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Abstract

Farmers near towns and cities are using wide range of untreated wastewaters for crop irrigation in
Pakistan due to severe freshwater shortage. The present study aimed to treat different types of wastewater
including domestic, hospital, textile, pharmaceutical and mixed wastewaters using indigenous bacterid
isolates to remove contaminants and render these wastewaters safer for irrigation. 37 bacterial strains were
isolated from the 5 wastewater samples collected from different sites in Lahore, Pakistan. Under optimum
growth conditions, theisolates D6, D7 and P1 showed maximum decol ourisation potential of 96, 96, 93 %,
respectively against hospital wastewater. GCMS analysis of the untreated hospital wastewater confirmed
the presence of pharmaceutic pollutants i.e. Phenol, Salicylic acid, Caffeine, Naproxen, Octadecene and
Diazepam. These organic compounds were biodegraded into derivate Ticlopidine in the case of isolate D6,
derivatives Tetradecene and Griseofulvin in the case of isolate D7, and derivatives Lidocaine and Butal bital
in the case of isolate P1. 16S rDNA sequencing was used to identify these isolates. |solates D6 and D7
showed 100 and 99.86 % homology to Bacillus paramycoides, a novel strain from Bacillus cereus group
(Liu et al., 2017). Isolate P1 showed 97.47 % homology to Alcaligenes faecalis. These strains therefore
could represent alow-cost and low-tech alternative to bioremediate complex wastewaters prior toirrigation

to support the achievement of the Sustainable Development Goal 6 - clean water and sanitation in Pakistan.

Keywords. Bacillus paramycoides, Alcaligenes faecalis, wastewaters, biotreatment,

bioremediation.
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1. Introduction

The Planet Earth contains only less than 1% of freshwater (Gleick, 2014). The increasing
population, urbanization, human activities and unjustifiable usage of freshwater are the foremost
reasons of causing its further shortage (Khoso et al., 2015). The South Asian region, mainly
Pakistan, has the worst condition in this scenario (Roberts, 2017; Wagan and Khoso, 2013).
Despite having world' s largest glaciers, researchers have proclaimed that the country ison its way
to become the most water-stressed country in the region by year 2040 (WRI, 2015). The country’s
agricultural, domestic and industrial sectors have too scored high on the World's Resource
Institute’s water stress index. Its per capita annual water availability is just 1017 m® now (IMF,
2015) which is scarily closer to the scarcity threshold level (1000 mS). Being an agricultural
country, thisscarcity of freshwater resources hasdriven local farmersin Pakistan to reuse untreated
wastewater for irrigation of crops (Mahmood and Malik, 2014). These wastewaters contain many
harmful chemicals and heavy metals which accumulate in crops (Afonne and Ifediba, 2020; Topal
et a., 2020; Zhang et a., 2020; Zogi and Doosti, 2020) and up the food chain making them
hazardous for consumption.

Pakistan Water Sector Strategy (PWSS, 2002) reported that the total quantity of wastewater
produced in Pakistan is 962335 million gal per annum including 674009 million gal from domestic
and 288326 million gal from industrial use. The domestic and industrial wastewater is either
discharged directly to a sewer system, a natural drain or water body, a nearby field or an interna
septic tank in Pakistan (Murtazaand Zia, 2012). Generally, this wastewater is not treated and none
of the cities have any biological treatment process except 1slamabad and Karachi (EPMS, 2002),
and even these cities treat only a small proportion (<8%) of their wastewater before disposal

(Bashir, 2012; Steenbergen and Oliemans, 2002). These wastewaters contai n considerable amount
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of dyes, suspended solids, heavy metals, additives, detergents, surfactants, carcinogenic amines
and formaldehyde (Azizullah et al., 2011). They also contain organic and inorganic particles and
compounds, macro-solids, gases, emulsions, toxins, microplastics (Gatidou et a., 2019),
pharmaceuticals like endocrine disrupting compounds, hormones, antibiotics, anesthetics,
perfluorinated compounds (Arvaniti and Stasinakis, 2015), siloxanes (Bletsou et al., 2013), drugs
of abuse (Gatidou et a., 2016) and various biological pathogens (Andersson et al., 2016). These
untreated or insufficiently effluents treated wastewaters pose a serious environmental threat
(Salgot et d., 2006). The complex nature of these effluents and lack of centralized wastewater
treatment infrastructure make the treatment difficult in Pakistan. One area, that is a considerable
challenge is the removal of colour contamination.

The dyes, impurities and chemicals released from the textile industries impart colour to
wastewater drains and cause colour contamination, thus diminishing the water quality (Carmen
and Daniela, 2012). Various physicochemical methods have been used worldwide to remove
colour and impurities from wastewater, i.e. adsorption (Patel and Vashi, 2010), ion exchange
(Karcher et d., 2002), membrane filtration (Marcucci et a., 2001), ozonation (Ince and Tezcanli,
2001), photooxidation (Hai et al., 2007) and reverse osmosis (Suksaroj et a., 2005). Pakistan being
adevel oping economy has not adopted any of these methods on alarge scale as these methods are
prohibitively expensive and require large complex infrastructure (Verma et al., 2012). Only one
full scale domestic wastewater treatment plant was set up on the conventional activated sludge
process in Islamabad, Pakistan but it is not maintained well by the plant operators (Fatima and
Khan, 2012). Decentralised biological treatment methods could offer apotential low-cost and low-
tech solution for communities in devel oping countries such as Pakistan.

Biological processes play amajor rolein theremoval of pollutants. Dueto ubiquitous nature
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91  of bacteria, they can be used as invaluable tools for the biological treatment of different types of
92  wastewater, i.e. domestic, hospital, pharmaceutical and textile industrial wastewaters. The
93  bioremediation potential of bacterial isolates is an economically viable method and environment
94  friendly thus presents a good aternative to other engineered process (Dwivedi and Tomar, 2018).
95 Biological treatment takes advantage of the catabolic versatility of microorganisms including
96 bacteria to degrade or convert toxic compounds to non-toxic compounds (Diaz, 2008). One
97  strategy — to use native or indigenous isol ates from wastewater to degrade, detoxify and decolour
98  gspecific wastewater has been the source of intensive research. Many authors have isolated
99  microorganisms from industrial textile wastewaters and then demonstrated their ability to
100  decolourise specific classes of dyes in the laboratory (e.g. Zhang et d., 2010; Meerbergen et al.,
101 2018; Aldewi and Jiang, 2012; Buthelezi et al., 2012; Mahmood et a., 2011). Shukor et a (2009)
102  demonstrated isolates from hospital wastewater were capable of degrading acrylamide compounds.
103  Others have used similar strategies to demonstrate the removal of heavy metals (Helmy et al.,
104  2018; Afzal et d., 2017; Das and Kumari, 2016).
105 Researchers have established the identity of many of these isolates from different
106  wastewaters and their ability to specific chemica compounds, e.g. Bacillus cereus isolated from
107  domestic wastewater for degrading acrylamide (Shukor et a., 2009) and hydrocarbons (K ostka et
108 4., 2011), B. subtilisisolated from pharmaceutical wastewater for removing antibiotic cephalexin
109 and heavy metals (Adel et a., 2015), Aeromonas hydrophila isolated from industrial wastewater
110 for degrading Triarylmethane dyes (Ogugbue and Sawidis, 2011), Alcaligenes faecalis spp.
111 isolated from petrochemica industrial wastewater for degrading phenol (Manafi et al., 2011),
112 Rhodococcus pyridinivorans isolated from gold mine wastewater for degrading cyanomethane

