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Abstract	
	

Motion correction is an essential step in the preprocessing of functional magnetic resonance 

imaging (fMRI) data, improving the temporal signal to noise ratio (tSNR) and removing 

unwanted variance. Because of the characteristics of the spinal cord (non-rigidity, surrounded by 

moving organs), motion correction becomes especially challenging. We compared the efficiency 

of different motion correction protocols and suggest a preferred method for spinal cord fMRI 

data. Here we acquired gradient-echo echo-planar-imaging axial lumbar spinal cord fMRI data 

during painful mechanical stimulation of the left lower extremity of 15 healthy volunteers on a 

3T scanner. We compared multiple motion correction techniques: 2D and 3D FLIRT realignment 

with and without slice-wise regulation, SliceCorr (implemented in the Spinal Cord Toolbox) and 

proposed a method 3D FLIRT in addition to Slice Regulation (SLiceReg) along the spinal cord. 

TSNR, image entropy, DVARS, image Sum of Absolute Differences and number of activated 

voxels in the spinal cord from GLM analysis to evaluate the performance of multiple motion 

correction procedures. The tSNR and DVARS 3D FLIRT + SLiceReg were significantly 

improved over other realignment methods (p<0.001). In comparison, tSNR=14.20±0.02 and 

DVARS=165.77±1.54	 were higher than other methods. Additionally, the number of activated 

voxels of the statistical map in our suggested method was higher than the other realignment 

methods (p<0.05). Our results illustrated the proposed motion correction algorithm that 

integrated 3D motion correction and 2D slicewise regularization along spinal cord curvature 

could improve subject-level processing outputs by reducing the effects of motions. Our proposed 

protocols can improve subject-level analysis, especially in lumbar region that suffers from 

involuntary motions and signal loss due to susceptibility effect more than other spinal cord 

regions.  
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1.	Introduction:	

Motion	correction	is	an	essential	processing	step	in	fMRI	in	which	the	volumes	of	an	fMRI	

time	series	are	aligned	to	reduce	the	effect	of	participant	movement	during	scanning	and	

improve	the	sensitivity	and	specificity	to	detect	blood	oxygenation	level-dependent	(BOLD)	

signal	changes	(Oakes	et	al.,	2005).	For	brain	fMRI,	motion	correction	approaches	commonly	

employ	six	parameter	rigid-body	transformations	(x,	y,	and	z	translations	and	rotations)	to	

spatially	realign	each	volume	of	the	time	series	to	a	selected	reference	volume	(e.g.,	the	first,	

middle,	or	mean	volume)(Bannister,	Brady,	&	Jenkinson,	2004;	Jenkinson,	2006;	Kim,	Boes,	

Bland,	Chenevert,	&	Meyer,	1999).	Rigid-body	motion	correction	algorithms	for	the	brain	are	

generally	sufficient	as	the	shape	of	the	brain	remains	largely	constant	over	time	with	only	

the	position	and	orientation	changing	due	to	movement.	

Recent	 advancements	 in	 spinal	 cord	 image	 acquisition	 (e.g.,	 reduced	 field-of-view	

imaging,	advanced	shimming	procedures,	and	simultaneous	brain-spinal	cord	acquisitions)	

and	image	analysis	techniques	have	increased	the	utility	and	applications	of	spinal	cord	fMRI	

in	the	non-invasive	study	of	spinal	cord	processing.	The	articulated	structure	of	the	spine	and	

the	surrounding	anatomy	present	unique	challenges	for	motion	correction.	While	rigid	body	

motion	 correction	 algorithms	 are	 largely	 accepted	 for	 brain	 fMRI,	 the	 non-rigidity	 of	 the	

spine	 leads	 to	 non-rigid	 deformations	 due	 to	 bulk	 motion,	 swallowing,	 and	 respiratory-

induced	 motion;	 cardiac	 and	 CSF	 pulsations	 lead	 to	 non-uniform	 fluctuations	 in	 signal	

intensity	 across	 the	 image;	 and	 the	 respiratory	 cycle	 causes	 susceptibility	 changes	 in	 the	

lungs	 which	 induce	 B0	 field	 distortions	 and	 shifts	 along	 the	 phase-encoding	 direction	

(Bannister	et	al.,	2004;	Julien	Cohen-Adad	et	al.,	2010;	Leitch,	Figley,	&	Stroman,	2010).	 
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	 Previous	spinal	cord	fMRI	studies	have	employed	a	wide	range	of	motion	correction	

algorithms	 from	 conventional	 six	 parameter	 rigid-body	 motion	 correction	 algorithms	 to	

more	sophisticated	approaches	to	attempt	to	correct	for	the	non-rigid	motions.	While	motion	

correction	 in	 the	 spinal	 cord	 fMRI	 is	 ultimately	 important,	 it	 has	 yet	 to	 be	 studied	

systematically.	The	purpose	of	 this	study	was	 to	 test	 the	performance	of	different	motion	

correction	techniques	using	gradient-echo	echo-planar-imaging	(GE-EPI)	axial	lumbar	spinal	

cord	fMRI	data	during	painful	mechanical	stimulation	of	the	left	lower	extremity.	We	aimed	

to	compare	multiple	motion	correction	techniques	and	suggest	an	optimal	motion	correction	

protocol.	

	

2.	Method	

2.1.	Subjects	

Fifteen	 healthy	 volunteers	 (male,	 mean	 age	 ±	 standard	 deviation	 =25.88±4.44	 years)	

participated	in	the	study	as	a	part	of	experiments	to	evaluate	the	feasibility	of	fMRI	in	the	

lumbar	spinal	cord.	All	of	the	participants	provided	informed	consent.	The	study	received	

approval	 from	 the	 human	 research	 ethics	 review	 board	 of	 Tehran	 University	 of	 Medical	

Sciences.	

