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May 19, 202035

Abstract36

Background: Molecular multi-omics data provide an in-depth view on biological37

systems, and their integration is crucial to gain insights in complex regulatory processes.38

These data can be used to explain disease related genetic variants by linking them39

to intermediate molecular traits (quantitative trait loci, QTL). Molecular networks40

regulating cellular processes leave footprints in QTL results as so-called trans -QTL41

hotspots. Reconstructing these networks is a complex endeavor and use of biological42

prior information has been proposed to alleviate network inference. However, previous43

efforts were limited in the types of priors used or have only been applied to model44

systems. In this study, we reconstruct the regulatory networks underlying trans -QTL45

hotspots using human cohort data and data-driven prior information.46

Results: We devised a strategy to integrate QTL with human population scale47

multi-omics data and comprehensively curated prior information from large-scale bio-48

logical databases. State-of-the art network inference methods applied to these data and49

priors were used to recover the regulatory networks underlying trans -QTL hotspots. We50

benchmarked inference methods and showed, that Bayesian strategies using biologically-51

informed priors outperform methods without prior data in simulated data and show52

better replication across datasets. Application of our approach to human cohort data53

highlighted two novel regulatory networks related to schizophrenia and lean body mass54

for which we generated novel functional hypotheses.55

Conclusion: We demonstrate, that existing biological knowledge can be leveraged56

for the integrative analysis of networks underlying trans associations to deduce novel57

hypotheses on cell regulatory mechanisms.58

Keywords: systems biology, omics, data integration, network inference, prior information, simulation,59

machine learning, personalized medicine60
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Background61

Genome-wide associations studies (GWAS) have been tremendously successful in discover-62

ing disease associated genetic loci. However, establishing causality or obtaining functional63

explanations for GWAS SNPs is still challenging. In recent years, the focus has shifted from64

discovery of disease loci to mechanism and explanation, and large efforts have been put65

into unravelling the functional consequences of GWAS SNPs [1, 2]. These have been made66

possible through technological advances in measuring genome-wide molecular data in large67

population cohorts, which further led to a steady increase in biological resources providing68

simultaneous measurements of different molecular layers (often termed multi-omics data).69

To elucidate disease mechanisms, systems genetics approaches seek to link GWAS SNPs to70

intermediate molecular traits by identifying quantitative trait loci (QTL) [3, 4], for example71

for gene expression levels (eQTL) [5–7] or DNA methylation at CpG dinucleotides (meQTL)72

[8–10].73

Genetic variants that are QTL for quantitative molecular phenotypes that reside on a74

different chromosome are called trans -QTL. Previously, trans -QTL studies were successful75

in model systems [11, 12]. Recently, large-scale meta analyses of molecular QTL in very76

large sample sizes have now been applied to successfully map large numbers of trans -QTL77

in humans [7]. These are particularly interesting, as they have been found to be enriched for78

disease associations [7, 8, 13]. Yet, the underlying mechanisms leading to such associations79

can usually not be explained in a straightforward way [6], and in fact, 83% of discovered80

trans -eQTL in human are estimated to still be unexplained [7].81

Trans-QTL hotspots [14], where a single genetic locus influences numerous quantitative82

traits on different chromosomes, can be seen as footprints of regulatory molecular networks83

and likely encode master regulators. One way of mechanistically explaining the effects of84

these master regulators is by reverse engineering the regulatory networks, and hence de-85
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termining the intermediate molecular processes giving rise to the observed trans effects,86

ultimately yielding novel insights into disease pathophysiology [1, 14–16].87

A large body of work has focused on inferring regulatory interactions from high-throughput88

data by individually combining distinct genomic layers like gene expression levels and geno-89

type [6, 17–19] or chromosomal aberration [20] information. Generally, network inference to90

uncover regulatory mechanisms in biological systems has gotten much interest [15, 21–24].91

The emergence of multi-omics data now also allows for establishing networks across more92

than two omics layers in a holistic approach to obtain more insight into the function of reg-93

ulatory elements [16]. Major efforts have been made to recover functional interactions from94

such data, but methods to successfully reverse engineer regulatory networks across multiple95

omics layers are still lacking [1, 4, 25, 26].96

Furthermore, utilizing the wealth of data available from genomic databases as biological97

prior information can guide the inference of complex multi-omics networks [26–28]. For98

instance, using known relationships discovered in previous studies as prior knowledge, such99

as protein-protein interactions (PPIs) or eQTL, can facilitate network reconstruction on100

novel datasets. Application of priors has been investigated in numerous works [e.g. 15, 27,101

29–34], and while several studies show the advantage of using priors in synthetic datasets102

[22, 31, 33, 34] or model systems [15, 32, 34, 35], relatively few studies apply their inference103

methodologies to functional genomics data in humans [29, 33, 36, 37]. In case human data is104

considered, either cell line data are used [36], the inference is restricted to a single pathway105

[37] or no informative priors are used for this specific context [29]. Zuo et al. apply prior106

based inference to human cancer gene expression data, however, they only use priors based107

on PPIs extracted from the STRING database and focus on differential expression analysis108

[33]. What is still missing, is, to comprehensively integrate the vast amount of functional109

data from large-scale databases [38–41] as prior information in human multi-omic trans -QTL110

studies and to determine the appropriate inference methods.111
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Here, we developed a novel approach for understanding the molecular mechanisms un-112

derlying the statistical associations of trans -QTL hotspots by integrating existing biological113

knowledge and available multi-omics data to infer regulatory networks. We derived a com-114

prehensive set of continuous priors from public datasets such as GTEx, the BioGrid and115

Roadmap Epigenomics and applied state-of-the-art network inference methods including116

graphical lasso [42], BDgraph [29] and iRafnet [32], and showed, that methods using data-117

driven priors outperform non-prior approaches for network reconstruction on simulated data.118

Moreover, we showed that networks inferred on real-world data using priors can be replicated119

more faithfully across independent datasets than networks inferred without priors. Finally,120

we demonstrated, that incorporating existing knowledge with multi-omics data yields novel121

insights into disease related cellular mechanisms when applied to real-world population co-122

hort data of different omics types and tissues.123

Results124

Trans-QTL hotspots define regulatory network candidates125

In this study, we aimed to reconstruct regulatory networks to explain trans quantitative trait126

locus (trans -QTL) hotspots on a molecular level through simultaneous integration of multi-127

omics data [4]. Trans-QTL hotspots have previously been associated with disease [8, 13], and128

understanding their mechanisms of action can deepen our insights into regulatory pathways129

and, ultimately, into the disease process.130

Our general analysis strategy is depicted in Figure 1A and consists of the following steps:131

1) curate QTL hotspots, 2) gather functional data and prior information, 3a+b) benchmark132

network inference methods in simulation and replication study to select best suited method133

and 4) infer and interpret networks identified in the cohort data.134

We obtained trans hotspots from the methylation QTL (meQTL) discovered in whole-135
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blood in the KORA [43] and LOLIPOP [44] cohorts reported by Hawe and colleagues [10]136

and the expression QTL (eQTL) published by the eQTLGen consortium [7], yielding a total137

of 107 and 444 trans -loci per QTL type, respectively (Figure 1B, see Methods for details).138

In addition to the whole-blood derived hotspots, we curated a single trans -eQTL hotspot139

in Skeletal Muscle tissue from GTEx v8 [38, 39], which we analyzed separately.140

For each hotspot, we aimed to identify the causal gene at the genetic locus affected by141

the SNP and the intermediate genes which mediate the observed trans associations. To142

this end, we collected sets of candidate genes with different roles for each locus, which143

we term ’locus sets’ (see Methods). A locus set contains the SNP defining the hotspot,144

the respective trans associated traits (CpGs for meQTL and genes for eQTL, ’eGenes’),145

cis genes encoded near the SNP as candidate causal genes, trans genes (for meQTLs, genes in146

vicinity of the CpGs), as well as transcription factors (TFs) binding near the trans associated147

entities and PPI genes residing on the shortest path between trans traits and cis genes in148

a protein-protein interaction (PPI) network, as potential intermediate genes. Cis genes149

form potential candidate regulator genes of the locus, and the inclusion of the PPI and TF150

binding information allows us to bridge the inter-chromosomal gap between the SNP and151

the trans CpG sites/trans eGenes. An overview of entities collected over all loci for both152