113 (Sulistinah et a., 2019), Dracaena sanderiana isolated from plastic industry wastewater for
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114  degrading bisphenol A (Suyamud et a., 2020) or Sphingomonas trueperi isolated from wastewater
115  sludgefor the degradation of allethrin (Bhatt et al., 2020). However, these biotreatment studies do
116  not represent the complex environment of mixed wastewater. Moreover, isolates are generally
117  tested against specific compounds in simplistic lab conditions and thus, the potential to degrade
118  these compounds in complex raw wastewater is largely unknown. This therefore is not sufficient
119  forthereal-world situation in countrieslike Pakistan where wastewaters from household, hospitals
120  and wide range of industries is combined.

121 The present research aimed to i) characterise the pollutants and metals in a variety of
122 complex raw wastewaters in Pakistan, ii) isolate novel decolourising isolates from the raw
123  wastewater, iii) determine the decolourisation and degradation potential of these isolates in raw
124  hospital wastewater and finally iv) to identify the isolates with the maximum potentia for
125  decolourisation and degradation of organic compounds.

126 2. Materials and methods

127 2.1 Collection of wastewaters

128 Four wastewater (domestic, hospital, textile and pharmaceutical) samples (50 L each) from
129  the points of discharge of drainage sites in Lahore, Pakistan were collected in sterile bottles
130  according to the standard protocols (APHA, 2005). The geographica coordinates of Lahore city
131  are 31° 34 55.3620" north and 74° 19" 45.7536"" east at an altitude of 217 m (712 ft). Mixed
132 wastewater (50 L) was aso collected from a collective drainage site of the different wastewaters.
133 All five samples were collected in October, 2018. The temperature of the wastewaters and
134  environment were measured on-site with the help of digital thermometer (HUBDIC).

135 2.2 Characterisation of the wastewaters

136 The wastewaters were analysed immediately after the collection for the characterisation to
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137  ensure the bacteria viability and to avoid any self-degradation of organic compounds. Following
138  physicochemical parameters were investigated according to standard protocols (APHA, 2005; Ali
139  etal., 2009)i.e. colour, smell, temperature, pH, electrical conductivity (EC), total suspended solids
140 (TSS), tota dissolved solids (TDS), chemical oxygen demand (COD), biological oxygen demand
141  (BODs), sdinity (ppt) and turbidity (NTU). The concentrations of heavy metas, i.e. Arsenic,
142 Cadmium, Chromium, Lead and Nickel, were estimated through Atomic Absorption
143 Spectrophotometer (AA 7000 F with Autosampler and Hydride Vapour Generator, Shimadzu,
144  Japan). The same physicochemical parameters were investigated in treated wastewaters and were
145  compared with untreated wastewaters. Biodegradability index (Bl) istheratio of BODs : COD. It
146  isaparameter for evaluating the potential biodegradability of abiological treatment in wastewater
147  (Padoley et al., 2012). The vaues of Bl for al decolourised wastewaters were compared with the
148  vaues of BODs : COD of the original wastewaters to access the level of biodegradability. The
149  biodegradation of wastewaters with lesser BODs/ COD value is not possible to biodegrade as it
150  contains extremely toxic contaminants. If the BODs/ COD value would be lower than 0.3, then
151  the biodegradation will not proceed, thusit cannot be treated biologically, because the wastewater
152  generated from these activities inhibits the metabolic activity of bacteria due to their toxicity.

153 2.3 Isolation and screening of bacteria

154 Theisolation of bacterial strainsfrom each of the five types of wastewaters was carried out
155  through seria dilution method (Vermaet a., 2001). The isolates from each wastewater’ s inocula
156  wereincubated on sterile nutrient agar medium (0.8% Nutrient broth and 2% Agar) platesin static
157  incubator at 37°C for 24 hours and were then purified by streaking on nutrient agar medium plates.
158  Streaking was done thricein zig zag manner. The purified cultures were shifted to prepared slants

159  of Luria-Bertani medium (LB) with Agar in test tubes and were preserved in a refrigerator (4 °C)


https://doi.org/10.1101/2020.05.20.105940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.20.105940; this version posted May 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

160 (Mahmood et a., 2011). The bacterial dlants were maintained every two weeks on freshly prepared
161  agar slantsto circumvent the susceptibility of the isolates (1SO 11133, 2014).

162 The domestic wastewater was chosen as the preliminary testing sample for screening. The
163  isolated bacterial strains were inoculated (10 %) and incubated at 37 °C for 24 hours in domestic
164  wastewater (100 mL) for initial screening. The percentage decolourisation was measured using
165  UV/VIS(AE-S80) spectrophotometer at 545 nm (Nanthakumar et al., 2013). The bacterial isolates
166  showing more than 50% decolourisation were then tested and inoculated using the same
167  methodology against each type of wastewater separately (D5, D6, D7, D8, H6, T4, T5, T6, P1, M5
168  and M8). The bacteria isolates showing maximum decolourisation (more than 90%) against all
169  wastewaters tested were further selected for testing optimal conditions (See supplementary data)
170  for colour contamination removal in complex wastewaters.

171 2.4 Testing decolourisation potential of isolated bacteria

172 The parameters incubation time, temperature and inoculum concentration were selected for
173  the estimation of optimal growth conditions of three bacterial isolates for testing their
174  decolourisation potential. For incubation time, the conical flasks (250 mL) containing 100 mL of
175  domestic wastewater each were inoculated with the screened isolates (10 % inoculum) in shaking
176  incubator at 120 rpm (PMI Labortechnik GMBH, WIS-20R) (Taran et a., 2007). The flasks were
177  incubated for 24, 48, 72 and 96 hours at 37 °C. For testing the optimal temperature, the inoculum
178  (10%) of screened isolates was added to domestic wastewater (100 mL) in conical flasks (250 mL)
179  for 24 h. Flasks were incubated at 30, 37, 44, 51 and 58°C in a shaking incubator (PMI
180  Labortechnik GMBH, WIS-20R). For the inoculum concentration, aloop full of bacterial colony
181  from aplate was added in distilled water (100 mL). The optical density (OD) was adjusted to 1 at

182 545 nm wavelength using UV/VIS spectrophotometer (A&E Labmed, AE-S80) in order to
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183  maintain equal number of bacterial cells to each inoculum. The inoculum concentrations tested
184 were 5, 10, 15, 20, 25 and 30 % (Getha et al., 1998). The bacterial cell count per mL of each
185  screened isolate was also done through haemocytometer slide bridge (Neubaur improved HBG,
186  Marinefield, Germany). On optimum inoculum concentration (10 %), optimum incubation time
187 (48 h) and optimum temperature (37 and 51 °C), the decolourisation tests was conducted.