2.2.	Data	acquisition	

All	of	the	experiments	were	carried	out	using	a	3	T	whole-body	MRI	system	(Siemens	

Magnetom	Prisma;	Siemens,	Erlangen,	Germany).	Subjects	were	carefully	positioned	in	the	

scanner	with	the	longitudinal	axis	was	parallel	with	the	spinal	cord.	A	three-plane	localizer	
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image	was	then	taken	to	provide	a	survey	reference.	Radio-frequency	(RF)	pulses	were	

supplied	with	a	body	coil,	and	a	spine	phased-array	coil	was	used	for	receiving	the	signal	in	

the	lower	thoracic-lumbar	spinal	cord.		

Following	the	acquisition	of	the	localizer	reference	image,	the	imaging	was	performed	

using	the	ZOOMit	selective	field-of-view	(FOV)	GE-EPI	sequence	with	the	following	imaging	

parameters:	TR/TE	=	3000ms/30ms,	FOV	=	128×128	mm,	matrix	size	=	128×128,	in-plane	

resolution	=	1×1	mm2,	 slice	 thickness	=	3mm,	and	 flip	angle	=	80	(Weber	 II,	Chen,	Wang,	

Kahnt,	 &	 Parrish,	 2016).	 Spectral	 attenuated	 inversion	 recovery	 (SPAIR)	 was	 applied	 to	

suppress	 the	 effect	 of	 fat	 in	 GRE-EPI	 images.	 MRI	 images	 were	 acquired	 in	 the	 axial	

orientation	 and	 sampled	 in	 ascending	 interleaved	 order.	 The	 FOV	 spanned	 from	 the	 9th	

thoracic	(T9)	to	the	2nd	lumbar	(L2)	vertebrae.	

While	scanning,	painful	mechanical	stimuli	were	applied	to	the	left	foot	(L5	

dermatome)	between	two	malleoli	using	a	monotonic	pressure	device.	For	each	participant,	

the	subjective	threshold	for	pain	was	calculated	using	the	ascending	staircase	method	

(group	mean	=	3.9	±	0.48	kg)(Gracely,	Lota,	Walter,	&	Dubner,	1988).	Each	block	with	a	

duration	of	60s	contained	ten	3s	duration	painful	stimuli	3s	interval)	at	the	participant’s	

threshold	in	6	separated	blocks	which	lasted	a	total	of	540	seconds.		

	

2.3.	Image	realignment	methods	

In	spinal	cord	fMRI,	especially	in	the	lumbar	spine,	it	should	be	considered	that	maximum	

movement	was	in	z	orientation	(parallel	to	the	superior-inferior	axis	of	the	spine)	due	to	the	
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diaphragm	and	renal	movements.	Some	motions	in	the	body	can	affect	the	spine	the	same	as	

bulk	motion	like	the	movement	of	the	larynx	in	the	neck,	displacement	of	internal	organs	in	

the	chest	and	abdomen	following	the	diaphragm	movement.	Either	direction	of	these	non-

rigid	motions	 and	 orientation	 of	 the	 spine	 is	 a	 crucial	 parameter	 to	 determine	 optimum	

realignment	 technique.	 We	 applied	 some	 of	 the	 previously	 recommended	 methods	 and	

propose	a	novel	technique	based	on	previous	work	by	our	team.	It	should	noted	that	some	of	

these	methods	limit	the	motion	correction	to	a	specific	region	in	the	image.	A	binary	mask	

based	on	spinal	cord	segmentation	was	automatically	generated	(sct_create_mask)	and	used	

for	the	purpose	of	motion	correction.	The	centerline	of	the	spinal	cord	mask	was	then	used	

to	create	a	cylindrical	mask	with	a	radius/diameter	of	45	voxels.	This	mask	was	used	during	

motion	correction	to	weight	the	reference	image	and	exclude	areas	outside	of	the	vertebral	

column.		

2.3.1. Default	3D	Volume	Correction	with	MCFLIRT	

MCFLIRT	 is	 a	 rigid-body	motion	 correction	 tool	 based	 on	 affine	 registration	 tool	 in	 FSL	

toolbox.	 This	 tool	 by	 default	 uses	 the	 middle	 volume	 as	 a	 reference	 image	 and	

identifies/calculates	the	transformation	between	the	reference	image	and	each	volume	in	the	

time	series.	This	method	uses	normalized	correlation	as	a	default	cost	function,	six	DOF	for	

slice	 transformation	process	and	b-spline	 interpolation	to	obtain	robust	rigid	registration	

(Jenkinson,	2006;	Smith	et	al.,	2004).	

2.3.2. Default	motion	correction	with	2D	Volume	Correction	with	FLIRT	

Due	to	the	specific	structure	of	the	spinal	cord,	some	researchers	have	proposed	that	since	

the	z-axis	movement	 is	very	 limited,	a	3D	motion	correction	seems	unnecessary.	Yet,	 in	a	
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recent	 paper,	 motion	 correction	 along	 the	 z-axis	 with	 2D	 and	 3D	 co-registration	 is	

recommended	 for	 the	 first	 step	of	motion	 correction	 (Keliris	 et	 al.,	 2007;	Weber	 II	 et	 al.,	

2016).	We	included	this	method	to	test	this	assumption	and	compare	the	outcome	with	the	

3D	correction	methods.		

2.3.3. Slicecorr		

This	method	 is	 based	on	2D	 rigid-body	 realignment	 that	 assumes	 the	 spinal	 cord	has	no	

rostrocaudal	bulk	motion	(i.e.	along	the	z-axis)	and	no	rotation	around	x	and	y	directions.	

Slicecorr	 uses	 correlation	 as	 the	 cost	 function,	 three	 DOF	 transformation	 per	 slice,	

fmeansearch	as	Minimization	algorithm	and	mean	volume	image	as	a	reference	template	(J	

Cohen-Adad,	Rossignol,	&	Hoge,	2009).	Slicecorr	is	the	default	motion	correction	protocol	for	

the	spinal	cord	toolbox	(SCT).	SCT	fMRI	motion	correction	uses	a	previously	created	mask	to	

decrease	the	effect	of	organs	that	move	independently	from	the	spine.	This	binary	mask	is	

used	in	the	motion	correction	algorithm	to	weight	the	cost	function	metric	to	the	spinal	cord	

(De	Leener	et	al.,	2017).		