QTL types is given in Figure 1C.153

One main aspect of this work is the use of any form of biological prior information,154

including continuous scores, to guide network inference. We hence collect prior information155

for all possible edges between entities contained in locus sets in addition to the functional156

data (Figure 1). In total, four distinct types of edges are annotated with prior information:157

SNP-Gene, Gene-Gene, TF-CpG/TF-Gene and CpG-Gene edges. All prior information is158

generated from matched, public data independent of the data used during network inference159

(see Methods for details).160

Figure 1D indicates the total number of edges annotated with prior information over161
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Figure 1: Project overview. Panel A) shows a graphical abstract of the analyses performed
in this project. Panel B) provides a global view on the collected eQTL (orange) and meQTL
(green) hotspots. The x-axis indicates ordered chromosomal positions for trans eGenes and
CpG sites, respectively. Panel C) shows the total number of different genomic entities
gathered over all hotspots during locus set creation (log scale). Panel D) depicts density
plots of the number of possible network edges with available prior information (x-axis) over
all hotspots, zoomed in to area between 0 and 1000. Same color coding is used in panels
B-D.

all hotspots. For meQTL and eQTL, a minimum of 2 and 3 edges per hotspot show prior162

evidence, respectively, and most hotspots get only relatively few priors compared to the total163

number of possible edges (median 26 and 94, respectively). However, in both cases several164

networks collect priors for over 100 edges (8 and 209 loci with >= 100 priors for meQTL and165

eQTL). As expected, the total number of edges with prior information per locus correlates166

with the total number of possible edges in the respective loci, however, the fraction of all167

possible edges annotated with prior information decreases (Additional File 1, Figure S2).168
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Benchmark of network inference methods169

Simulation study shows benefit of data-driven priors170

Numerous methods for regulatory network inference have been proposed (e.g. [42, 45, 46], see171

also [4]), and, therefore, before investigating individual hotspots in detail we sought to select172

the method best suited for this study (see Figure 1A step 3). To this end, we performed an173

extensive simulation study (Figure 1A step 3a) to evaluate the performance of five distinct174

methodologies (see Table 1 for a method overview) in reconstructing ground truth graphs175

from simulated data and prior information. Simulated data were matched with the observed176

QTL-hotspots by preserving the sample size and the total number of input nodes and 100177

simulations were performed for each hotspot. We evaluated the impact of priors for different178

sample sizes by sub-sampling the simulated data and using the full prior matrix. To assess179

the impact of noise in priors, we inferred networks separately from prior information with180

varying degrees of noise (up to 100%, see Methods for details) for the complete data.181

name version repository attribute reference
BDgraph 2.61 CRAN MCMC Mohammadi and Wit

(2015) [29]
gLASSO 1.11 CRAN Graphical lasso Friedman et al. (2008) [42]
GENIE3 1.2.1 bioconductor Random forests Huynh-Thu et al. (2010)

[46]
GeneNet 1.2.13 CRAN Shrinkage/ FDR Opgen-Rhein et al. (2007)

[45]
iRafNet * 1.1-2 CRAN Random forests Petralia et al. (2015) [32]

Table 1: Overview of the network inference packages used in the simulation study.
* adjusted to make use of parallel processing, see Methods

We gauge the relative gain in performance attributable to prior information for both182

gLASSO and BDgraph by always training two distinct models, one utilizing the provided183

priors (gLASSOP , BDgraphP ) and one without priors (gLASSO , BDgraph ). The184

implementation of iRafNet always requires a prior matrix, whereas both GeneNet and185
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GENIE3 cannot utilize prior information and hence were trained only with the simulated186

data. We utilize Matthews Correlation Coefficient (MCC) [47] as a balanced performance187

measure to compare inferred networks to the respective ground truth (see also [29]). Fig-188

ures 2A and 2B show the results for the simulation study for all methods (see also Additional189

File 1, Tables S2, S3, S4 and S5). Overall, both gLASSOP and BDgraphP exhibit improved190

performance with relatively low standard deviation in terms of MCC as compared to their191

non-prior counterparts, both for low and high sample size settings. The performance of all192

other methods is affected by low sample sizes, with BDgraph showing slightly better perfor-193

mance than all other methods. Moreover, both gLASSOP and BDgraphP outperform all194

other methods as long as the prior noise does not exceed 10% (gLASSOP ) and 30% of incor-195

rect edges in the prior graph, in which case BDgraph achieves the highest median MCC over196

all methods. GeneNet performs well in all simulations, whereas GENIE3 , gLASSO and197

iRafNet show about average performance with iRafNet achieving worst results overall.198

In addition to the curated prior matrices, we also generated a prior matrix reflecting the199

sparsity of the true graph (column ’rbinom’ in Figure 2B and Additional File 1, Tables S2200

and S3, see also Methods), and our results indicate, that information about sparsity of the201

underlying network already improves network inference performance. Finally, prior based202

methods, and specifically BDgraphP , outperform non-prior methods in the task of identify-203

ing the correct cis -gene by recovering associations between the discrete SNP and continuous204

gene expression data types (Additional File 1, Figure S3), when using independent eQTL205

data as prior.206

Inferred networks replicate in independent datasets207

In addition to the simulation study, we evaluated the methods on real world data from208

two large population cohorts: the KORA (Cooperative Health Research in the Region of209

Augsburg) and LOLIPOP (London Life Sciences Population) cohorts (see Figure 1A2 and210
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Figure 2: Method comparison results. (A) Results of simulation study: y-axis shows the
Matthews correlation coefficient (MCC) as compared to the simulated ground truth, x-
axis indicates increasing sample size from left to right, colors indicate different inference
methods. (B) Similar to (A), but x-axis indicates increasing noise in the prior matrix from
left to right. Group (’rbinom’) indicates uniform prior set to reflect degree distribution of
true graph. (C) shows MCC (y-axis) between networks inferred on KORA and LOLIPOP
data for same locus for all methods (x-axis). (D) contrasts MCC across cohorts using TF
expression (dark gray) versus using substituted TFAs (light gray). Boxplots show medians
(horizontal line) and first and third quartiles (lower/upper box borders). Whiskers show
1.5 ∗ IQR (inter-quartile range); for (B), dots depict individual results and for (C), stars
indicate significant difference between expression/TFA results for each method (Wilcoxon
test, **: P ≤ 0.01, ***: P ≤ 0.001, ****: P ≤ 0.0001)

Methods). Data from both cohorts were generated from whole-blood samples and contain211

imputed genotypes as well as microarray measurements of gene expression and DNA methy-212

lation for a total of 683 (KORA) and 612 (LOLIPOP) samples. Since for these data no213

ground truth is available, we evaluate robustness of the networks inferred by the individual214

methods via cross cohort replication. For each hotspot, we collect data for all genes, CpGs215

and the SNP in the locus set for KORA and LOLIPOP and separately inferred networks216

in both cohorts for all models. Obtained networks were then compared between cohorts217
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using MCC to get a quantitative estimate of how robust the network inference is across218

different datasets for the same hotspot, yielding scores for KORA versus LOLIPOP and219

vice versa (i.e. one network functioning as the reference). Results of this analysis are shown220

in Figure 2C. With respect to MCC, models supplied with prior information (gLASSOP ,221

BDgraphP and iRafNet ) show the best performance, with gLASSOP coming up as the222

most robust method, followed by BDgraphP and iRafNet . Noticeably, of the top methods223

BDgraphP shows much less variance compared to gLASSOP and iRafNet . Ignoring prior224

information lead to a drop in performance for both gLASSO and BDgraph , which leads to225

GeneNet outperforming both methods. Finally, GENIE3 shows worst performance in this226

setting.227

Estimated transcription factor activities as a proxy to TF activation228

Transcription factor activities (TFAs) estimated from transcription factor binding sites (TFBS)229

and gene expression data have been suggested as an alternative to using TF gene expres-230

sion in inference tasks [48], since a transcription factor’s expression level alone might not231

reflect the actual activity of a TF (driven for instance by its phosphorylation state). To232

evaluate, whether TFAs could improve our inference, we estimated TFAs for all TFs based233

on their expression and ChIP-seq derived TFBS from ReMap [49] and ENCODE [50, 51]234

