promoter-capture HiC, chromatin states
and NKX2-5 ChIPseq data. Promoter regions were annotated based on Gencode[51] v31lift37 basic and long
noncoding RNA transcript start annotations as well as regions linked to those by promoter-capture HiC. ChIPseq
binding sites were further overlapped with those promoter regions and filtered for open chromatin regions (details
see provided analysis code).
miRNA BS were based on TargetScan 7.2 default predictions for conserved target sites of conserved miRNA
families[52] (bed).
RBP BS were derived based on eCLIP data from HepG2 and K562 cell lines provided by the ENCODE Project
Consortium[53, 54] (ENCODE, Suppl Table S15). Peak calling was done using the ENCODE uniform processing
pipeline, peaks in the bed-files were further filtered for an enrichment >log2(1), a Fisher P value >-log10(0.05)
and overlapping peaks were then merged (details see provided analysis code).

Methods

Analyses were performed using R 3.4.1. (r-project.org). Genomics data in R was handled using the Bioconductor
packages rtracklayer[55] and GenomicRanges.[56]

Cis QTL covariates including PEER factors PEER factors were computed using the R package PEER to
account for unknown factors in gene expression data.[17] One to 30 PEER factors without additional covariates,
with fibroblast-score only and with age, sex, BMI, disease status and fibroblast-score were used as covariates in the
QTL analysis (Suppl Figure S1-S2).

Cis QTL computation QTLs were calculated using the R package MatrixEQTL.[57] A cis range of 1 ◊ 106bp
and a linear, additive model for genotype e�ect were used. Expression quantitative trait loci (eQTL), protein
quantitative trait loci (pQTL), expression residual quantitative trait loci (res eQTL), protein residual quantitative
trait loci (res pQTL) and protein-per-mRNA ratio quantitative trait loci (ratioQTL) analyses were performed for
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per-sample quantile-normalized as well as additional per-gene quantile normalized expression values (as previously
established by Lappalainen and colleagues[18] and the GTEx consortium[19]), each for di�erent sets of covariates as
described above.
Normalization and covariate sets were optimized for the highest number of QTL genes (i.e. genes, with at least
one significant QTL) detected based on a FDR (Benjamini-Hochberg procedure) smaller 0.05 (Suppl Figure S1).
For the final analysis, QTLs were computed using per-sample and per-gene quantile-normalized expression values,
using only PEER factors without additional covariates (12 PEER factors for eQTLs, 10 PEER factors for pQTLs,
8 PEER factors for res eQTLs and 12 PEER factors for res pQTLs). For ratioQTLs, 9 PEER factors and the
fibroblast-score were used as covariates. All tests were two-sided T tests, with 75 samples and 61 degrees of
freedom (df) for eQTLs , 75 samples and 63 df for pQTLs, 66 samples and 56 df for res eQTLs, 66 samples and
52 df for res pQTLs and 66 samples and 54 df for ratioQTLs.

Definition of functional QTL categories Shared eQTL / pQTL were defined as SNP-gene pairs with a
significant eQTL (FDR<0.05), pQTL (FDR<0.05) and no res eQTL (FDR>0.05) or res pQTL (FDR>0.05),
i.e. genetic regulation is observable on transcriptomics and proteomics level and variation corresponding to the
SNP influence in one OMIC level can be explained and therefore removed by the variation in the other OMIC level.
Independent eQTLs were defined as SNP-gene pairs with a significant eQTL (FDR<0.05) and res eQTL (FDR<0.05)
but no pQTL (FDR>0.05) and no res pQTL (FDR>0.05), i.e. regulation of SNP is only a�ecting transcript levels,
not proteins. Also, the res eQTL disappears, if the SNP influences protein levels too much, for example a pQTL
that barely missed the significance threshold.
Independent pQTLs were defined as SNP-gene pairs with a significant pQTL (FDR<0.05) and res pQTL (FDR<0.05)
but no eQTL (FDR>0.05) and no res eQTL (FDR>0.05), i.e. regulation of SNP is only a�ecting protein levels,
not transcripts, i.e. by post-transcriptional regulation.