2.3.4. 3D	Volume	Correction	+	2D	Slice-wise	Correction		

In	 the	 first	 step	 of	 this	 motion	 correction	 method,	 a	 3D	 rigid-body	 realignment	 using	

normalized	 correlation	 as	 a	 cost	 function	 and	 b-spline	 interpolation	 has	 performed.	 A	

cylindrical	binary	mask,	created	from	spinal	cord	centerline	with	automatic	segmentation	of	

cord	on	the	mean	volume	image	by	SCT,	can	improve	3D	rigid-body	realignment	on	the	spinal	

cord.	Then	the	mean	of	the	previous	output	is	applied	as	the	reference	image	in	the	second	

step.	In	this	step,	the	3D	motion	corrected	time	series	is	entered	to	perform	2D	slice-wise	
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realignment	for	each	slice	and	remove	the	effect	of	non-rigid	motions	(Summers,	Brooks,	&	

Cohen-Adad,	2014;	Weber	II	et	al.,	2016).	

2.3.5. 3D	 motion	 correction	 (FLIRT)+	 2D	 Slice-wise	 realignment	 and	 regularization	

(SliceReg)		

Referring	to	the	previous	method,	we	assumed	that	motion	correction	with	two	steps	could	

be	 improved	 by	 updating	 registering	 metrics	 for	 improving	 the	 efficacy	 of	 realignment	

procedure	 and	 maintaining	 the	 structure	 of	 functional	 images.	 We	 assessed	 the	 multi-

parameter	affine	rigid-body	registration	methods	in	the	spinal	cord	images	and	checked	the	

signal	to	noise	ratio	(SNR)	for	them.	Based	on	this	experiment	we	suggested	in	the	first	step,	

least-square	as	an	efficient	cost	function,	b-spline	as	interpolation	metric	and	use	of	the	mean	

volume	of	non-motion	corrected	 time	series	as	 the	reference	 image	 (Barakat	et	al.,	2012;	

Middleton	et	al.,	2014).	Again,	we	used	a	binary	mask	to	cover	the	spinal	cord	and	exclude	

other	organs	in	the	axial	slices.	In	the	second	step,	the	output	of	3D-realignment	was	entered	

in	the	2D	slice-wise	realignment	procedure.	Mean	squares	was	used	as	the	cost	function	for	

the	curvature	of	lumbar	spine	and	spline	as	interpolation	can	lead	to	the	best	result	in	the	

registration	 function.	 SliceReg	 estimates	 slice-by-slice	 translations	 and	 regularization	

qualifications	in	the	Z-axis	direction	that	can	improve	the	second	step	of	motion	correction	

(J	Cohen-Adad,	Levy,	&	Avants,	2015;	De	Leener	et	al.,	2017).	The	preferred	motion	correction	

step	was	performed	by	freely	available	toolboxes	(FSL	and	SCT)	as	summarized	in	Table	1.	
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Table 1 
Motion correction parameters and software packages 
Toolbox Version	 Procedure	

or	function 
Reference	
image 

Cost	
function 

Interpolation	
method 

Additional	
information 

FSL 5.0.	9 MCFLIRT mean Normalized	
correlation 

b-spline 3D	motion	
correction		is	
performed	
in	this	step 

SCT 3.0.1 Sct_fmri_mo
co 

mean Normalized	
correlation 

Nearest	
Neighborhood 

Using	
generated	
mask	to	

improve	2D	
slicewise	
registration	 

	

2.4.	Image	Analysis	Motion	Correction	Performance	

To	 evaluate	 the	 effectiveness	 of	 motion	 correction	 methods	 and	 their	 registration	

parameters,	several	performance	metrics	were	calculated	and	compared.:		

2.4.1. Temporal	Signal	to	Noise	Ratio	(tSNR)	

In	addition	to	MRI	background	noise,	addiitonal	components	of	noise	in	fMRI	include	noise	

arising	from	the	subject	(i.e.	cardiac	and	respiratory	pulsations,	movements)	and	task	related	

noise	 (Tong,	 Hocke,	 &	 Frederick,	 2019;	 Triantafyllou,	 Polimeni,	 &	 Wald,	 2011).	 In	 fMRI,	

fluctuations	in	the	BOLD	signal	are	measured	over	time.	Motion	correction	algorithms	reduce	

noise	due	to	bulk	motion	across	the	time	series.	Temporal	SNR	(tSNR	is	used	to	characterize	

the	 stability	of	 the	BOLD	signal	over	 the	 fMRI	 time	 series	And	was	used	 	 as	our	primary	

outcome	measure	of	motion	correction	performance.	Changes	in	tSNR	were	assessed	only	in	

the	 spinal	 cord	using	a	manually	drawn	binary	 spinal	 cord	mask	 from	 the	mean	motion-
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corrected	image.	We	calculated	tSNR	as	the	mean	signal	over	time	divided	by	the	standard	

deviation	of	images	over	time	using	the	following	equation:		

𝑡𝑆𝑁𝑅 = 	
𝑆

𝜎!"#$%&'
 

	

2.4.2. Information	Entropy		

Information	entropy	is	a	measure	of	the	amount	of	randomness	(or	uncertainty)	there	is	in	

a	 signal	 or	 image;	 or	 more	 precisely,	 how	 much	 information	 is	 produced	 by	 the	 signal.	