188 The three bacterial isolates were inoculated (10 %) separately in five types of wastewaters
189 (100 mL each) present in conical flasks (250 mL) for 48 hours at 37 and 51 °C (Jadhav et al.,
190  2010). The percentage decol ourisation was cal culated using Equation (1) (Cheriaa et al., 2012) at

191 545 nmusing UV/VIS (AE-S80) spectrophotometer:

192 Decolourisation percentage (%) = % x 100 (D)

193 Where Ag= Initial absorbance, A= Absorbance of medium after decolourisation at the Amax (NM).
194  The decolourisation experiments were performed in triplicates.

195  2.4.1 Organic compounds degradation

196 Bioremediation potential of the hospital wastewater sample that showed maximum
197  decolourisation percentual and biodegradability index (Section 2.2 and 2.4) was further analysed
198  for organic compounds degradation. The hospital wastewater sample was analyzed by gas
199  chromatography mass spectrometry (GCM S) technique using an Agilent Gas Chromatograph (GC,
200 AgiTech-7260) and Mass Spectrometer (MS, Maspec-6595). In total, four samples (10 mL each)
201  were prepared for the analysis, i.e. one uninoculated hospital wastewater sample (control) and
202  three inoculated (i.e. decolourised) hospital wastewater samples. The inoculated three samples
203  were centrifuged (8000g for 15 min) to remove the biomass and the supernatants were shifted in
204  polypropylene falcon tubes (15 mL). All the samples were acidified to pH 1-2 with concentrated

205 HCI and then thoroughly extracted with three volumes of ethyl acetate. The organic layer was
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206  collected, dewatered over anhydrous NaxSO4 and filtered through Whatman filter paper (no. 54).
207  All the GC separations were accomplished using a 20 mx0.3 mm (as internal diameter) fused-
208  silica capillary column with a 0.45 um coated 6% phenylmethyl silicone film in the instrument.
209 The aliquot of the sample (5 puL) was injected in split-less mode (0.5 min) at 290°C. The
210 oven temperature was set as follows: initial temperature (45°C), raised to 58-92°C/min and then
211 12-210°C/min, 10-285°C/min and 6-320°C/min with a hold time of 5 min. The pressure control
212 was adjusted for a constant electronic flow of helium as the carrier gas (mL/min). Mass
213 Spectrometer was adjusted asfollows: 120°C analyzer, 210°C source, 280°C interface and €l ectron
214  ionization at 80 eV. The data was collected from 50-450 atomic mass unit (amu). The retention
215 time (0.1 min), quantification ions, confirmation ions (156.18 and 184.25 m/z) and internal
216  standards (Acenaphthene and Phenanthrene) of each sample were set at optimal levels (Spiking
217  level = 0.05 pg/g; recovery = 98.9 and 93.47 %; coefficient of variation (CV) = 4.22 and 7.39 %)
218  and runin accordance with the system sequence. The base-peak ion was employed for quantitation
219  andtwo qualifier ions were used for confirmation. The compound concentrations were compared
220 withinterna standard quantitation (LoQ = 0.05 mg/kg) and calibration curves. In order to identify
221 the low molecular weight compounds derived from bacteria treatment, the mass spectra were
222 compared with National Institute of Standard and Technology (NIST) database library software
223 avalableintheinstrument and by comparing the retention time with those of authentic compounds
224  available. Quantification of these compounds was conducted by relating the ratio of the peak area
225 of the compound of interest over the peak area of the internal standard (Acenaphthene and
226 Phenanthrene) to the calibration curve of standard solution.

227 2.5 Metal tolerance limits

228 100 mg/L solutions of following ten metal salts were prepared in deionized water, i.e.
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229  PbNOgs, CoCl2, CaClz, ZnSOs, MNSO4, MgSO4, FeSO4, K2Cr207, NaeM00O4 and CuSO4 (Sigma
230  Aldrich, Uk). The three bacteria isolates were streaked on the prepared metal salt-nutrient agar
231 plates and kept in static incubator (at 37°C) for 24 h. At 100 mg/L concentration, the metal salt
232 plates with more than 65% bacterial growth were selected. The solutions of these metal salts
233 (CaCly, MgS0s, K2Cr207, NeeM0oO4 and PbNO3) were then prepared in 50, 100, 150, 200, 250
234 and 300 mg/L concentrations. The bacterial growth of three isolates on these concentrations was
235  assessed.

236 2.6 Identification of the bacterial isolates

237 The three bacteria isolates showing > 90% decolourisation potential above were selected
238  for identification through 16S rDNA sequencing (Mignard and Flandrois, 2006). Neat DNA (0.5
239  mL) was sent to the Macrogen sequencing company in South Korea for sequencing analysis.
240  Polymerase chain reaction (PCR) was carried on the threeisol ates using the following forward and
241  reverse primer set (See supplementary data): 27F (AGA GTT TGA TCM TGG CTC AG) and
242 1492R (TAC GGY TACCTT GTT ACG ACT T) (Muyzer et al., 1993). 20 ng of genomic DNA
243  template was taken in a 30 pL reaction mixture using EF-Taq (SolGent, Korea) as follows: Taq
244  polymerase activation for 2 min at 95°C, 35 cycles for 1 min at 95°C, 1 min each at 55°C and 72°C
245  were performed finishing with 10 min step at 72°C. Amplification products were purified with a
246 multiscreen filter plate (Millipore Corporation, Bedford, Ma, USA). The sequencing reaction was
247  peformed using a PRISM BigDye Terminator v3.1 Cycle sequencing Kit. DNA samples
248  containing the extension products were added to Hi-Di formamide (Applied Biosystems, Foster
249  City, CA). The mixture was incubated for 5 min at 95°C, followed by 5 min on ice and then
250 anayzed by ABI Prism 3730XL DNA analyzer (Applied Biosystems, Foster City, CA).

251 The forward and reverse sequence chromatograms (abi files) were initialy viewed in
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252 FinchTV version 1.5.0 and then interrogated using MacV ector version 17.5.4. Raw sequenceswere
253 examined in MacVector and ambiguous bases were edited by comparing the individual
254  electrograms per strain. Low quality ends were trimmed. The forward and reverse reads were
255  imported into BioEdiT version 7.2. A consensus sequence per strain was subsequently assembled
256  using the contig assembler program (CAP; Huang, 1992) using the forward read and reverse
257  complement of the reverse read. The full sequence information and raw chromatogram details are
258  presented in the Supplementary Information. BLAST analysis was carried out on the assembled
259  sequences. The sequences of the three isolates were deposited in GenBank with accession
260  numbers. Phylogenetic analysis of the strainswas carried out using thetop 20 BLAST hitsfor each
261 isolate. Thiswas achieved by aligning the sequences using Muscle version 3.8.425 (Edgar, 2004)
262  and aphylogenetic tree assembled in Geneious Prime using Tamura-Ne genetic distance method
263  and Neighbor-Joining tree building method. This tree was then imported in newick file format and
264  editedin Evolview (Zhang et al., 2012).