(see Methods for details). We applied the same cross cohort replication strategy as above235

and compared MCCs from the TFA based analysis to the previous results using a one-sided236

Wilcoxon test. Figure 2D shows the results of TFA (light gray boxes) versus gene expres-237

sion (dark gray boxes) based analysis in terms of MCC for all available hotspots. For all238

models but gLASSOP and GENIE3 , TFAs yield a significantly higher MCC (Wilcoxon239

test P < 0.01) as compared to using the pure expression data (see also Additional File 1,240

Table S6).241

According to the results presented above, detailed investigation of real world data was242
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focused on networks obtained from gLASSOP and BDgraphP and TF expression was sub-243

stituted by TFA estimates for all subsequent analyses.244

Replication of previous findings by simultaneous data integration245

Before seeking new mechanistic insights and generating novel hypotheses from trans -QTL246

hotspots, we first checked whether our approach can replicate previous findings. Hawe247

et al. [10] inferred gene regulatory networks from trans -meQTL hotspots using a two-248

step approach involving 1) a random walk on a PPI and ChIP-seq based networks and 2)249

subsequent local correlation analysis. In contrast, our approach simultaneously integrates250

all functional data, relying on PPI and ChIP-seq information as prior knowledge, thereby251

avoiding the need for post-hoc correlation testing of e.g. SNP-gene and CpG-gene edges. For252

the comparison, we extracted three of their hotspot networks and evaluated the overlap with253

the networks inferred in this study.254

locus num. nodes num. edges common edges MCC
rs9859077 99 (89) 447 (287) 141 0.52
rs730775 58 (49) 98 (67) 48 0.69
rs7783715 25 (17) 24 (23) 5 0.65

Table 2: Comparison of the networks inferred in this study to the networks extracted from
[10]. Numbers in bracket indicate statistics for the networks from the original publication.

Table 2 shows the results of this comparison. Overall, the comparisons indicate rela-255

tively strong concordance between the two approaches with MCCs of 0.515, 0.689 and 0.65.256

Moreover, for all three networks, our simultaneous inference approach yielded more edges257

and nodes than the two-step approach (56%, 46% and 4% novel edges and 11%, 19%, 47%258

additional nodes for rs9859077, rs730775 and rs7783715, respectively), which might have259

been missed by the two-step approach, as it relies on known PPI and ChIP-seq information.260

Figure 3 contrasts the two networks obtained for the rs730775 hotspot using 1) the two-261

step approach by Hawe et al. [10] and 2) the network inferred in this study using gLASSOP ,262
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Figure 3: Comparison of the random walk based network reported in [10] and the network
inferred from functional omics data in this study for the rs730775 locus. Shown is the
complete network constructed from the omics data, edge color indicates replication/novelty.
Orange edges: replicated with respect to the random walk network. Green edges: novel
in our network. White box: SNP; pink nodes: SNP-genes; blue nodes: TFs; brown boxes:
CpGS; green nodes: CpG-genes.
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orange edges showing replicated and green edges indicating novel edges. In Hawe et al.263

[10], the authors described a regulatory network involving the rs730775 SNP connected264

via NFKBIE to NFKB1 which connects to the trans-CpG sites. This main pathway is also265

discovered in our approach (i.e. rs730775 ↔ NFKBIE ↔ NFKB1 ↔ CpG sites), in addition266

to some of the initially reported TFs (blue nodes), of which NFKB1 is connected to most267

of the trans CpGs (82%, 29 out of 35) as was the case in the original network. However,268

we also identify patterns of CpG genes (green nodes) connected to the TFs, which were not269

previously identified. Overall, the integrated approach using prior information leads to high270

replication of previous networks including novel connections leading to potential new insights271

in target gene regulation.272

A trans regulatory network for a schizophrenia susceptibility locus273

In order to demonstrate the effectiveness of our approach in getting mechanistic insights274

from trans -QTL associations, we inferred networks for all meQTL [10] and eQTL [7]275

hotspots using whole blood data from the KORA and LOLIPOP cohorts using the prior276

based gLASSOP and BDgraphP models (see Methods, all networks are listed in Additional277

File 2, Table S3). Based on the GWAS catalog (v1.0.2, [52]), graph properties and a cus-278

tom graph score (see Methods), we prioritized a trans acting locus that has previously been279

associated with schizophrenia (SCZ).280

The network involves the trans -eQTL locus around the rs9469210 (alias rs9274623 1)281

SNP in the Human Leukocyte Antigen (HLA) region on chromosome 6 shown in Figure 4A.282

rs9274623 has been associated with SCZ [54] and is a cis -eQTL for all three of its283

directly connected SNP-genes, PBX2, RNF5 and HLA-DQA1 in the eQTLGen study. RNF5284

showed differential expression for SCZ cases vs controls in addition to its expression being285

associated with an additional independent SCZ susceptibility SNP (rs3132947, R2 = 0.14286

1according to SNiPA: https://snipa.helmholtz-muenchen.de/snipa3/, [53]
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in 1000 genomes Europeans2) located in the HLA locus [55]. Interestingly, PBX2 has been287

associated with a SCZ related phenotype in a pharmacogenetics study (clozapine-induced288

agranulocytosis) [56, 57] and shows direct binding evidence to the SPI1 promoter region289

(ReMap TFBS [49]). The transcription factor SPI1 (PU.1 ) is linked to Alzheimer’s Disease290

likely by impacting neuroinflammatory response [58] and was found to interact with its291

network neighbor,RUNX1, in modulating gene expression [59]. Moreover, RUNX1 has been292

implicated in rheumatoid arthritis, a disease negatively associated with SCZ and which293

hence might share susceptibility genes with SCZ [60]. Interestingly, several genes encoded294

in the HLA locus, which has been implicated in SCZ and other psychiatric and neurological295

disorders [61–64], were picked up by our inference downstream of SPI1 and RUNX1. TCF12296

is a paralog of TCF4 and TCF3 which are known E-box transcription factors and are297

expressed in multiple brain regions [65]. TCF4 loss-of-function mutations are the cause298

of Pitt-Hopkins syndrome (a syndrome causing mental retardation and behavioral changes299

amongst other symptoms) [66] and regulatory SNPs relating to TCF4 have been associated300

with SCZ [67, 68]. The NFKB1 pathway has been recognized as an important regulatory and301

developmental factor of neural processes and was found to be dysregulated in patients with302

SCZ [69] . Finally, 9 of the 40 discovered trans -eGenes of the locus are connected to the SNP303

via the selected TFs. Of these, SH3BGRL3 [70] has already been linked to SCZ and PSEN1304

[71], B9D2 [72], CXCR5 [73] as well as DNAJB2 [74] were implicated in other neurological305

disorders. In addition, the trans eGene RNF114 has previously been shown to play a role306

in the NFKB1 pathway [75]. A formal colocalization analysis using fastENLOC [76] showed307

evidence of a common causal variant underlying the SCZ GWAS signal [77] and each of the308

eQTLGen trans -eQTL of PSEN1, DNAJB2 and CD6 (SNP-level colocalization probability309

of 0.92, 0.87 and 0.42, respectively; see Methods and Additional File 1, Figure S4).310

Our approach highlighted a potential regulatory pathway involving diverse genes related311

2https://ldlink.nci.nih.gov/?tab=ldmatrix
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to SCZ and other neurological disorders. While some of the genes were not previously312

reported in this specific disease context (e.g. CD6, BRD2, DEF8 ), their association to this313

network indicates a potential role in SCZ pathogenesis and additional colocalization analysis314

hints at a potential causal relationship between these genes and SCZ.315

A - eQTLgen Schizophrenia locus B - GTEx Lean Body Mass locus

SNP

SNP gene

Transcription factor

shortest path gene

trans eGene

correlation

ChIP-seq evidence

PPI evidence
cis gene

SYNC

SIN3B
HDAC1

TBP

FAM109A

HDAC2

PHOSPHO1

CREM

chr13_73532802_A_G_b38

KLF5
cis

trans

SPI1

TCF12CTCF

NFKB1RUNX1

ZNF672

B9D2SH3BGRL3 RNF114

DEF8

PSEN1CD6

DNAJB2 CXCR5

HLA-DRB1

rs9274623

HLA-DMB

RNF5

PBX2
BRD2

HLA-DMA

HLA-DRA
HLA-DQA1

Figure 4: Inferred networks for the schizophrenia susceptibility locus rs9274623 obtained
from eQTLgen (A) and the rs9318186 locus obtained from GTEx (B). The white boxes in-
dicate sentinel SNPs, pink ovals indicate SNP-Genes, blue ovals transcription factors and
white ones shortest path derived genes. Light green ovals represent genes trans-associated to
the SNP. Black edges were inferred during network inference. In addition to being inferred,
colored edges indicate ChIP-seq protein-DNA binding evidence (green), protein-protein in-
teraction in the BioGrid (purple) and whether or not a gene is encoded in cis of the linked
entity (blue).