Application	of	this	measure	without	using	a	predetermined	region	of	interest	in	the	image	

has	been	suggested	to	be	useful for	optimizing	the	entropy	of	an	image	with	low	resolution	

in	the	phase	encode	direction	which	can	provide	a	sufficiently	accurate	measure	of	motion	

(Atkinson	et	al.,	1999).	Entropy	was	calculated		using	the	following	equation:	

𝐻(𝑆)%()*'	%#,$-()!%$#	.#!-$/0 =	−	,𝑝	(𝑆%)
#

%12

	 𝑙𝑜𝑔3	𝑝	(𝑆%) 

2.4.3. DVARS 

DVARS	(D,	temporal	Derivative	of	time	courses,	VARS,	variance	over	voxels)	demonstrates	the	

rate	of	signal	change	across	the	spinal	cord	at	each	frame	of	data.	In	an	ideal	data	series,	a	

value	 of	 DVARS	 depends	 on	 the	 temporal	 standard	 deviation	 and	 the	 temporal	

autocorrelation	of	the	data	(Nichols,	2017).	To	calculate	DVARS,	changes	in	each	voxel’s	value	

at	each	time	point	is	compared	to	the	previous	time-point	(Power,	Barnes,	Snyder,	Schlaggar,	

&	 Petersen,	 2012).	 DVARS	 was	 calculated	 in	 the	 whole	 image	 to	 find	 a	 metric	 that	
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demonstrated	standard	deviation	of	temporal	difference	images	in	the	4D	raw-data	(Nichols,	

2017).	The	value	of	DVARS,	show	how	much	the	intensity	of	voxels	within	the	spinal	cord	in	

each	slice	and	at	each	volume	change	in	comparison	to	the	previous	volume	(Power	et	al.,	

2014).	DVARS	was	calculated	using	the	following	equation: 

	

𝐷𝑉𝐴𝑅𝑆(∆𝐼)! =	,[∆𝐼!(𝑥)]" = ,[𝐼!(𝑥) − 𝐼!#$(𝑥)]"	

In	this	equation,		∆𝐼!(𝑥)is	used	as	local	image	intensity	on	the	frame.	DVARS	could	result	in	

more	 accurate	 modelling	 of	 the	 temporal	 correlation	 and	 standardization	 because	 it	 is	

obtained	by	the	most	short-scale	changes	(Nichols,	2017).	

	

2.4.4. Sum	of	Absolute	Differences	(SAD)	

Sum	of	Absolute	Differences	(SAD)	is	a	metric	of	the	similarity	of	images	in	a	series	that	is	

used	 as	 a	 motion	 estimator	 in	 image	 processing	 algorithms	 including	 MRI	 and	 fMRI	

quantitative	analyze	(Seshamani	et	al.,	2013;	Shakil,	Keilholz,	&	Lee,	2016;	Turk	et	al.,	2017).	

To	calculate	this	metric	for	estimating	total	motion,	the	absolute	difference	is	considered	

between	each	voxel	in	the	image	series	and	the	corresponding	voxel	in	the	next	(Niitsuma	&	

Maruyama,	2010;	Vassiliadis,	Hakkennes,	Wong,	&	Pechanek,	1998).	
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2.5. fMRI	Data	Analysis	

2.5.1 Physiological	Noise	Correction	

In	 the	 fMRI	 studies,	 physiological	 noise	 is	 described	 as	 cardiac	 and	 respiratory-related	

changes	in	the	signal	which	can	influence	the	analysis	of	fMRI	data.	This	includes	the	motion	

of	the	spinal	cord	due	to	cerebrospinal	fluid	(CSF)	pulsation	and	magnetic	field	fluctuations	

due	to	movement	of	lungs	and	changes	in	the	air	volume	in	the	thorax	and	lungs	(Dehghani	

et	al.,	2020).	In	order	to	minimize	the	effect	of	physiological	noise,	we	followed	a	two-step	

correction	protocol:	

2.5.1.1. ICA-based	correction	

Spatial	 Independent	Component	Analysis	 (ICA)	 can	 classify	 signal	 components	as	neural-

related	or	noise-related	and	remove	noise	to	increase	the	statistical	power	of	the	analysis	of	

fMRI	data.	This	step	was	performed	 in	 two	 levels,	visual	and	quantitative	classification	of	

independent	components.	In	the	visual	classification,	the	location	of	activated	clusters	(and	

their	peaks)	in	the	spinal	cord	suggests	the	neural-related	origin	of	the	component,	whereas	

clusters	mainly	located	in	the	vertebra,	discs,	blood	vessels	(main	arteries)	and	especially	in	

the	kidneys	are	usually	correlated	to	physiological	noise	(respiration,	pulsation).	Sometimes	

the	structure	of	non-physiological	patterns	related	to	the	MRI	sequence,	hardware	artefacts,	

or	 interactions	of	the	acquisition	with	physiological	motion	is	seen	in	the	 images	of	some	

component (Griffanti et al., 2017).	

In	the	quantitative	classification,	components	were	obtained	for	each	data	set,	which	

had	the	significance	of	the	BOLD	signal	variability.	The	components	with	specified	criteria	
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were	 determined	 as	 noise:	 (a)	 the	 power	 of	 the	 spatial	 component’s	 time	 series	 at	 high	

frequencies	were	larger	than	0.08	Hz	(b)	more	than	50%	of	significantly	activated	voxels	[Z	

>	2.3]	was	seen	out	of	the	spinal	cord	mask	in	the	component’s	spatial	map. Overall,	5	to	16	

components	have	both	considered	criteria	in	subjects,	and	their	time	series	and	components	

were	filtered	as	a	noise	before	(Kelly	Jr	et	al.,	2010;	Vahdat	et	al.,	2015).	