265 3. Resultsand discussion

266 3.1 Characterisation of the wastewaters

267 The apparent colours of domestic, hospital, textile, pharmaceutical and mixed wastewaters
268  werelight grey, light yellow, greenish grey, light brown and blackish, respectively. Thetrue col our
269  values for the wastewaters were 101, 188, 221, 103 and 311 PCU, respectively. The smell of the
270 domestic, textile and mixed wastewaters was pungent, while hospital and pharmaceutical
271 wastewaters had fishy smell. The values of most of the physicochemical parameters were beyond
272 thelevel of National Environment Quality Standards (NEQS, 2000). Like the pH values of textile
273 and pharmaceutical wastewater were 8.7 and 10.4, respectively, before treatment keeping in mind

274  thatthe NEQSrange for pH is6.6-8.5. The pH values of domestic, hospital and mixed wastewaters
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275  were within the NEQs range before treatment. This indicated that these wastewaters had their pH
276  corrected before being discharged. Similarly, the values of total suspended solids of domestic,
277  hospital, textile, pharmaceutical and mixed wastewaters were 1920, 2300, 2150, 2120 and 2670
278  mg/L. These values were too beyond the range of NEQS standard (i.e. < 500 mg/L). The values
279  for the turbidity should be less than 5 NTU as per NEQS range. While the turbidity values for
280 domestic, hospital, textile, pharmaceutical and mixed wastewaters were 38, 51, 76, 61 and 123

281  NTU (Nephelometric Turbidity Units), respectively.

282 The wastewaters became col ourless and odourless after the biotreatment (Figure 1 a,b). The
283  true colour values for domestic, hospital, textile, pharmaceutical and mixed wastewaters were
284  reduced to 28, 55, 61, 38 and 64 PCU, respectively. Results showed that the values of analyses of
285  various physicochemical parameters were within the levels of Nationa Environment Quality
286  Standards (NEQS, 2000) after treatment (Table 1). Like, the pH of textile and pharmaceutical
287  wastewaters after the treatment were reduced to 7.5 and 8.2, respectively (pH range: 6.6-8.5). The
288  reduction in pH after the decolourisation of textile wastewater has been reported previously by
289  Ogugbue and Sawidis (2011b). Similarly, the values of total suspended solids (TSS) were reduced
290 t0 363, 483, 425, 398 and 491 mg/L after the biotreatment (TSSrange: <500 mg/L). Theturbidity
291  vaueswerereduced after the biotreatment to 4, 5, 5, 3 and 4 which were within the range of NEQS

292 turbidity value (i.e. <5 NTU).

293 The values of BODs for domestic, hospital, textile, pharmaceutical and mixed wastewaters
294  were 39, 78, 14, 68 and 40 mg/L, respectively. This was out of the range of NEQs which is 80 —
295 250 mg/L. The values of COD for these wastewaters were 76, 260, 17, 133 and 99 mg/L,
296  respectively. Thevaue of COD in al wastewaters were below the range (150 — 400 mg/L) except

297  hospital wastewater. The BODs/ COD ratio for these wastewaters were 0.51, 0.3, 0.82, 0.51 and
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298 0.4, respectively. One important thing to notice is that if the value of BODs/ COD isin between
299 0.3 and 0.6, then wastewater is required to treat it biologically, because the process would be
300 relatively slow, as the acclimatization of the microorganisms that help in the degradation process
301 takestime (Abdalla and Hammam, 2014). All of our wastewater samples lie in the same range
302  between 0.3 and 0.6. However, the lowest value of this ratio recorded was of hospital wastewater

303 that showed it was the most contaminated wastewater than all other types.

304 The values of BODs after the biotreatment of domestic, hospital, textile, pharmaceutical and
305  mixed wastewaterswere 176, 246, 174, 223 and 169 mg/L, respectively that were within the range
306  of NEQs (80— 250 mg/L). The values of COD for these wastewaters after biotreatment were 212,
307 396, 153, 269 and 235 mg/L, respectively that were too within the range (150 — 400 mg/L). The
308 BODs/ COD ratio for these wastewaters were 0.83, 0.62, 1.14, 0.83 and 0.72, respectively. As per
309 previously reported work, the value of BODs/ COD ration > 0.6 confirms the biotreatment of
310 wastewater (Abdala and Hammam, 2014). All the values of biodegradability index in our
311  wastewater sampleswere more than 0.6. Even the value of most contaminated hospital wastewater

312  wasalso 0.62 that showed significant biodegradability index.

313 Heavy metal chromium was detected in the hospital (1.8 mg/L), pharmaceutical (1.7 mg/L)
314  and mixed (0.9 mg/L) wastewaters which was exceeding the NEQs limit (< 0.05mg/L). Lead was
315  only present in the hospital wastewater (0.17 mg/L). Nickel was present in domestic (0.08 mg/L),
316  hospital (1.76 mg/L), textile (0.19 mg/L), pharmaceutical (1 mg/L) and mixed (0.5 mg/L)
317  wastewaters (Table 1). The hospital wastewater seemed to have more heavy metals than all other
318  types of wastewaters under study. After treatment, the chromium became absent in hospital
319  wastewater. Its amount was reduced to the NEQ limit (< 0.05 mg/L) in pharmaceutical (0.05

320 mg/L) and mixed (0.019 mg/L) wastewaters after biotreatment (Table 1). Lead which was only
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321 present in the hospital wastewater was not detected after biotreatment. The values of Nickel were
322 reduced to 0.07, 0.25, 0.08, 0.5 and 0.22 after the biotreatment of domestic, hospital, textile,
323  pharmaceutical and mixed wastewaters, respectively. Our results agree well with previous work.
324  For example, Abo-Amer et a. (2015) and Naik et a., (2012) have reported the removal of heavy
325 metals from sewage and electroplating wastewaters, respectively. Also, Ali et a. (2009) have
326  reported reduction in colour, temperature, pH, EC, BODs, COD, TSS, TDS and heavy metalsions
327  present in textile wastewaters after the bioremediation by isolated bacteria.

328 3.2 lsolation and screening of bacteria

329 In total, 37 bacterial strains were isolated from domestic, hospital, textile, pharmaceutical
330 and mixed wastewaters. Eight bacteriawere isolated from the domestic wastewater (D1-D8), nine
331  bacteriawereisolated from the hospital wastewater (H1-H9), six from the textile wastewater (T1-
332  T6), six from the pharmaceutica wastewater (P1-P6) and eight were isolated from the mixed
333  wastewater (M1-M8). The isolations of bacteria have been reported from domestic (Jin et a.,
334  2015), hospital (Yamina et al., 2014), textile (Alalewi and Jiang, 2012) and pharmaceutical
335 (Madukasi et al., 2010) wastewaters. Meerbergen et al. (2018) isolated the bacteria isolates from
336 textile wastewater to decolourise azo dyes. Similarly, four bacteria strains were isolated from
337  marine and tannery saline wastewater samples that were proven to be salt-tolerant and carried out
338  successful bioremediation (Sivaprakasam et al. 2008). Shomar et a. (2020) researched on the

339  dgignificance of using the isolated (viable) bacteria for wastewater treatments.