Application to GTEx Skeletal Muscle tissue316

All above analyses were focused on whole-blood data, however, the proposed strategy can317

be applied to data from any biological context. To demonstrate this, we investigated the318

recently published trans -eQTLs from the GTEx v8 release [38, 78]3. We identified a single319

3https://www.gtexportal.org/
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LD block in Skeletal Muscle tissue, which is a trans -eQTL hotspot (see Methods), and320

for which we inferred regulatory networks. Since we can’t use the same priors, which were321

initially derived from GTEx, to analyze the same data set, we set out to curate muscle tissue322

specific priors from independent datasets. We utilized muscle eQTL from Scott et al. (2016)323

[79] and gene expression data curated from the ARCHS4 [41] database and generated tissue324

specific TFBS using factorNet [80] on DNAse-seq data obtained from ENCODE [50, 51]4 (see325

Methods for details). The resulting network for the gLASSOP model is shown in Figure 4B.326

The genetic variant rs9318186 is a cis -eQTL of KLF5 in GTEx v8 Skeletal Muscle327

(P = 6.1x10−37) and a proxy of it (R2 = 0.88) has been associated with Lean Body Mass328

(LBM). KLF5 itself, too, has been associated with LBM in a transcriptome-wide association329

study integrating GWAS results with gene expression [81] and with lipid metabolism in KLF5330

knockout mice [82]. In addition, several other genes in the network have been associated with331

related phenotypes: Both HDAC1 and HDAC2 have been found to control skeletal muscle332

homeostasis in mice [83], work together with SIN3B in the SIN3 core complex to regulate333

gene expression and are involved in muscle development [84]. TATA binding protein (TBP) is334

a well known transcription factor and important for the transcriptional regulation of many335

eukaryotic genes [85]. The trans -eGene SYNC was found to interact with dystrobrevin336

(DMD gene) in order to maintain muscle function (during contraction) in mice as well as337

being associated with neuromuscular disease [86, 87]. In addition, in Seim et al. (2018)338

[88], the authors investigated the relationship between obesity and cancer subtypes and339

found, that both PHETA1/FAM109A expression are associated to Body-Mass-Index (BMI)340

in esophageal carcinoma in data from The Cancer Genome Atlas (TCGA). PHOSPHO1 has341

been found to be involved in metabolism, specifically in energy homeostasis [89], and has also342

been associated via DNA methylation with BMI [90, 91] and with HDL levels, which have343

been negatively associated with LBM [92]. Dayeh et al. (2016) [93] further showed decreased344

4https://www.encodeproject.org/
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DNA methylation at the PHOSPHO1 locus in skeletal muscle of diabetic vs. non-diabetic345

samples. The remaining gene in the network (CREM ) has not yet been described in the346

broader context of LBM, but a GWAS meta-analysis executed by Wang et al. (2014) [94]347

hinted at association of a CREM SNP (rs1531550, P = 1.88x10−6) with elite sprinter status.348

These results suggest, that KLF5 may exert its specific functions through transcriptional349

regulation via the SIN3 core complex including TBP, with a potential involvement of CREM,350

of the trans -eGenes PHOSPHO1, SYNC and PHETA1/FAM109A.351

Discussion352

In this study, we introduced a Bayesian framework for the inference of undirected regulatory353

networks underlying molecular trans -QTL hotspots across multi-omics data types using354

existing prior knowledge. We compiled a comprehensive set of context specific network edge355

priors from diverse biological databases and applied these together with multi-omics data in356

different settings. These settings include an extensive simulation study to benchmark state-357

of-the-art inference methods as well as application to two large population cohorts, which358

we use for a replication analysis on the one hand and to generate novel hypotheses about359

molecular disease mechanisms on the other hand. Moreover, by applying our approach a360

GTEx Skeletal Muscle eQTL hotspot, we showed, that our strategy can be applied to data361

sets from other tissues, generated with different technologies.362

Benchmarking is important for selecting the best possible methods for specific tasks and363

we hence followed recently published guidelines [95] to perform benchmarking of state-of-364

the-art network inference methods in 1) a simulation study and 2) a replication analysis.365

Results from both analyses were then used to select the methods best suited for network366

inference based on functional multi-omics data from QTL hotspots using prior information.367

By inferring networks in over 10,000 simulated data sets, which reflect the distribution of368
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network parameters obtained from real-world data, we showed, that methods utilizing prior369

information outperform methods without any prior information in recovering a simulated370

ground truth, similar to what has been found e.g. in [27, 28, 36]. We further observed371

that, as expected, too much noise in the prior information significantly reduces method372

performance. However, only by increasing the noise level, i.e. the percentage of incorrect373

prior edges, to above 30% decreases the performance for BDgraph below the performance374

of its non-prior counterpart, indicating that low levels of noise in edge priors still improve375

network inference, results which are in line with e.g. Wang et al. (2013) [30], who used376

a modified graphical lasso approach, Christley et al. (2009) [28], who used an regularized377

ODE model and Greenfield et al. (2013) [27], who used a Bayesian regression framework.378

We further find, that, both for the prior and non-prior case, the Markov-Chain-Monte-Carlo379

based BDgraphP method outperforms respective other methods. However, both the copula380

approach based BDgraph and the gLASSOP outperform other methods in recovering mixed381

edges between discrete SNP allele dosage and continuous gene expression levels, although382

the tree based methods should be able to incorporate mixed data. While BDgraphP shows383

overall better performance than gLASSOP , the graphical lasso exhibits much lower run384

time which can be an important practical consideration. Our results hence highlight the385

strong value of using prior information for multi-omics based network reconstruction, and386

slightly favor BDgraph over the graphical lasso for this kind of inference.387

We confirmed the results of the simulation study by extended benchmarking of inference388

methods in a cross cohort replication analysis on two large multi-omics data sets. Prior389

based methods showed overall best replication across different cohorts as compared to non-390

prior methods. In the real-world setting, however, iRafNet performed similarly well as the391

other two prior methods in contrast to the simulation study and all prior based methods392

outperform non-prior methods. The good replication of prior based methods across different393

cohorts shows, that curated priors help to obtain more stable and confident results as com-394
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pared to using functional data alone. Together with the simulation, these results provide a395

comprehensive benchmark of established network inference methods and suggest, that priors396

should be integrated in network inference tasks wherever possible.397

Based on the results from the replication and simulation study, we choose the two best398

(prior based) methods BDgraphP and gLASSOP for detailed investigation of networks399

obtained form real-world cohort data. Using our integrative approach, we were able to400

reproduce and expand upon previous results from a step-wise network analysis approach401

presented in [10]. Of three of the locus networks described in their study, we reconstructed402

most of the edges and found additional edges, allowing more mechanistic interpretations for403

the function of specific transcription factors in relation to DNA methylation. One reason for404

finding additional edges is, that these could not be detected by the previous approach, since405

the authors focused on using established PPI and protein-DNA interactions and did not test406

all possible edges in the functional data. In contrast, our integrated approach considers all407

edges regardless of available prior evidence and associations will emerge, if the signal in the408

functional data alone or in addition to the prior evidence is strong enough.409

Next, we utilized the two top performing methods (BDgraphP and gLASSOP ) to infer410

networks from trans -eQTL hotspots and found, that our strategy can be used to recover411

known biology on the one hand and generate novel hypotheses about the molecular basis412

of diseases on the other hand. For a schizophrenia (SCZ) susceptibility locus, we identified413

several known SCZ (e.g. RNF5, HLA genes [55, 61]) and related (e.g. PBX2 [56, 57]) genes414

in the inferred locus network. Caution is needed for the interpretation of the candidates415

based on cis -eQTL, because of the haplotype structure of the HLA locus. However, our416

candidate PBX2 is defined by its connections in the network to the trans genes and, there-417

fore, independent of the cis eQTL. Expanding upon similar previous observations based on418

trans eQTL [7], the integrated network analysis including associated trans genes prioritizes419