2.5.1.2. Physiological	Noise	Modelling 

Respiratory	 signals,	 cardiac	 signals,	 and	MRI	 triggers	 are	 acquired	using	 Siemens	Prisma	

scanner	 sensors	 (pulse	 oximeter	 sensors	 and	 respiratory	 cushion)	 and	 Physiological	

Monitoring	Unit	(PMU)	(sampling	rate	=	400	Hz).	To	remove	residual	effects	of	physiological	

noise,	 slice-specific	 noise	 regressors	 were	 generated	 using	 a	 custom-made	 physiological	

noise	modelling	tool	which	was	adapted	to	PMU	recording	signals.	This	MATLAB	custom-

made	 tool	 uses	 a	 model-based	 approach	 similar	 to	 the	 Retrospective	 Image	 Correction	

(RETROICOR)	and	FSL’s	Physiological	Noise	Modelling	tool	(PNM)	as	described	by	Glover	et	

al.	and	Brooks	et	al.(Brooks	et	al.,	2008;	Glover,	Li,	&	Ress,	2000).	After	down-sampling	of	the	

physiological	 signal,	 a	 cardiac	phase	and	 respiratory	phase	and	 the	 first	 three	harmonics	

were	assigned	to	each	volume	and	regressors	were	created	which	can	be	used	to	model	the	

physiological	noise	within	the	General	Linear	Model	(GLM).	

2.5.3. General	Linear	Model	analysis	for	preprocessed	fMRI	data-sets	

First,	the	spinal	cord	was	extracted	from	the	fMRI	images	using	an	automatic	drawn	spinal	

cord	mask	that	was	generated	via	Spinal	Cord	Toolbox	(SCT).	Motion-corrected	images	from	

the	 output	 of	 different	motion	 correction	methods	were	 concatenated	 into	 an	 fMRI	 time	

series.	Then	slice-timing	correction	and	image	intensity	normalization	was	performed.	After	
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that	advanced	spatial	smoothing	was	performed	with	a	Gaussian	kernel	of	2	mm	full	width	

half	maximum	(FWHM)	in	the	straight	spinal	(sct_straighten_spinalcord)	cord	and	high	pass	

temporal	 filtering	 (sigma	=	90	s).	FSL’s	motion	outlier	detection	 tool	was	 then	applied	 to	

detect	 outlier	 time	 points	 using	 DVARS	 and	 box-plot	 cutoff	 =	 75th	 percentile	 +	 1.5	 ×	

interquartile	range	(IQR)	for	thresholding (Power	et	al.,	2012;	Weber	II	et	al.,	2016).		

FMRIB’s	 Improved	 Linear	 Model	 (FILM)	 with	 prewhitening	 were	 used	 to	 generate	

statistical	maps	of	the	preprocessed	data	for	each	subject (Woolrich,	Ripley,	Brady,	&	Smith,	

2001;	 Worsley	 et	 al.,	 2002).	 The	 design	 matrix	 contained	 the	 standard	 hemodynamic	

response	function	convolved	pressure	pain	stimulation	vectors	(included	HRF	parameters	

from	FSL),	 the	physiological	noise	vectors,	and	 the	 temporal	masks	of	outlier	 time	points	

were	 included	 as	 covariates	 of	 no	 interest.	 Voxels	 with	 a	 p	 <	 0.05	 (uncorrected)	 were	

considered	active	in	the	spinal	cord	mask.	

In	order	to	eliminate	the	effect	of	normalization	steps	and	the	 linear	and	non-linear	

registration	 in	 the	 higher-level	 analysis,	 we	 decided	 to	 perform	 GLM	 analysis	 just	 at	

thesubject	level.	Investigating	the	effects	of	motion	correction	at	the	subject	level	allows	us	

to	 focus	 on	 the	 the	 effects	 of	 the	 motion	 correction	 methods	 more	 specifically	 without	

introducing	other	potential	sources	of	variance.	

	

2.6. Statistical	Analysis	

The	 motion	 correction	 performance	 metrics	 (tSNR,	 Entropy,	 DVARS,	 Sum	 of	 Absolute	

Differences	and	the	number	of	activated	voxels)	were	calculated	and	compared	across	the	
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different	motion	correction	methods.	The	mean	of	each	parameter	was	computed.	Statistical	

analyses	were	 performed	using	 SPSS	 (Version	16.0,	 The	 SPSS,	 Inc.,	 Chicago,	 IL,	USA)	 and	

CRAN	(R	package,	Version	3.5.1,	R	Development	Core	Team).	Normality	of	the	metrics	was	

assessed	with	the	Kolmogorov-Smirnov	test.	The	mean	of	normal	data	(uncorrected	as	well)	

for	each	method	was	processed	with	One-way	ANOVA	with	repeated	measures	 in	within-

subjects	comparison	and	then	multiple	comparison	post-hoc	test	with	Bonferroni	correction	

was	 performed	 for	 statistically	 significant	 results	 Partial	 eta	 squared	 (np2	 is	 reported	 to	

present	the	estimation	of	the	effect	size	for	significant	results).	Values	of	0.01,	0.06	and	0.15	

represent	 small,	 moderate	 and	 large	 effect	 sizes	 respectively.	 To	 assess	 the	 relationship	

among	parameters,	Pearson	Correlation	test	was	applied	in	the	optimized	motion	correction	

algorithm,	which	can	both	explain	the	effect	of	motion	correction	on	parameters	and	that	of	

each	parameter	on	the	quality	of	the	image.	Finally,	utilizing	the	results	of	this	test,	we	will	

be	able	to	choose	the	best	parameter	for	motion	outlier	volumes	detection	and	scrubbing	it	

in	the	subject	level	GLM	data	processing.	

	

3. Results	

As	expected,	generally,	motion	correction	improved	the	quality	of	the	data	as	indicated	by	

improvement	in	each	of	the	parameters.	In	table	3,	the	results	of	descriptive	statistical	data	

analysis	are	presented.	A	one-way	repeated	measures	ANOVA	was	applied	to	compare	the	

effect	of	motion	correction	algorithms	on	the	uncorrected	(raw	data)	in	2D	and	3D	FLIRT	

motion	correction,	SCT	fMRI	motion	correction,	FLIRT	3D	and	2D+	silcewise	and	FLIRT	3D	+	
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SliceReg	motion	correction	method.	Figure	1	presents	an	overview	of	different	measures	on	

different	motion	correction	methods.		