Enrichment of functional elements Similar as described by Battle and colleagues,[14]} annotations of the top
5 QTL hits per gene were compared to a background distribution (100 background SNPs per QTL SNP) matched
for MAF (di�erence Æ 0.05) and distance to TSS (di�erence Æ 1000bp). Top QTL SNPs per gene were ranked
according to the FDR of pQTLs for shared eQTLs / pQTLs, res eQTLs for independent eQTLs and res pQTLs for
independent pQTLs. Odds ratios were computed using Fisher’s exact test (two-sided) on the QTL-by-annotation
contingency tables.

GWAS overlap and enrichments To determine the overlap between GWAS hits and cis QTLs, we first annotated
all GWAS hits for cardiovascular traits in the GWAS catalog[46] with proxies in high linkage-disequilibrium using
SNiPA[58] (EUR population, R2>0.8) as well as significant QTLs (P<1 ◊ 10≠5). For each of the original GWAS
SNPs, the corresponding proxy-gene pair with the strongest QTL was selected to annotate this GWAS hit.
To assess a general enrichment of GWAS hits in QTLs, for all tested QTL SNPs we constructed the cross tables that
a SNP has significant QTL (P<1 ◊ 10≠5) versus was the SNP (or R2>0.8 proxy) annotated in the GWAS catalog.
These tables were evaluated for eQTLs and pQTLs for each of the groups cardiovascular traits, arrhythmias and
AF using a two-sided Fisher’s exact test.

PRS correlations / eQTS/pQTS rankings Transcriptomics and proteomics ranking based on PRS correlations
were evaluated using linear regression models with additional covariates age, sex, BMI, systolic blood pressure
(sysBP), C-reactive protein (CRP) and N-terminal prohormone of brain natriuretic peptide (NT-proBNP). Ad-
ditionally, the RIN-score or protein concentration were used as technical covariates. The following models were
evaluated:

eQTS: mRNA ~ —0 + —1·PRS + —2·age + —3·sex + —4·BMI + —5·sysBP + —6·CRP+ —7·NT-proNBP +

+ —8·RIN + Á

pQTS: protein ~ —0 + —1·PRS + —2·age + —3·sex + —4·BMI + —5·sysBP + —6·CRP + —7·NT-proNBP +

+ —8·protein conc. + Á
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We further used summary statistics (T statistic) for —1, equivalent to comparing the nested models with/without
the PRS and derived corresponding two-sided P values. The degrees of freedom were 66 for mRNA (N=75) and
65 for protein (N=74).

Pathway enrichment analysis Gene set enrichment analysis (GSEA)[25] was performed using the
Bioconductor R package fgsea[26] and MSigDB v6.1 gene sets for Gene Ontology biological processes
(c5.bp.v6.1.symbols.gmt.txt).[25, 59, 60] To avoid bias towards gene sets specific to human disease as e.g. KEGG
pathways, Gene Ontology gene sets, which are not linked to a disease a priori were favoured. The GSEA method
was selected to further identify the leading edge genes, which represent the drivers of the enrichment. Enrichments
were calculated with 100 000 permutations on eQTS T values (considering gene sets with minimal 15 and maximal
500 transcripts and genes that are highly expressed, i.e. log(TPM+1) Ø 1, in GTEx atrial appendage tissue) and
pQTS T values (considering gene sets with minimal 5 and maximal 500 proteins).