PBX2, which was not possible using cis -eQTL alone. It was previously hypothesized, that420
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RUNX1 is involved in SCZ due to a negative association of SCZ with rheumatoid arthritis421

[60]. Our network corroborates this hypothesis and further allows for generating novel hy-422

potheses about the involvement of other genes (e.g. BRD2, DEF8 and RNF114 ), which could423

potentially play a role in schizophrenia. Moreover, we further substantiated these results by424

a formal colocalization analysis of the trans -eQTL and schizophrenia GWAS [77] signals of425

the trans genes linked in the network, which revealed strong evidence for colocalization of426

the underlying genetic variants of the disease and molecular traits. As this locus was derived427

from whole-blood data, interpretation is not straight forward for SCZ. Ideally, this analysis428

can be followed up in data derived from brain tissue to corroborate findings.429

To show, that our approach can be applied across different omics types and data sets,430

we analyzed a Skeletal Muscle trans -eQTL hotspot from GTEx associated with Lean Body431

Mass. We recovered known genes involved in lipid metabolism (KLF5 [81, 82]) as well432

as muscle development and controlling skeletal muscle homeostasis (e.g. HDAC1, HDAC2,433

[83]) and maintaining muscle function (SYNC [87]). This shows, that the genes linked in434

the inferred network are overall coherent with the observed phenotype association at this435

trans -acting locus. Moreover, HDAC1, HDAC2 and SIN3B have been described to interact436

together during muscle development [84], and, although these results were described in mice,437

our results suggest that these genes could exhibit a similar function in human. In addition,438

we observed an association between CREM and SYNC in our network, which led us to439

hypothesize, that CREM might also be involved in maintaining muscle function and Lean440

Body Mass, although is has not been previously linked to these phenotypes. However,441

additional experimental validation needs to be performed in order to corroborate findings of442

these computational analyses.443

Several practical considerations arise from our findings: First, by investigating the effect444

of increasing amounts of noise in the prior information in our simulation study, we showed,445

that some caution needs to be applied when curating continuous prior information from446

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2020. ; https://doi.org/10.1101/2020.05.19.101592doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.19.101592
http://creativecommons.org/licenses/by-nc-nd/4.0/


public biological data to keep noise levels low. Therefore, although gLASSOP and especially447

BDgraphP seem to be robust to low to moderate levels of noise, one might consider using448

only experimentally validated protein-protein interactions or high quality gene expression449

data to generate priors. Next, the definition of hotspot locus sets and priors in this study450

mitigates the N << P problem. This has been a problem sought to be alleviated using451

specialized approaches in previous applications [4]. Using our approach, the total number452

of entities (variables) going into the network inference typically does not exceed the total453

number of available samples in our data sets, and we showed in a simulation study, that priors454

improve inference also in low sample size settings. Overall, the benefit of the locus sets comes455

with the risk of missing certain genes needed to fully describe the trans effects. For instance,456

we reason that most relevant genes lie on the shortest path between cis and trans entities in457

the PPI network and hence only included those shortest path genes. However, our strategy458

of curating a stringent set of relevant transcription factors as well as including genes showing459

protein-protein interactions and all the genes in the vicinity of the hotspot SNP, should enable460

most key regulator genes to enter the inference process and yields parsimonious and easily461

interpretable results. In addition, methods have been developed to handle mixed data types,462

such as e.g. genotypes and gene expression. BDgraph , which uses a copula based approach463

to transform non-normal data, showed better performance in recovering associations between464

discrete and continuous data types as compared to gLASSO and the tree based methods, and465

hence should be preferred for applications on mixed data, especially when prior information466

is available. Finally, while we could use transcription factor binding sites (TFBS) in blood467

related cell-lines to analyze whole-blood cohort data, context (e.g. tissue) specific TFBS468

are not yet available for a large number of transcription factors, which potentially limits469

this approach to fewer applications. However, novel developments to predict TFBS from470

context specific open chromatin information (e.g. factorNet [80]) can help in carrying this471

strategy to more contexts. As an example, we utilized TFBS predicted using factorNet based472
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on ENCODE [50, 51] DNAse-seq data for analyzing a GTEx Skeletal Muscle trans eQTL473

locus.474

Conclusion475

This study describes a novel strategy for using comprehensive edge-wise priors from biological476

data to improve network inference for trans -QTL hotspots from human population scale477

multi-omics data. This facilitates the investigation of their underlying regulatory networks478

and enables the generation of novel mechanistic hypotheses for disease associated genetic479

loci. Moreover, we report a rigorous benchmark of state-of-the-art network inference methods480

for this task both in simulated and real-world data, and highlight the benefit of including481

biological prior information to guide network inference.482

Methods483

Cohort data processing484

Methylation data were measured using the Infinium Human Methylation 450K BeadChip

in both the KORA and the LOLIPOP cohort and methylation beta values obtained as

described previously [43, 44]. Quantile normalized methylation beta values were adjusted

for Houseman blood cell-type proportion estimates and the first 20 principal components

calculated on the array control probes by using residuals of the following linear model:

methylation β ∼ 1 + CD4T + CD8T +NK +BCell +Mono+ PC1 + · · ·+ PC20

For expression data, the Illumina HumanHT-12 v3 and Illumina HumanHT-12 v4 expres-485

sion BeadChips were used in KORA and LOLIPOP, respectively, and processed as described486
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previously [10, 96]. Only probes common to both arrays were selected for analysis. Expres-487

sion data were adjusted for potential confounders by regressing log2 transformed expression488

values against age, sex, RNA integrity number (RIN) as well as RNA amplification plate489

(KORA) / RNA conversion batch (LOLIPOP) (batch1) and sample storage time (KORA)490

/ RNA extraction batch (LOLIPOP) (batch2) and obtaining the residuals from the linear491

model:492

expression ∼ age+ sex+RIN + batch1 + batch2

Additional details on the cohort data and design are presented in [43, 96, 97] (KORA)493

and [44, 98] (LOLIPOP).494

For the inference of the GTEx Skeletal Muscle related network, we used GTEx v8 Skeletal495

Muscle data [78]. Potential confounders including first 5 genotype PCs, 60 expression PEER496

factors and measured covariates ’WGS sequencing platform’ (HiSeq 2000 or HiSeq X), ’WGS497

library construction protocol’ (PCR-based or PCR-free) and donor sex, were removed from498

expression data prior to analysis. Processing has been performed as previously described499

and details can be found elsewhere [78].500

Hotspot extraction and construction of locus sets501

We extract sub-sets of genomic entities (SNPs, CpGs and genes) on which we perform502

network inference based on the trans -meQTL reported by [10] (Supplementary Table 9 of503

their study) and eQTLGen trans -eQTL [7]5. For GTEx, we obtained current (GTEx v8)504

tissue specific trans -eQTL from https://www.gtexportal.org/home/datasets6.505

506

Hotspot extraction. The list of trans -meQTL results obtained from [10] was already507

5obtained from https://eqtlgen.org/trans-eqtls.html
6file GTEx_Analysis_v8_trans_eGenes_fdr05.txt
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pruned for independent genetic loci and was used as provided in the paper supplement. To508

remove redundant highly correlated genetic loci, we pruned the eQTLGen trans -eQTL by509

selecting the eQTLs with 1) the highest minor allele frequency and 2) the largest number510

of trans genes for each LD cluster (1Mbp window, R2 > 0.2). For GTEx, we merged eQTL511

by combining SNPs with R2 > 0.2 and distance < 1Mbp to independent genetic loci and512

kept all trans -eGenes (eGenes: genes associated with eQTL genotype) of the individual513