	

	

Table 2 

Summary of Image Analysis parameters between different motion correction methods 

(df=6) 

  Subset	for	alpha=.05 

parameters Mean F	value p	value 

	

	

	

tSNR 

Uncorrected 9.343 	

	

	

63.2 

	

	

	

<0.001 

FLIRT3D 13.871 

FLIRT2D 12.854 

FLIRT2D+Slicewise 12.873 

FLIRT	3D+Slicewise 13.432 

SCT	motion	correction 9.154 

FLIRT	3D+SliceReg 14.200 

	

	

Entropy 

Uncorrected 0.721 	

	

	

0.998 

	

	

	

0.441 

FLIRT3D 0.701 

FLIRT2D 0.698 

FLIRT2D+Slicewise 0.708 

FLIRT	3D+Slicewise 0.708 

SCT	motion	correction 0.729 

FLIRT	3D+SliceReg 0.702 
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DVARS 

Uncorrected 182.640 	

	

	

4.13 

	

	

	

0.001 

FLIRT3D 150.453 

FLIRT2D 155.234 

FLIRT2D+Slicewise 191.163 

FLIRT	3D+Slicewise 165.772 

SCT	motion	correction 190.927 

FLIRT	3D+SliceReg 165.775 

	

	

SAD 

 

FLIRT3D 1.343 	

	

22.95 

	

	

<0.001 

FLIRT2D 1.919 

FLIRT2D+Slicewise 1.542 

FLIRT	3D+Slicewise 0.648 

SCT	motion	correction 0.829 

FLIRT	3D+SliceReg 0.501 

	

	

Activated	voxels 

Uncorrected 28.933 	

	

	

22.95 

	

	

	

0.002 

FLIRT3D 38.266 

FLIRT2D 34 

FLIRT2D+Slicewise 48.2 

FLIRT	3D+Slicewise 52.466 

SCT	motion	correction 29.333 

FLIRT	3D+SliceReg 58.333 

 

In	 the	 comparison	of	 temporal	 SNR,	 the	 average	 tSNR	±	 standard	error	 (SE)	 significantly	

increased	from	9.41	±	1.51	arbitrary	units	(AU)	(figure	2).	There	was	a	statistically	significant	

effect	 of	 motion	 correction	methods	 on	 tSNR	 parameter,	F(6,84)	 =	 63.2,	p<.001,	𝜂%"=0.81.	
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FLIRT	 3D	 +	 Slicewise	 had	 the	 maximum	 single	 voxel	 tSNR=	 26.41.	 	 	Post	 hoc	 multiple	

comparisons	using	the	Bonferroni	correction	indicated	that	the	mean	tSNR	for	the	FLIRT	3D	

+	Slicereg	was	significantly	greater	than	the	other	motion	correction	methods	and	raw-data	

(p<.01)	except	for	the	FLIRT	3D	motion	correction	algorithm	(p=.578).	 

 

Figure 2. Summary of temporal SNR of motion-corrected images from proposed motion correction methods 
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Figure 3. Summary of temporal Entropy of motion corrected images from Proposed motion correction methods. 

	

In	the	comparison	of	the	entropy	of	information	measure,	a	statistically	significant	effect	

could	 not	 be	 seen	 (F(6,84)	 =0.998,	 p=.441).	 None	 of	 motion	 correction	 methods	 had	 a	

significant	effect	on	the	entropy	of	uncorrected	image.(0.721±0.005)	(figure	3).		
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Figure 4. Summary of DVARS parameter in motion corrected images from Proposed motion correction methods 
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There	 was	 a	 statistically	 significant	 effect	 of	 motion	 correction	 methods	 on	 DVARS	

parameter,	F(6,84)	=	4.01,	p<.001,	𝜂%"=0.997.	DVARS	parameter	demonstrate	RMS	intensity		

 Figure 5. Summary of Activated voxels (in the Spinal cord) in motion corrected images from Proposed motion correction 

methods 

difference	 of	 volume	 by	 volume	 effect	 of	 the	 motion	 correction	 3D	 FLIRT	 method	 has	

minimum	error	150.45	±	28.43	and	this	value	in	the	proposed	motion	correction	method	is	

165.77	±	1.54	(Figure	5).	Post	hoc	multiple	comparisons	using	the	Bonferroni	test	indicated	

that	the	mean	of	DVARS	metric	for	the	FLIRT	3D	+	Slicereg	was	significantly	different	than	 

the	uncorrected	raw-data,	Flirt	2D+	slicewise	and	SCT	motion	correction	algorithm	(p<.05).	 

After	subject	level	GLM,	the	number	of	activated	voxels	of	the	statistical	map	was	summed	in	

the	spinal	cord,	then	compared	using	repeated	measures	ANOVA	(Figure	7	and	8).	There	was	

a	significant	effect	of	motion	correction	method	on	the	sum	of	the	activated	voxels,		F(6,	84)	
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=	22.95,	p=0.002,	η&"=0.194.	The	number	of	activated	voxels	without	any	motion	correction	

was	28.93±24.89	and	with	3D+2D	silcewise	motion	correction	was	58.33±40.21.	

	Post	hoc	multiple	comparisons	using	the	Bonferroni	correction	indicated	that	the	mean	of	

Activated	voxels	for	the	FLIRT	3D	+	Slicereg	was	significantly	different	than	the	uncorrected	

raw-data,	FLIRT	2D,	FLIRT	3D	and	SCT	motion	correction	algorithm	(p<.05).		

A	Pearson	product-moment	correlation	coefficient	was	computed	to	assess	the	relationship	

between	the	image	analysis	metrics	in	the	optimized	motion	correction	method	in	order	to	

come	up	with	suggestions	for	DVARS	as	a	metric	to	censor	motion	outlier	time	points	.	The	

result	of	Pearson	Correlation	 test	was	summarized	 in	Table	4.	 It	 is	 clear	 that	 there	was	a	

negative	 correlation	 coefficient	between	DVARS	and	 tSNR,	 r	=-0.303,	n	=	15,	p<0.05.	 This	

significant	 correlation	 coefficient	 illustrates	with	 increase	 tSNR	parameter	 and	decreases	

DVARS. 