340 Eleven bacteria, isolated from domestic, hospital, textile, pharmaceutical and mixed
341  wastewaters, had the potential to decolourise the preliminary tested domestic wastewater in
342  comparison with other bacterial isolates under study. The percentage decolourisations of these

343  bacteria strainsisolated from domestic (D5, D6, D7 and D8), hospital (H6), textile (T4, T5, and
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344  T6), pharmaceutica (P1) and mixed wastewaters (M5 and M8) were > 50% (Figure 2). After final
345  screening, three bacterial strains showed more than 70% decolourisation potential against all
346 wastewaters i.e. D6, D7 and P1 (Figure 3). The isolate D6 exhibited 71, 93, 70, 83 and 73 %
347  decolourisation of domestic, hospital, textile, pharmaceutical and mixed wastewaters, respectively.
348 The isolate D7 showed 74, 91, 70, 83 and 73 % decolourisation of domestic, hospital, textile,
349  pharmaceutical and mixed wastewaters, respectively. Theisolate P1 showed 82, 92, 71, 77 and 75
350 % decolourisation of domestic, hospital, textile, pharmaceutical and mixed wastewaters,
351  respectively. Chen et al. (2003) reported varied decolourisation capabilities (14 — 90 %) of six
352  bacteria strainsisolated from textile wastewater for azo, anthraguinone and indigoid dye groups.
353  Meerbergen et a. (2018) reported > 80 % decol ourisation potential of five bacteria strainsisolated
354  from domestic wastewater treatment plant to decol ourise azo dyes. However, most of the work has
355  been done on synthetic components of textile wastewaters (e.g. azo dyes) while our work has

356  provided acomplex combination and is more representative of the real -world scenario in Pakistan.

357 3.3 Testing decolourisation potential of isolated bacteria

358 The strain D6 exhibited 87, 96, 80, 93 and 83 % decolourisation of domestic, hospital,
359 textile, pharmaceutical and mixed wastewaters, respectively. The strain D7 showed 84, 96, 88, 89
360 and 83 % decolourisation of domestic, hospital, textile, pharmaceutical and mixed wastewaters,
361  respectively. The strain P1 showed 89, 93, 81, 87 and 85 % decolourisation of domestic, hospital,
362 textile, pharmaceutical and mixed wastewaters, respectively (Figure 4). The high decolourisation
363  potential of 95-98 % have been reported previoudly in textile wastewater (Deng et a. 2008).
364 Similarly, Saha et a. (2017), Modi et a. (2010), Kanagargj et a. (2012) and Liao et a. (2013)
365 have also worked on the decolourisation potential of bacterial isolates for textile wastewater.

366 However, to our knowledge, this study has proven significant regarding the decolourisation and
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367 bioremediation potential of these strains for pharmaceutical industrial, hospital, domestic and

368  mixed wastewaters that are frequently discharged in Pakistan.

369  3.3.1 Organic compounds degradation

370 Considering the maximum decolourisation potential, fluctuating physicochemica values
371 andsignificant biodegradability index value against bacterial isolates D6, D7 and P1, the untreated
372 and decolourised samples of hospital wastewater were analyzed for degradation of organic
373  compounds. GCMS analysis of untreated hospital wastewater confirmed the presence of six
374  pharmaceutic pollutants in the effluent. These pollutants belonged to following different major
375  groups. aromatic, metabolite, stimulant, NSAID, organic and sedative (Table 2). The pollutants
376  belonging to these groups (with concentrations) were Phenol (0.876 ppm), Salicylic acid (0.048
377  ppm), Caffeine (0.007 ppm), Naproxen (0.023 ppm), Octadecene (0.185 ppm) and Diazepam
378  (0.014 ppm). Theretention time (min) for these pollutants were 26.72, 6.51, 7.96, 9.16, 28.65 and
379  38.06 minutes, respectively. The confirmation (m/z) ion for these pollutants were 58.15, 147.64,
380 266.82, 412.07, 581.46 and 685.39 m/z, respectively (See supplementary data). Nair et al., (2008)
381  have described the hazardous nature of phenolic pollutants even at relatively low concentration.
382  Accumulation of phenol createstoxicity both for floraand fauna. Rodil et al., (2012) have reported
383 thatsalicylic acid is one of the emerging most concentrated pollutant (exceeding the 1 pg/L) which
384  isvery hard to remove from the wastewaters even after biotreatment. Motuzas et al. (2017) have
385  reported caffeine as an environmentally emerging micro-pollutant. The presence of non-steroidal
386  anti-inflammatory drug (NSAID) like naproxen in the environment is an emerging problem due to
387 their potential influence on human heath and biocenosis or microbia communities
388  (Wojcieszynskaet al., 2014). Octadecene was found as an organic priority pollutant in Potato crop

389  (concentration = 0.06 mg/kg; retention time = 21.12 minutes) that was irrigated with ground water
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390 having pesticides and herbicides residues (Gushit et al., 2013). Rosal et a. (2010) reported
391 diazepam as an emerging pollutant in urban wastewater with an average concentration of 3 ng/L

392 (that equals LOQ).

393 In the hospital wastewater sample treated with bacteria isolate D6, al other four pollutants
394  were completely biodegraded except salicylic acid and caffeine which were now present at very
395 low concentrations (0.007 and 0.004 ppm) that showed their partia degradation leading to
396  reduction in its concentration from its concentrations in untreated sample 0.048 and 0.007 ppm,
397  respectively. However, anew intermediate compound Triclopidine belonging to Fibrinolitic group
398 was found with 0.011 ppm concentration, 31.95 minutes retention time and 534.12 m/z
399  confirmation ion. Previous researches have supported our ecofriendly biodegradation in this
400 treated sample as Ticlopidine helpsin prevention of stroke even better than Aspirin (Grottaet al.,
401  1992). Itisaso helpful in coronary stenting and as antiplatel et agent during coronary interventions

402  to cure the patients with acute myocardial infarction (AMI) (Cherian et a., 1998).

403 In the hospital wastewater sample treated with bacteria isolate D7, al other four pollutants
404  were completely biodegraded except naproxen and octadecene which were now present at very
405 low concentrations (0.006 and 0.019 ppm) that showed their partial degradation leading to
406  reduction in its concentration from its concentrations in untreated sample 0.023 and 0.185 ppm,
407  respectively. However, two new intermediate compounds Tetradecene and Griseoful vin belonging
408  toorganic and antibacterial groups were found present with 0.035 and 0.028 ppm concentrations,
409  7.08 and 46.18 minutes retention times and 190.86 and 692.95 m/z confirmation ions. The
410 formation of these essentially important compounds has been supported by previous researches.
411  For example, Roth et a. (1959) reported the Griseofulvin as an antifungal and antibiotic. It isvery

412  interesting that a bacterial strain has helped in the formation of an antibiotic through degradation
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413  of organic pollutants. Similarly, Tetradecene is a very important compound used in making

414  polyaphaolefins (PAO) at avery low viscosity and excellent cold temperatures (Goze et a ., 2007).