SNPs for this locus. The SNP with the highest MAF was selected as a representative514

SNP for the hotspot. We defined hotspots as genetic loci with ≥ 5 trans associations,515

yielding a single hotspot for GTEx, 107 for the meQTL and 444 for the eQTLGen data516

(Additional File 2, Tables S1 and S2). In [10], the authors provide a total of 114 meQTL517

hotspots per our definition. We discarded 7 of the 114 meQTL hotspots (SNPs rs10870226,518

rs1570038, rs17420384, rs2295981, rs2685252, rs57743634, rs7924137, as either no cis genes519

are available or no gene expression data were measured for any of the annotated cis genes520

(mostly lincRNAs, miRNAs and pseudogenes; Additional File 1, Table S1), which are needed521

for locus set definition (see below).522

Locus sets. To mitigate the N << P problem in network inference [4], where the523

number of features or parameters far exceeds the number of samples, we run the inference524

on a subset of genomic entities (SNPs, genes and CpGs) induced by trans hotspots. We525

therefore gathered all genes, which could be involved in mediating the observed QTL effects526

and thus were considered during the network inference, in the form of locus sets for each527

hotspot. We bridge the gap between the involved chromosomes by including transcription528

factor binding site (TFBS) information collected from ReMap [49]7 and ENCODE [50, 51]8529

as well as human protein-protein interaction (PPI) information available via theBioGrid [99]9530

7http://tagc.univ-mrs.fr/remap/download/All/filPeaks_public.bed.gz
8http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegTfbsClustered/

wgEncodeRegTfbsClusteredWithCellsV3.bed.gz
9https://downloads.thebiogrid.org/Download/BioGRID/Release-Archive/BIOGRID-3.5.166/

BIOGRID-ORGANISM-3.5.166.tab2.zip
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(version 3.5.166). We filtered ReMap and ENCODE TFBS for blood related cell types by531

selecting all samples which contain at least one of the following terms: "amlpz12_leukemic",532

"aplpz74_leukemia", "bcell", "bjab", "bl41", "blood", "lcl", "erythroid", "gm", "hbp",533

"k562", "kasumi", "lymphoblastoid", "mm1s", "p493", "plasma", "sem", "thp1", "u937".534

Genes in the PPI network were filtered for genes expressed in whole blood (GTEx v6p535

RPKM > 0.1)10. We enumerated all entities to be included in the locus set by performing536

the following steps:537

1. Define set SL for a locus L and add the QTL entities (QTL SNP S and trans -QTL538

eGenes/CpGs T = {T1, . . . , Tq}, where q is the number of associated trans entities for539

L)540

2. Add all genes encoded within 500kb (1Mbp window) of S as SNP-Genes to SL (set541

GC)542

3. For meQTL hotspots, add genes in the vicinity of each Ti ∈ T (previous, next and543

overlapping genes with respect to the location of Ti) as CpG-Genes to SL (set GT )544

4. Add all TFs with binding sites within 50bp of each CpG or binding in the promoter545

region of each gene over all Ti ∈ T to SL (set GTF )546

5. Add shortest path genes GSP , i.e. genes which connect GC (step 2) with GTF (step 4)547

according to BioGrid PPIs to SL548

To define GSP , we added only genes which reside on the shortest path between the549

trans entities T and the SNP-Genes GC in the induced PPI sub-network, i.e. containing all550

genes and their connections which can be linked to either GC or the TFs GTF . Specifically,551

we added the CpGs to the filtered BioGrid PPI network, connected them to the TFs (GTF )552

10https://storage.googleapis.com/gtex_analysis_v6p/rna_seq_data/GTEx_Analysis_v6p_RNA-seq_
RNA-SeQCv1.1.8_gene_rpkm.gct.gz
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which show binding sites in their vicinity and calculated node weights based on network553

propagation as described in [10]. We then extracted nodes on paths with maximal total554

propagation score based on node-wise propagation scores PS. For this, we weighted node555

scores proportional to (−1)×PS and then calculate the minimal node-weight paths between556

trans entities T and SNP-Genes GC using the sp.between() method of the RBGL R package557

(version 1.56.0, R interface to the Boost Graph Library [100]) and extracted all genes on558

the resulting shortest paths. All nodes of the generated locus set were subsequently used as559

inputs to the network inference.560

Prior generation561

We utilized several data sources to define priors for possible edges between and within dif-562

ferent omics levels. Each possible edge between entities in the locus set can only be assigned563

a single type of prior. Specifically, the different priors include:564

• SNP-to-Gene priors, for edges between the SNP S and SNP-Genes GC565

• Gene-to-Gene priors, for edges between all gene-gene combinations except TFs GTF566

and their eQTL based targets in T567

• CpG-to-Gene priors, for edges between CpGs in T and their neighbouring genes GT568

• TF-to-target priors, for edges between TFs GTF and their targets in the trans set T569

570

SNP-to-Gene. To obtain SNP-to-Gene edge priors, we downloaded the full GTEx v6p571

whole-blood eQTL table 11) and calculated, for each SNP-Gene pair, the local false discovery572

rate (lFDR, [101]) using the fdrtool R package (version 1.2.15). As described in Efron et al.573

11file Whole_Blood_Analysis.v6p.all_snpgene_pairs.txt.gz from https://www.gtexportal.org/home/
datasets
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(2008) [101], the lFDR represents the Bayesian posterior probability of having a null case574

(i.e. that the null hypothesis is true) given a test statistic. We therefore defined the prior575

for a specific SNP S and a SNP-Gene GC as pSGC = 1− lFDRSGC .576

577

Gene-to-Gene. We formulate Gene-to-Gene edge priors by combining public GTEx578

gene expression data [38] with PPI information from the BioGrid [99] to retrieve co-expression579

p-values and the respective lFDR for pairs of genes connected by a protein - protein interac-580

tion. A special case are priors between TFs and their target genes as identified via ChIP-seq581

(see above), which are not considered as Gene-to-Gene edges but are handled separately as582

described under ’TF-to-target priors’ below. GTEx v6p RNA-seq gene expression data were583

downloaded from the GTEx data portal 12. Expression data for GTEx were filtered for high584

quality samples (RIN ≥ 6) and log2 transformed, quantile normalized and transferred to585

standard normal distribution before removing the first 10 principle components to remove586

potential confounding effects [102]. Priors were derived for all Gene-Gene pairs with PPIs in587

the BioGRID network, where a gene G ∈ GC ∪ GTF (for meQTL) or G ∈ GC ∪ GTF ∪ T (for588

eQTL). For each pair, we calculated the Pearson correlation p-values in the GTEx expression589

data and subsequently determined the lFDR over all p-values. The prior for two genes GA590

and GB was then set to pGAGB
= 1− lFDRGAGB

.591

592

CpG-to-Gene. For the CpG-to-Gene priors (meQTL context only), we utilized two593

strategies, distinguishing between TF-CpG priors (i.e. priors between CpGs and TFs showing594

binding sites near the CpG site, described below under ’TF-to-target priors’) and CpG-to-595

Gene priors (i.e. where the gene itself is encoded near the CpG). For the CpG-to-Gene596

priors, we utilized the genome-wide chromHMM [103] states (15 states model) identified in597

12https://www.gtexportal.org/home/datasets
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the Roadmap Epigenomics project [40]13. These states reflect functional chromatin states in598

200bp windows and were obtained using histone mark combinations as identified via ChIP-599

sequencing. We quantified a CpGs potential to affect a nearby gene, pTx , by retrieving the600

proportion of Roadmap cell-lines in which the CpG resides within a transcription start site601

(TSS) related state (see Table 3). We further adjusted the pTx by weighting state information602

according to the Houseman blood cell type estimates available from our data. To this end, we603

took the population mean for each of the Houseman cell proportion estimates and multiplied604

them with the chromHMM state proportions. A specific CpG-to-Gene prior for a CpG Ti ∈ T605

and a gene GTi
∈ GT was then set to pTiGTi

= pTx , if the genomic distance d(Ti,GT ) <= 200bp.606

STATE NO. MNEMONIC DESCRIPTION
1 TssA Active TSS
2 TssAFlnk Flanking Active TSS
3 TxFlnk Transcr. at gene 5’ and 3’
4 Tx Strong transcription
5 TxWk Weak transcription
6 EnhG Genic enhancers
7 Enh Enhancers
8 ZNF/Rpts ZNF genes & repeats
9 Het Heterochromatin
10 TssBiv Bivalent/Poised TSS
11 BivFlnk Flanking Bivalent TSS/Enh
12 EnhBiv Bivalent Enhancer
13 ReprPC Repressed PolyComb
14 ReprPCWk Weak Repressed PolyComb
15 Quies Quiescent/Low

Table 3: Description of chromHMM states used in our analyses as given at https://egg2.
wustl.edu/roadmap/web_portal/chr_state_learning.html. Bold faced states were defined
as ’active transcription’ states and used to set CpG-Gene priors.