 

Table 3 
Results of Pearson correlation between outcome measures on the 
optimized motion correction method 

 1 2 3 5 
1.	Difference	Intensities	     

2.	tSNR 0.36    

3.	Entropy -0.27 -0.51   

5.	DVARS -0.10 -0.30* 0.03  

*	Demonstrate	significant	r	coefficient	p<0.05	
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Figure 8. Comparison of Activation map of spinal cord fMRI GLM analysis based on induced pressure pain (3.9 ± 
0.48 kg), by considering two Motion correction methods. (a), (b), (c), (d) illustrate activated voxels in the spinal cord 
on three views (Sagittal, Coronal and Axial), based on 3D FLIRT Motion correction; (e), (f), (g) and (h) illustrate activated 
voxels in the spinal cord on three views (Sagittal, Coronal and Axial), based on the proposed Motion correction (3D FLIRT 
slice-wise + SliceReg 2D slice-wise). 
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Figure 9. Within subjects comparison of Activated voxels of fMRI GLM analysis in spinal cord levels, by 
considering two Motion correction methods. A comparison between Activated voxels of two GLM analysis based on 
two motion correction methods (3D FLIRT and 3D FLIRT slice-wise + SliceReg 2D slice-wise) illustrates optimized motion 
correction methods increase the activated voxels in the Thoracic vertebral level of the spinal cord, nearby moving 
diaphragm and lungs. 

 

 

4.	Discussion	

In	 this	study,	 the	effectiveness	of	different	motion	correction	algorithms	was	 tested	using	

GRE-EPI	axial	lumbar	spinal	cord	fMRI	datasets	during	painful	pressure	stimulation	of	the	

left	lower	extremity.	Several	reported	motion	correction	algorithms	were	studied,	algorithms	

using	a	combination	of	rigid	and	non-rigid	body	registrations	were	more	effective	in	motion	

correction	leading	to	greater	improvemetns	in	the	image	quality	parameters.	The	effect	of	

the	motion	correction	was	then	explored	on	the	activity	in	the	cord,	and	again,	the	algorithms	

using	 a	 combination	 of	 rigid	 and	 non-rigid	 body	 registrations	 resulted	 in	 greater	 cord	

activation.	Of	 the	motion	correction	methods	 tested,	 the	3D	FLIRT	motion	correction	and	
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slice-wise	algorithm	consistently	outperformed	the	other	algorithms	and	is	recommended	

for	use	in	future	studies.	

In	comparison	with	preprocessing	steps	for	the	fMRI	data	acquired	from	the	brain,	no	

specific	pipeline	exists	for	data	preparation	in	the	statistical	processing	in	the	spinal	cord	

fMRI.	A	major	step	in	this	process	is	motion	correction	which	has	been	suggested	to	be	very	

important	in	determining	the	output	of	fMRI	studies.	Existing	studies	either	used	in-home	

developed	algorithms	adapted	 for	 the	spinal	 cord	data	 (Lawrence,	Kornelsen,	&	Stroman,	

2011;	Rempe	et	al.,	2015),	used	tools	not	specifically	designed	for	the	spinal	cord,	or	used	

SCT.	Surprisingly	and	despite	the	growing	number	of	spinal	cord	fMRI	studies,	no	study	to	

date	has	systematically	investigated	the	effect	of	the	different	motion	correction	algorithms	

on	the	quality	of	the	spinal	cord	fMRI	signal	and	the	level	of	spinal	cord	activation.		

The	optimized	motion	correction	algorithm	(FLIRT	3D+Slicerg,	see	section	2.3.5.)	was	

performed	 in	 two	 steps;	 in	 the	 1st	 step,	 3D	 motion	 correction	 was	 applied	 with	 	 FLIRT	

registeration	algorithm	and	binary	mask	to	exclude	out	of	vertebrae	tissues;	and	in	the	2nd	

step	the	output	of	previous	step	was	entered	in	2D	slice-by-slice	realignment	procedure	and	

regularization	 along	 the	 spinal	 cord	 using	 SliceReg.	 The	 optimized	 motion	 correction	

algorithm	 could	 minimize	 the	 effect	 of	 voluntary	 bulk	 motion	 and	 non-voluntary	

physiological	movements.	It	increased	tSNR	value	with	almost	a	rate	of	1.5	times	more	than	

other	motion	 correction	methodologies	 considering	 the	main	 image	 (uncorrected)	 tSNR.	

Quantitative	measures	such	as	DVARS	used	to	evaluate	the	effect	of	spinal	cord	movement	

and	the	correction	protocols	on	the	results	of	GLM	subject-level	analysis.	Interestingly,	our	

results	suggest	that	FLIRT	2D	is	slightly	better	in	performance	regarding	this	measure.	Sum	
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of	 absolute	 differences,	 used	 as	 an	 motion	 estimator	 and	 similarity	 measure	 in	 the	

registration	 algorithm,	 illustrates	 the	 correlation	 between	 tSNR	 and	 other	 related	

parameters.	The	highest	correlated	parameters	are	 tSNR	and	RMSE	with	R=-0.784.	These	

parameters	are	utilized	as	quality	control	measures	in	fMRI	raw-data	(Marcus	et	al.,	2013)		

Information	entropy	can	be	defined	as	how	much	randomness	(or	uncertainty)	there	is	

in	a	signal	or	an	image;	information	entropy	provides	a	measure	of	how	much	information	is	

provided	by	the	signal	or	image.	The	result	of	ANOVA	test	demonstrate	information	entropy	

differences	 in	 motion	 correction	 methods	 was	 not	 statistically	 significant.	 Based	 on	

information	entropy	theory	concept,	Subject	and	medical	scanner	conditions	make	the	most	

impact	on	entropy	of	images	and	image	processing	steps	has	the	least	impact (Tsai,	Lee,	&	

Matsuyama,	2008).		