415 In the hospital wastewater sample treated with bacteria isolate P1, all other four pollutants
416  were completely biodegraded except phenol and salicylic acid (0.381 and 0.015 ppm). However,
417  two new intermediate compounds Lidocai ne and Butalbital belonging to anesthetic and barbiturate
418  groups were found present with 0.122 and 0.054 ppm concentrations, 20.26 and 30.88 minutes
419 retention times and 368.27 and 625.51 m/z confirmation ions. Previously reported work has
420  supported this biodegradation as an ecofriendly one. For example, Lidocaine is said to possess
421  andgesic (Hollmann et a., 2000; Hollmann et a., 2005), antihyperalgesic (Nagy et a., 1996) and
422  anti-inflammatory (Sugimoto et a., 2003) properties. It is aso known to accelerate the return of
423 bowel function after surgery (Marret et a., 2008). It is helpful for post-operative pain and acute
424  rehabilitation after laparoscopic nephrectomy (Tauzin-Fin et al., 2014). Additionally, Butalbital is
425 an analgesic usually prescribed for the treatment of migraine and tension-type headaches
426  (Silberstein and McCrory, 2001). The maternal periconceptional use of butalbital also supportsin
427  healing congenital heart defects (Browne et a., 2013). However, its overuse causes headache and

428  discontinuation syndromes (Devine et al., 2005).

429 3.4 Metal tolerance limits

430 At 100 mg/L concentration of metal salts of PONO3z, MgSOs, MNSOs, ZnSO4, K2Cr207,
431  CaClz, N&eM0Og4, CuSO4, CoCl, and FeSOa, the isolate D6 exhibited growth of 25, 70, 50, 5, 35,
432 80, 45, 20, 5 and 50 %, respectively. It showed maximum growth of 80 % against CaCl.. The
433  isolate D7 indicated growth of 65, 35, 25, 12, 20, 35, 45, 3, 0 and 45%, respectively. It showed

434  maximum growth of 65 % against PoNOz3. Theisolate P1 showed growth of 95, 65, 40, 15, 60, 75,
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435 95, 20, 0 and 35 %, respectively. It showed maximum growth of 95 % against both PbNOz and

436 NaMoO4 (Figure 5).

437 For isolate D6, CaCl, and MgSO4 metal salts were selected that showed overall maximum
438  growth of 78 and 70 % at 300mg/L concentrations, respectively. For isolate D7, PbONOz metal salt
439  was selected that showed maximum growth of 82 % at 300mg/L concentration. For isolate P1,
440  PbNOs, NaeM0O4, CaClz, MgSO4 and K2Cr.O7 metal salts were selected that showed maximum
441  growth of 65, 90, 73, 73 and 75 % at 300mg/L concentration of these metal salts, respectively
442  (Figure 6 ab,c). On one hand, this has confirmed that all three strains have the potentia to tolerate
443  these metads efficiently along with remediating the organic compounds from wastewaters even in
444  co-existence with heavy metals. On the other hand, it aso supported our results (Section 3.1) that
445  these isolates have potential to adsorb the heavy metals to remove them from wastewaters. The
446  high metals concentration is really a big challenge for wastewater treatments as it leads to the
447  inhibition of the microbial populations etc. These strains were resistant to high metal

448  concentrations and thus tolerated the harsh environments of these complex wastewaters.

449 3.5 ldentification of the bacterial isolates

450 BLAST analysis indicated that strain D6 was a Bacillus species with 100% homology to
451  Bacillus paramycoides (Table 3). Phylogenetic analysis reveals that it closely resembled Bacillus
452  pseudomycoides (Figure 7) but formed a separate outgroup, indicating that theisol ated specieswas
453  phylogenetically distinct from the BLAST reference sequences. It was one of the nine novel
454  species of the Bacillus cereus group reported by Liu et al. (2017). BLAST analysis indicated that
455  strain D7 was also a Bacillus species with 99.86% homology to Bacillus paramycoides (Table 4).
456  Phylogenetic analysis reveals that it closely resembled Bacillus pseudomycoides (Figure 8) but

457  formed a separate outgroup, indicating that the i solated species was phylogenetically distinct from
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458  theBLAST sequences. Thus, D6 and D7 isolates shareahigh similarity. BLAST analysisindicated
459  that strain P1 was an Alcaligenes species with 97.47% homology to Alcaligenes faecalis (Table
460 5). Phylogenetic analysis reveds that it closely resembled Paenalcaligenes suuwonensis and
461  Paenalcaligenes hominis (Figure 9) but formed a separate outgroup, indicating that the isolated
462  species was phylogenetically distinct from the BLAST sequences. The nucleotide sequences of
463  theseisolates D6, D7 and P1 have been submitted to GenBank under accession number [ GenBank:
464  MTA477810], [GenBank: MT477812], and [GenBank: MT477813], respectively. Thethreeisolates
465  were then phylogenetically compared with each other and the top BLAST hit sequences. This
466  resultindicated that these isolates were more closely related to each other than the blast sequences.
467 D6 and D7 clustered together demonstrating that these isolates were highly similar. The closest
468  cluster wasidentified as Paenal caligenes suuwonensis and Paenal caligenes hominis (Figure 10).

469 Authors have previously found Bacillus species such as Bacillus paramycoides to be part of
470  plant growth-promoting rhizobacteria (Osman and Yin, 2018) and associated with bioremediation
471  of toxic effluents containing cyanide (Wu et al., 2014), alkylphenols (Chang et a., 2020) and
472  hydrocarbons (Kostka et al., 2011). Similarly, Alcaligenes faecalis was also noted as a biocontrol
473  agent by Yokoyamaet al. (2013). It must be noted that both species are potential human pathogens
474  (Bottone, 2010; Kaliaperumal et al., 2006). The potential pathogenicity of these isolates would

475  warrant further investigation prior to any bioamendment strategies.

476 It is very important to highlight that the optimal incubation time for B. paramycoides has
477  not been reported previously. For A. faecalis JBW4, isolated from activated sludge, the optimal
478  incubation timewas 5 days (Kong et al., 2013). In present study, these two strains have proven to
479  bevery efficient in terms of requiring lesstime of incubation (48 hours) with more decolourisation

480 potentia. The optimal temperature for growth of Bacillus spp. is reported between 30 — 37 °C
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481  (Gilbert et a., 2009). Alcaligenes faecalis was previously reported to be grown at 37 °C (Schroll
482 et al., 2001). Syed et al. (2015) have found heavy metal resistance and their degradation by B.
483  cereus strains. A. faecalis was found to be heavy metal resistant bacteria isolated from sewage
484  wastewater and responsible for the synthesis of silver nanoparticles (Abo-Amer et d., 2015). The
485  capability of A. faecalis to degrade phenol as a carbon source has been previously reported
486  (Rehfuss and Urban 2005). This supports our results showing biodegradation of phenol into other
487  non-toxic low molecular organic compounds. A. faecalis has been proven to be efficient to
488  bioremediate e-Caprolactam too from nylon-6 produced wastewater plant (Baxi and Shah 2002).
489  But to the best of the authors knowledge, B. paramycoides have never been reported for any type
490 of wastewater bioremediation. The antibiotic degradation potential of different isolated bacterial
491  species from pharmaceutica wastewaters (Tahrani et a., 2015) and the biodegradation of
492  acrylamide by Enterobacter aerogenes isolated from domestic wastewater (Buranasilp and
493  Charoenpanich, 2011) has only been reported previously. Mgorly, they looked at the individual
494  wastewaters while our work has investigated a complex combination and is more representative

495  of therea-world scenario in Pakistan.