TF-to-target priors. We formulate separate priors for all edges between transcription607

factors GTF and trans CpGs (meQTL) and trans genes (eQTL) in T . Priors were only set608

for TF-to-CpG edges were we observe a TF binding site (from ReMap/ENCODE, see above)609

13obtained from https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html
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within 50bp of the CpG. For TF-to-Gene edges, we only considered pairs were the TF has610

a binding site 2,000bp upstream and 1,000 downstream of the gene’s TSS. In both cases, if611

the TFBS criteria are met, we set a fixed large prior of 0.99 for all GTF -T pairs to represent612

the strong protein-DNA interaction evidence of ChIP-seq data.613

614

Finally, the priors for all remaining possible edges which were not set based on one of615

the criteria described above, e.g. for SNP-to-Gene edges without eQTL in the GTEx data,616

were set to a small pseudo-prior ppseudo = 10e−7.617

Ground truth network generation, data simulation and prior ran-618

domization619

We performed a simulation experiment for each of the meQTL hotspots. For each SNP

S and its corresponding locus set SL, we first collect the corresponding prior matrix PS

with priors defined as described above. We generate 10 noisy (GN) ground truth graphs

G10
N ,G20

N . . .G100
N by switching edges in the graph while keeping the degree distribution of a

sampled graph GT . GT is generated using all entities of SL by uniformly sampling from PS,

i.e. GT contains an edge eij for each element pij of PS, if pij > ppseudo and runif(0, 1) <= pij,

where runif(0, 1) generates uniformly distributed random numbers between [0,1]. This

procedure effectively introduces noise in the study. For instance, by switching 10% of the

edges from GT to generate G10
N , and making sure, that the new edges are not present as priors

in PS, we introduce a noise level of 10% when comparing PS to G10
N . We simulate data for each

GS ∈ {mathpzcGT ,G i
N ; i ∈ {10, 20, . . . , 100} using the bdgraph.sim() method of the BDgraph

package with parameters: p=|SL| (number of nodes), graph=GS, N=612 (number of samples

in LOLIPOP) and mean = 0. This approach generates normally distributed data with a

covariance structure as defined by the ground truth graph. We want to assess the impact of
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having discrete (genotype) data present for the network inference. To this end, we converted

the SNP variable in the simulated data to genotype dosages (0,1,2) reflecting the allele

frequencies of the genetic variant used in this simulation run. Specifically, we transformed

the Gaussian data obtained from bdgraph.sim() to discrete values using the frequencies of

the individual dosages for the SNP in the LOLIPOP data as quantile cut points. For each

of these simulated data individually, we infer the network models and compare the inferred

networks to the respective ground truth graphs GT ,G10
N , . . . ,G100

N . We added one additional

comparison, evaluating a prior on the density of the observed graph. For this, we estimated

a single prior value reflecting the desired density for all edges based on a binomial model.

We use the number of edges |EGT
| of all sampled graphs GT for a single run, the total number

of possible edges |ET | = (N ∗ (N − 1))/2, with N the total number of available nodes, and

set the prior as

prbinom = max(
1

NS

∗
∑

GT
|EGT
|

|ET |
, ppseudo),

where NS is the number of sampled graphs (i.e. the number of randomizations). For each620

hotspot, we repeated the above simulation procedure 100 times to obtain stable results.621

Network inference622

Based on the data and priors gathered for the individual hotspots, we set out to infer the reg-623

ulatory networks which are best supported by these data. We evaluated several state-of-the624

art methods with respect to their applicability to this problem, both in a simulation study625

(see above) and via replication of inferred networks in real-world data from two large human626

population based cohorts. We applied GeneNet [45, 104], the graphical lasso [glasso, 42],627

BDgraph [29], iRafNet [32] as well as GENIE3 [46] on the individual data to reconstruct reg-628

ulatory networks using the respective CRAN 14 and bioconductor 15 R packages. An overview629

14https://cran.r-project.org/
15https://www.bioconductor.org/
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on the used inference methods and package versions is given in Table 1. Methods were630

chosen to reflect a range of different approaches (i.e. shrinkage based partial correlation in631

GeneNet , Bayesian MCMC sampling in BDgraph , lasso in gLASSO and tree based in-632

ference in iRafNet and GENIE3 ), based on whether or not implementation was readily633

available and whether prior knowledge could be incorporated. The well known GeneNet and634

GENIE3 methods are not capable of utilizing prior information, but were used as a reference635

for comparison to the other methods.636

637

GeneNet For the application of GeneNet we first filtered any CpG probes from the data638

containing missing values. We then estimated the regulatory network by calling first the639

ggm.estimate.pcor followed by the network.test.edges and extract.network methods, all with640

default parameters.641

642

GENIE3 To infer networks with GENIE3, we again used the NA filtered data (see above)643

with the GENIE3 method of the package followed by the getLinkList method using default644

parameters. GENIE3 generates a ranked list of regulatory links which do not relate to any645

statistical measure and hence a cutoff for the link weights has to be identified manually16.646

To define an optimal cutoff, we first divide the list of weights into 200 quantiles (marking647

200 distinct cutoffs) if the number of unique link weights exceeded 200. We then extracted648

for each cutoff the respective regulatory network and compared it to a scale free topology649

analogously to the approach used in [105], generating R2 values indicating the goodness-of-fit650

to the topology. To choose the final network, we followed the approach suggested by Zhang651

et al. (2005) [105], which suggests to use networks with R2 > 0.8. If none of our networks652

fit that criteria, we choose the network with the highest R2.653

654

16see also https://bioconductor.org/packages/release/bioc/vignettes/GENIE3/inst/doc/GENIE3.html
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BDgraph We used BDgraph to infer networks under consideration of prior information655

as well as without prior information (BDgraph and BDgraphP ) using the bdgraph method656

of the BDgraph CRAN package (version 2.61). The following parameters were set: method657

= "gcgm", iter = 10000, burnin = 5000. We further set the g.prior parameter to the prior658

matrix collected for the hotspots and the g.start parameter to the incidence matrix obtained659

from the prior matrix by setting all entries with prior information > 0.5 to 1 and all others to660

0. For comparison with the no prior case, we kept all parameters the same but omitted the661

g.start and g.prior parameters. The graph was then obtained from the fitted model using662

the select method of the package with parameter cut = 0.9, thereby only choosing edges663

with a posterior probability of at least 0.9.664

665

glasso Similar to BDgraph, we utilized the graphical lasso both with and without prior666

information. To infer the graphical lasso models, we used the glasso method available in the667

glasso CRAN package and set the parameter penalize.diagonal = FALSE. The glasso takes668

a regularization parameter λ, which implies either strong penalization of edges (high λ) or669

weak penalization (low λ) of parameters. This parameter can also be supplied as a matrix670

Λ of size n × n (where n is the number of nodes/variables) in order to supply individual671

parameters for individual edges. We integrated the prior information by first transforming672

the prior matrix P such that Λ = 1 − P and then supplying Λ as the regularization673

matrix containing values for each possible edge. This approach is similar to what has been674

proposed in [30, 31]. In addition, we screened a selection of penalization factors ω for both675

the prior and the none prior case to construct the optimal graphical lasso network with676

respect to the Bayesian Information Criterion (BIC). For the prior case, we included ω in677

the model by setting Λ = Λ × ω). For the non-prior case, we set λ = ω. We performed678