SNP and gene candidate selection for trans analyses To reduce the multiple testing burden, trans analyses
were only performed on AF GWAS SNPs and candidate genes derived from the gene set enrichment analysis.
We selected all SNPs with MAF Ø 0.1 that were annotated with atrial fibrillation in the GWAS catalog[46] or
the best proxy if the annotated SNP was not measured in our dataset. We further evaluated SNP in high LD
using SNiPA[58] (R2>0.5) and took only the SNP with the highest P value in a recent GWAS,[3] resulting in 109
independent loci. We performed power analysis for the ability to detect strong trans eQTL e�ects with our fixed
sample size (N=75 for eQTLs). The trans eQTL e�ect size was set to 21.8% of variance explained, which is the
strongest trans eQTL found in eQTLGen.[61] In particular we evaluated how many genes can be tested in targeted
trans eQTL analysis of all LD pruned AF loci (N=109 SNPs) to still have a power of at least 50% at a Bonferroni
adjusted significance level of 5%, based on power calculations for the F test. We found that 26 genes could be
tested (Suppl Figure S9). Thus we designed our candidate selection strategy to identify the most promising 26
candidates.
Leading edge genes[25] defined by GSEA on the eQTS / pQTS associations were considered drivers of the
enrichments of gene sets. A gene set was considered significantly enriched with a FDR<0.05 (Benjamini-Hochberg
procedure). This resulted in 1 539 genes for 97 gene sets on transcript and 145 genes for one gene set on protein
level.
Due to the hierarchical structure of the GO biological processes, we favoured genes that were driving the enrichment
of multiple gene sets, i.e. also contained in smaller, more specialized child terms. For that reason, we selected all
leading edge genes as trans QTL gene candidates that appeared in the transcript leading edge set of 16 or more
gene sets, reducing the 1 539 to 25 genes (as based on the power analysis suggesting <26 genes).
Although protein candidates were much more abundant than 26 genes, because of only one significant gene set we
could not apply the same selection strategy resulting in no further preselection.

Trans QTL computations Trans QTLs were calculated using the R package MatrixEQTL.[57] An additive linear
model was evaluated for 109 SNPs for AF and 25 transcripts as well as 145 proteins. Additional covariates age,
sex, BMI, systolic blood pressure, C-reactive protein, N-terminal prohormone of brain natriuretic peptide, the
fibro-score and RIN-score/protein concentration for transcripts/proteins were used and resulted in two-sided T test
with 75 samples (df=65) for transcripts and 74 samples (df=64). In contrast to the cis QTL analyses, no PEER
factors were used as has been previously suggested for trans analyses.[18]

TF (NKX2-5) target definition selection We were interested in investigating the link between a GWAS hit
to target genes through a trans-eQTL-regulated TF, that was not measured on proteomics level. We therefore
investigated the e�ect of the SNP as well as the TF transcript on target genes on transcriptomics and proteomics
level. To do so, we considered only genes with transcriptomics and proteomics measurements and at least one
functional TF BS (see methods TF BS). Associations between SNP, transcriptomics and proteomics measurements
were evaluated using a linear model with covariates fibroblast-score and RIN-score for transcriptomics measurements
and protein concentration for proteomics measurements. We first evaluated four types of associations (two-sided
T tests):
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1. Association of GWAS SNP with target transcript (trans eQTL, N=67, df=63):
target transcript —0 + —1·SNP + —2·fibroblast-score + —3·RIN + Á

2. Independent e�ects of the SNP on target transcript, that are not mediated by the TF transcript
(N=67, df=62):
target transcript —0 + —1·SNP + —2·TF transcript + —3·fibroblast-score + —4·RIN + Á

3. Association of target protein with TF transcript (N=79, df=75):
target protein —0 + —1·TF transcript + —2·fibroblast-score + —3·protein conc. + Á

4. Association of GWAS SNP with target protein (trans pQTL, N=66, df=62):
target protein —0 + —1·SNP + —2·fibroblast-score + —3·protein conc. + Á

Next, we selected only genes with a significant, positive association of the SNP (relative to the allele associated
with higher TF expression) with the target transcript (in 1.): —1<0, P(—1)<0.05) that vanished, when including
the TF transcript in the model (in 2.): P(—1)>0.2). This was used to ensure that the SNP was not influencing the
target directly, but acting through the TF. For the remaining subset, we ranked all targets based on the association
of the target protein with the TF transcript and performed FDR correction (Benjamini-Hochberg) on the P values
from model (3.) P(—1) to determine significantly associated genes. Based on this, all targets with FDR<0.05 were
defined as functional NKX2-5 targets.

Partial correlations Partial correlations were computed using the R package ppcor.[62]

Di�erential proteome analysis for AF Summary statistics for —1 (AF) in the following linear model (N=78)
were used: protein ~ —0 + —1·AF + —2·sex + —3·age + —4·BMI + —5·diabetes + —6·sysBP + —7·hypertension
medication +

+ —8·myocardial infarction + —9·smoking status + —10·fibroblast-score + —11·protein conc. + Á

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable
request.
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