496 4. Environmental implications

497 Our work suggests that B. paramycoides D6, B. paramycoides D7 and A. faecalis are
498  capable to bioremediate domestic, hospital, textile, pharmaceutical and mixed wastewaters under
499  optimal conditions. These optimal conditions for temperature (37 and 51 °C) are achievable in
500 Pakistan’s arid climate (in temperate zone) and the incubation time is achieved in 48 h only. The
501 utilization of these bacteria strains has several advantages as compared to the conventional
502  methods such as physicochemical approachesfor the removal of contaminants. Bacterial treatment

503 withthese strainsis a cost-effective and low-tech method as the strains are isolated from the same
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504  wastewater needed to be treated (Phugare et al., 2011). Further, these bacteria strains have been
505 found here to be efficient for the biotreatment of a wide range of wastewaters, i.e. domestic,
506  hospital, textile, pharmaceutical and mixed wastewaters. The strains degraded pharmaceutic
507  pollutantsinto ecofriendly derivatives and showed high decolourisation potential. Thus, thiswork
508  suggests that the biological treatment of wastewaters using B. paramycoides and A. faecalis can
509  be an eco-friendly and efficient method which may help devel oping countries such as Pakistan to
510 meet the Sustainable Development Goa of Clean Water and Sanitation (SDG-6). Future work may
511  requireto focus on scaling-up this methodology at commercial level and to form a consortium of

512  these strains for achieving much higher efficiency.

513 5. Conclusion

514 Bacterial strainsB. paramycoides D6, B. paramycoides D7 and A. faecalis have been proven
515  to be efficient in terms of possessing bioremediation potential against different wastewaters, i.e.
516 domestic, hospital, textile, pharmaceutical and mixed wastewaters. These bacteria isolates
517  significantly biodegrade the pollutants from the wastewaters into non-toxic organic compounds
518  within 48 hours of incubation, 10 % of inoculum and 37 and 51°C temperatures, respectively.
519  Under these optimal growth conditions, the strains B. paramycoides D6, B. paramycoides D7 and
520 A faecalis showed maximum decolourisation potential of 96, 96, 93 %, respectively against
521  hospital wastewater. GCM S analysis confirmed the biodegradation of pharmaceutic pollutants, i.e.
522 Phenol, Sdlicylic acid, Caffeine, Naproxen, Octadecene and Diazepam, present in the hospital
523  wastewater into Ticlopidine in the case of B. paramycoides D6, Tetradecene and Griseofulvinin
524  the case of B. paramycoides D7 and Lidocaine and Butabital in the case of A. faecalis. At 300
525 mg/L concentration, B. paramycoides D6, showed overall maximum growth of 78 and 70 % for

526 CaCl, and MgSOs, respectively; B. paramycoides D7 showed maximum growth of 82 % for
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527  PbNOg; Alcaligenes faecalis showed maximum growth of 65, 90, 73, 73 and 75 % for PbNOs,
528  NaMo0O4, CaClz, MgSO4 and K2Cr207, respectively. Our work recommends that the devel opment
529 of a consortium from these strains may prove more efficient source of bioremediation of

530 wastewaters.
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901 Table 1: Physiochemical characterisation of untreated and treated wastewatersin
902 comparison to NEQS
Wastewater s
Parameters NEQS DWW HWW TWW PWW MWW
U n;rjeat Treated U n;rjeat Treated Un;rjeat Treated Un;rjeat Treated U n;rjeat Treated
) Light Colourle Light Colourle  Greenis  Colourle Light Colourle Blackish Colourle
Colour (PCU) grey ss yellow s h grey s brown ss
- 101 28 188 55 221 61 103 38 311 64
Accepta No A No No A No No
Smell ble/ Pungent smell Fishy smell Pungent smell Fishy smell Pungent smell
Bearable
Temperat 223" : 25 4 25 4 2 4 28 4 21 4
°C
ure () - - 29 26 30 26 33 26 33 26 31 26
pH 6.6-8.5 7.8 6.9 74 6.7 8.7 75 104 8.2 8.4 74
EC (pgcm) - 413 214 444 267 861 574 350 193 775 435
TSS(mglL) ;Z?E 1920 363 2300 483 2150 425 2120 398 2670 491
TDS (mg/L) 1000 296 213 296 220 608 398 105 87 541 323
COD (mglL) i%%‘ 76 212 260 396 17 153 133 269 99 235
BODs (mg/L) 80-250 39 176 78 246 14 174 68 223 40 169
BODs: COD >0.6 0.51 0.83 0.3 0.62 0.82 1.14 051 0.83 0.4 0.72
Salinity (ppt) - 0.2 0.1 0.2 0.1 05 0.3 0.3 0.2 04 0.3
Turbidity
(NTU) 5 38 4 51 5 76 5 61 3 123 4
Arsenic (AS) r?@?_ Nd Nd Nd Nd Nd Nd Nd Nd Nd Nd
Cadmium (Cd) r?{g/ll_ Nd Nd Nd Nd Nd Nd Nd Nd Nd Nd
Chromium (Cr) r?@?_ Nd Nd 18 Nd Nd Nd 17 005 0.9 0.02
Lead (Pb) r%)/?_ Nd Nd 0.17 Nd Nd Nd Nd Nd Nd Nd
Nickel (Ni) r?";)/lz_ 0.08 0.07 18 0.25 0.18 0.08 1.0 05 05 022
903 *NEQS = National Environment Quality Standards
904 *Nd = Not Detectable
905 * DWW = Domestic Wastewater
906 *HWW = Hospital Wastewater
907 *TWW = Textile Wastewater
908 * PWW = Pharmaceutical Wastewater
909 *MWW = Mixed Wastewater
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910 Table 2: Analysis of untreated and treated hospital wastewater through GCM S
Wastewater  Pollutants Major Chemical structure Retention Confirmation Conc.
samples Group/Class time (min) ion (m/z) (ppm)
Untreated HWW (Control)