5-fold cross validation and inferred the model for all ω ∈ {0.01, 0.015, ..., 1} on the training679

set (containing 80% of the data) and then selected the ω yielding the minimal mean BIC680
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value on the test data over all folds to generate the final network.681

682

iRafNet We use iRafNet to infer networks using prior information (it is not possible to683

run it without specifying priors). We called the iRafNet method of the package, setting the684

parameters ntrees = 1000, mtry = round(sqrt(ncol(data)-1)), and npermut = 5 using the685

data filtered for missing values (see above) and then used the Run_permutation method with686

the same parameters. The final network was extracted using the iRafNet_network method687

by supplying the output of the previous method calls and setting the FDR cutoff parameter688

TH = 0.05. We used a custom implementation of iRafNet adjusted to make use of multiple689

CPUs which we made available at https://github.com/jhawe/irafnet_custom.690

Method evaluation via simulation study and cross cohort replication691

To identify the inference method best suited for our application, we evaluated all described692

network inference methods independently on the simulated data as to 1) their ability to693

reconstruct the underlying ground truth network as well as 2) their robustness to noise in694

the supplied prior information. We further compared networks inferred independently on the695

different cohort data to assess stability of the network inference across different, yet similar,696

data. Performance was measured in terms of Matthew’s Correlation Coefficient (MCC)697

[29, 47, 106] between the inferred networks and the respective ground truth (simulation698

study) and the inferred networks on the different cohorts (cross cohort replication). It is699

defined as:700

MCC =
TP × TN − FP × FN√

(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)
(1)

701

MCC was calculated using the compare() method as implemented in the BDgraph package702
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(version 2.61).703

Transcription factor activities704

We calculated transcription factor activities for all TFs extracted from the ReMap/ENCODE705

(see above) using the plsgenomics R package’s TFA.estimate() method (version 1.5-2) [107].706

As input, we used the full expression matrix from KORA and LOLIPOP individually as well707

as the TFBS information encoded as an incidence matrix indicating for each TF its target708

genes. Target genes were defined as genes with an TFBS within their promoter region709

(2,000bp upstream and 1,000bp downstream of the TSS).710

Network prioritization and final network creation711

Networks were inferred for each of the 107 meQTL and 444 eQTLGen trans hotspots with712

gLASSOP and BDgraphP , yielding networks with a median number of 67 and 20 edges713

for gLASSOP and 72 and 27 for BDgraphP over all hotspots, respectively. We filtered and714

ranked the networks based on the following criteria.715

GWAS filtering. We filtered genetic loci with hits in genome-wide association studies716

(GWAS) using the current version (v1.0.2) of the GWAS catalog [52]. We extracted high717

LD (>0.8) SNPs and SNP aliases using the SNiPA tool [53] for each hotspot SNP. If any of718

the extracted SNP rsIDs had a match in the GWAS catalog, the hotspot’s inferred network719

was permitted for downstream analysis.720

Network ranking. We utilized a self devised graph score for prioritizing final models721

for further investigation. The graph score reflects desirable biological properties, which can722

be assumed for the networks underlying the trans -QTL hotspots. The score is formulated723

such that 1) the adjacency of SNP-genes and SNPs is rated positively, 2) the presence of724

trans entities is rated positively if they are not connected directly to the SNP and 3) high725
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graph density is rated negatively (i.e. sparser graphs yield higher scores). Specifically, the726

graph score SG for an inferred graph G is defined as:727

SG = −log10(DG) ∗ [
1

|GC |
(

|GS |∑
i=1

1−
|GS |∑
i=1

1) +
1

|T |
(

|GT |∑
i=1

1−
|GT |∑
i=1

1)]

where: DG is the graph density, GC is the set of all SNP-Genes, T is the set of all728

trans entities, GS is the set of all SNP-genes adjacent to the SNP in G or directly connected729

to another SNP-Gene, GS is the set of SNP-Genes in G but not connected directly to the730

SNP or one of the other SNP-Genes, GT is the set of trans entities in G which can be731

reached from any SNP-Gene without traversing the SNP or another trans gene first and GT732

is the set of trans genes directly connected to the SNP. Only the cluster containing the SNP,733

i.e. the SNP itself and any nodes reachable from the SNP via any path in G, is considered734

for calculating SG; if the SNP is not present or no SNP gene has been selected in the final735

graph the score is set to 0.736

In addition to the graph score, we ranked networks according to the total number of737

edges and nodes to prioritize smaller networks for detailed analysis.738

Graph merging. Finally, we constructed hotspot networks containing only high con-739

fidence edges by merging the individually obtained networks from the two cohorts (KORA740

and LOLIPOP) and keeping only edges and nodes present in both networks. Nodes without741

any adjacent edges are not included in the final graph.742

Priors for skeletal muscle tissue743

We downloaded Muscle tissue eQTL generated by Scott et al. (2016) [79] from https://744

theparkerlab.med.umich.edu/data/papers/doi/10.1038/ncomms11764/ and used local FDRs745

calculated from the provided p-values to define SNP-Gene priors. Gene expression data for746

Muscle tissue were obtained from the ARCHS4 [41] database. We downloaded all relevant747
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Muscle expression data using the keywords "Skeletal_Muscle" with the ARCHS4 loader17
748

(N=194 samples). Expression data were normalized using the ComBat method implemented749

in the sva R package, providing dataset series ID as batch parameter.750

TFBS prediction for muscle tissue. We used factorNet [80] to predict transcription factor751

binding sites from DNAse-seq chromatin accessibility data obtained from muscle cell lines.752

First, we trained a factorNet model for all TFs available for the K562 cell-line in ReMap [49].753

ReMap ChIP-seq peaks functioned as a ground truth during training, DNAse-seq data from754

ENCODE18 [50, 51] and DNA sequence information formed the inputs. We downloaded755

DNAse-seq data for the LHCN-M2 muscle cell-line from ENCODE in bigWig format for756

hg3819. FactorNet was then run with default parameters, using as input 1) the DNA sequence757

and 2) the bigWig DNAse track for each of the trained ChIP-seq tanscription factors (N=179758

TFs from ReMap). High confidence TFBS were extracted by setting a factorNet score cutoff759

of 0.999, merging overlapping regions and then retaining only regions with a width < W0.95,760

where W0.95 is the 95th percent quantile of the widths of all obtained regions.761

Colocalization analysis762

GWAS summary statistics for schizophrenia were identified using the GWAS Atlas [108]763

20 and downloaded from http://walters.psycm.cf.ac.uk/clozuk_pgc2.meta.sumstats.txt.gz.764

Whole-blood trans -eQTL summary statistics for all SNP-Gene pairs from eQTLgen were765

downloaded from the eQTLgen website21. We used fastENLOC [76, 109]22 to calculate766

colocalization probabilities as described in the fastENLOC Github README using default767

parameters. To generate probabilistic eQTL annotations, we used DAP-G [110, 111]23 and768

17https://github.com/jhawe/archs4_loader
18dataset ENCFF971AHO
19dataset ENCFF639MPM
20https://atlas.ctglab.nl/
21https://www.eqtlgen.org/trans-eqtls.html, file ’Full trans-eQTL summary statistics’
22https://github.com/xqwen/fastenloc
23https://github.com/xqwen/dap/
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created PIP files as needed using TORUS [112]24. For LD block definition, we utilized data769

available from LDetect [113]25.770

Software environment771

In case no other information is given above, all calculations were performed using standard772

Unix commands and version 3.5.2 of the R statistical computing language 26 on a Cen-773

tos 7 Unix system. The Docker image used in this project is available from dockerhub at774

https://hub.docker.com/repository/docker/jhawe/r3.5.2_custom. The workflows for both775

the cohort and the simulation studies were implemented in Snakemake [114] and can be776

found on Github at https://github.com/jhawe/bggm. All calculations performed to arrive777

at the discussed results in this article can be obtained using the code in the pipeline. Data778

to run the workflow can be made available upon reasonable request by the authors.779
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com/jhawe/bggm. The analyses were implemented in the form of a Snakemake pipeline789

[114]. The software environment used to calculate the results is available as a Docker im-790

age via docker hub at https://hub.docker.com/repository/docker/jhawe/r3.5.2_custom, the791

corresponding dockerfile is available at the project’s Github repository.792
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