Phenol Aromatic g 26.72 58.15 0.876
Salicylic acid Metabolite 2 6.51 147.64 0.048
{ j OH
OH
Caffeine Stimulant o 7.96 266.82 0.007
\N N
. AT | N/>
Naproxen NSAID 9.16 412.07 0.023
Octadecene Organic 28.65 581.46 0.185
Diazepam Sedative 38.06 685.39 0.014
Treated HWW (D6)
Salicylic acid Metabolite i 6.51 147.64 0.007
‘OH
‘OH
Caffeine Stimulant s 7.96 266.82 0.004
weley
oA N
Ticlopidine Fibrinolitic I:»“lc'N’}:} 31.95 534.12 0.011
(Derivative)
Treated HWW (D7)
Tetradecene Organic N 7.08 190.86 0.035
(Derivative)
Naproxen NSAID N i _OH 9.16 412.07 0.006
o P o
|
Octadecene Organic 28.65 581.46 0.019
Griseofulvin Antibacterial 46.18 692.95 0.028
(Derivative)
Treated HWW (P1)
Phenol Aromatic OH 26.72 58.15 0.381
Salicylic acid Metabolite Gl 6.51 147.64 0.015
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Lidocaine Anesthetic 20.26 368.28 0.122
(Derivative) '

Butalbital Barbiturate a N o 30.88 625.51 0.054

(Derivative) Y

Internal standards

Na i i 24.27 156.18 Na
Acenaphthene OO

Na OO 29.74 184.25 Na
Phenanthrene O

911

912
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913 Table 3. Top 10 BLAST hitsfor isolate D6
Hit Descrintion Max Total Query Percentage Accession
Number P Score | Score Cover | dentity number

Bacillus paramycoides
1 strain MCCC 1A04098 16S 2743 2743 100% 100.00% NR_157734.1
ribosomal RNA, partial sequence
Bacillus tropicus

2. strain MCCC 1A01406 16S 2737 2737 100% 99.93% NR_157736.1
ribosomal RNA, partial sequence
Bacillus nitratireducens

3. strain MCCC 1A00732 16S 2737 2737 100% 99.93% NR_157732.1
ribosoma RNA, partial sequence
Bacillus luti

4. strain MCCC 1A00359 16S 2737 2737 100% 99.93% NR_157730.1

ribosomal RNA, partial sequence
Bacillus albus

5. strain MCCC 1A02146 16S 2737 2737 100% 99.93% NR_157729.1
ribosomal RNA, partial sequence
Bacillus cereus

6. strain CCM 2010 16S ribosomal 2732 2732 100% 99.87% NR_115714.1
RNA, partial sequence
Bacillus cereus

7. ATCC 14579 16S ribosoma RNA | 2732 2732 100% 99.87% NR_074540.1
(rrnA), partial sequence
Bacillus proteol yticus
8. strain MCCC 1A00365 16S 2726 2726 100% 99.80% NR_157735.1
ribosomal RNA, partial sequence
Bacillus cereus

9. strain IAM 12605 16Sribosomal | 2721 2721 99% 99.86% NR_115526.1
RNA, partial sequence
Bacillus wiedmannii
10. strain FSL W8-0169 16S 2721 2721 100% 99.73% NR_152692.1
ribosoma RNA, partial sequence

914

915

916

917

918

919

920
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921 Table4. Top 10 BLAST hitsfor isolate D7
Hit Descrintion Max Total | Query Percentage | Accession
Number P Score | Score | Cover | dentity number

Bacillus paramycoides
1 strain MCCC 1A04098 16S 2715 | 2715 100% 99.86% NR_157734.1
ribosomal RNA, partial sequence
Bacillus tropicus

2. strain MCCC 1A01406 16S 2710 | 2710 100% 99.80% NR_157736.1
ribosomal RNA, partial sequence
Bacillus nitratireducens

3. strain MCCC 1A00732 16S 2710 | 2710 100% 99.80% NR_157732.1
ribosomal RNA, partial sequence
Bacillus I uti

4. strain MCCC 1A00359 16S 2710 | 2710 100% 99.80% NR_157730.1

ribosomal RNA, partial sequence
Bacillus albus

5. strain MCCC 1A02146 16S 2710 | 2710 100% 99.80% NR_157729.1
ribosomal RNA, partial sequence
Bacillus cereus

6. strain CCM 2010 16S ribosomal 2704 | 2704 100% 99.73% NR_115714.1
RNA, partial sequence
Bacillus cereus

7. ATCC 14579 16Sribosomal RNA | 2704 | 2704 100% 99.73% NR_074540.1
(rrnA), partial sequence
Bacillus cereus

8. strain IAM 12605 16Sribosomal | 2702 2702 99% 99.86% NR_115526.1
RNA, partial sequence
Bacillus cereus

9. strain NBRC 15305 16S 2702 2702 99% 99.86% NR_112630.1
ribosomal RNA, partial sequence
Bacillus cereus

10. strain JCM 2152 16S ribosomal 2702 2702 99% 99.86% NR_113266.1
RNA, partial sequence

922

923

924
925

926

927

928

929


https://doi.org/10.1101/2020.05.20.105940
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.20.105940; this version posted May 20, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

930 Table5. P1 Isolate Top 10 Blast hits
Hit Descrintion Max Total | Query | Percentage | Accession
Number P Score | Score | Cover | Identity number

Alcaligenes faecalis
1 strain NBRC 13111 16S ribosomal 2473 2473 | 99% 97.47% NR_113606.1
RNA, partia sequence
Alcaligenes aquatilis
2. strain LMG 22996 16S ribosomal 2455 2455 | 99% 97.20% NR_104977.1
RNA, partial sequence
Alcaligenes faecalis

3. strain IAM 12369 16S ribosomal 2429 2429 | 99% 96.99% NR_043445.1
RNA, partial sequence
Alcaligenes endophyticus

4. strain AER10 16S ribosomal RNA, 2388 2388 | 100% | 96.39% NR_156855.1
partia sequence
Alcaligenes faecalis subsp.

5. parafaecalis strain G 16S ribosomal 2364 2364 96% 97.17% NR_025357.1

RNA, partial sequence
Alcaligenes pakistanensis
6. strain NCCP-650 16S ribosomal 2320 2320 | 96% 96.67% NR_145932.1
RNA, partial sequence
Alcaligenes faecalis subsp.
7. phenoalicus strain J 16S ribosomal 2303 2303 99% 95.25% NR_042830.1
RNA, partial sequence
Paenal caligenes suwonensis
8. strain ABC02-12 16S ribosomal 2204 | 2204 | 97% 94.76% NR_133804.1
RNA, partial sequence
Parapusillimonas granuli

9. strain Ch07 16S ribosomal RNA, 2200 2200 | 99% 94.36% NR_115804.1
partial sequence
Pusillimonas ginsengisoli
10. strain DCY 25 16S ribosoma RNA, 2200 2200 100% | 94.07% NR_116103.1
partial sequence
931
932
933
934
935
936

937
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967 Figure 7. Phylogenetic distance between D6 isolate and top 20 BLAST sequences
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Figure 8. Phylogenetic distance between D7 isolate and top 20 BLAST sequences
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972 Figure 9. Phylogenetic distance between P1 isolate and top 20 BLAST sequences
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981 BLAST reference sequences
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