Although	Frame-wise	displacement,	which	is	used	to	regress	out	motion	outliers	time	

points,	does	not	consider	rotation	movements	 leading	to	underestimation	of	 this	method,	

therefore	calculating	DVARS	parameter	is	the	best	way	to	detect	and	scrub	changes	in	motion	

outlier	signal	(Caballero-Gaudes	&	Reynolds,	2017;	Ciric	et	al.,	2017).	DVARS	measure	the	

changes	in	image	intensities	comparing	to	the	previous	time	point	in	a	time	sires	voxel-wise	

(or	ROI-wise)	as	opposed	the	global	signal	which	is	the	average	intensity	of	at	a	time	(Power	

et	 al.,	 2014;	 Satterthwaite	 et	 al.,	 2013),	 and	 the	 average	 value	 of	 DVARS	 depends	 on	 the	

temporal	 standard	 deviation	 considered	 in	 tSNR	 formula	 (Nichols,	 2017).	 The	 negative	

correlation	between	DVARS	and	 tSNR	demonstrates	 the	 fact	 that	any	 reduction	 in	DVARS	

results	in	an	increase	in	tSNR.	The	acceptable	value	of	DVARS	varies	over	localities,	making	

it	difficult	to	create	comparable	summaries	of	data	qualities	in	data	series	(Afyouni	&	Nichols,	
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2018).	Examination	of	the	regional	variation	caused	by	motion,	in	the	BOLD	signal,	provides	

some	novel	insights	into	the	nature	of	motion-BOLD	relevancy	which	appear	in	the	reflection	

of	motion-induced	artefacts,	while	others	are	driven	from	motion-related	changes	in	neural	

activity.	

The	optimized	motion	correction	method	presented	here	(including	FLIRT	3D	motion	

correction	+	SliceReg)	may	improve	the	ability	of	detection	of	activated	voxels	based	on	the	

accepted	tSNR,	DVARS	in	the	preprocessing	step	of	the	analysis.	Optimal	tSNR,	DVARS	and	

RMSEs	may	lead	to	stronger	trends	of	higher	z-scores	and	consequently	more	accurate	active	

voxels (Van	Der	Zwaag,	Da	Costa,	Zürcher,	Adams,	&	Hadjikhani,	2012).		

4.1. Limitations	and	Future	Work	

Our	results	in	this	study	depend	critically	on	the	quality	of	MR	images.	Quality	of	MR	

images	 relies	 on	 some	 parameters	 such	 as	 image	 resolution	 (matrix,	 field	 of	 view,	 slice	

thickness),	 region	 of	 interest	 in	 imaging	 procedure,	 can	 affect	 the	 spinal	 cord	 fMRI	

preprocessing	 steps	 like	 co-registration	 and	 segmentation	 (Sabaghian,	 Dehghani,	 Batouli,	

Khatibi,	&	Oghabian,	2020).	The	field	of	view	and	orientation	of	raw-data	was	axial	and	all	of	

preprocessing	 steps	 are	 dedicated	 to	 axially	 oriented	 raw-data.	 Physiological	 micro-

movements	and	effect	of	changing	magnetic	susceptibility	during	respiration	also	influence	

the	motion	correction	and	result	of	 the	 fMRI	single	and	group	processing.	Some	previous	

studies	performed	spinal	cord	fMRI	in	the	sagittal	orientation	with	SE-HASTE	sequence.	It	

should	 be	 noted	 that	 the	 current	 method	 may	 not	 be	 optimal	 for	 sagittal	 or	 coronal	

acquisitions.	 Besides,	 the	 cut-offs	 for	 DVARS	 should	 be	 investigated	 in	 future	 studies	 for	

motion	scrubbing.		
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4.2. Conclusion	

This	paper	aimed	to	expand	knowledge	about	spinal	cord	 fMRI	 imaging	and	motion	

artifact	 removal	 in	 several	 methods.	 We	 propose	 a	 motion	 correction	 algorithm	 that	

integrated	2D	slice-wise	regularization	and	3D	motion	correction	can	improve	subject-level	

processing	 results	 by	 eliminating	 extended	motions.	 A	 3D	motion	 correction	 with	 Mean	

Square	 cost	 function,	 6	 rigid-body	 degrees	 of	 freedom	 and	 linear	 interpolation	 (not	

systematically	tested)	is	proposed	for	the	first	step	of	motion	correction.	A	2D	slice-wise	and	

regularization	along	spine	curvature,	Correlation	as	a	cost	function	and	linear	interpolation	

algorithm	 are	 suggested	 for	 the	 second	 step.	 Creating	 appropriate	 mask	 based	 on	 the	

curvature	of	the	spine	can	increase	the	accuracy	of	motion	correction	method	and	reduce	the	

effect	 of	 out	 of	 spine	movements.	 	 Future	 researches	 on	 spinal	 cord	 fMRI	 preprocessing	

method	will	contain	improved	instructions	of	artefact	avoidance	and	removal.		

Acknowledgement	

Authors	gratefully	acknowledge	the	use	of	the	services	and	facilities	of	the	National	Brain	

Mapping	 Laboratory	 (NBML)	 in	 Tehran,	 Iran.	 We	 also	 would	 like	 to	 thank	 Shahabeddin	

Vahdat,	Elaheh	Sadri,	Soodeh	Moallemian,	Elaheh	Saleh	for	helpful	discussions.	This	project	

was	supported	by	the	Tehran	University	of	Medical	Sciences	Grant	No.	94-03-30-29965.	

	

5. References 

Afyouni, S., & Nichols, T. E. (2018). Insight and Inference for DVARS. NeuroImage, 172, 291-312.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.20.103986doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.103986


 

 

 29 

Atkinson, D., Hill, D. L., Stoyle, P. N., Summers, P. E., Clare, S., Bowtell, R., & Keevil, S. F. (1999). Automatic 
compensation of motion artifacts in MRI. Magnetic Resonance in Medicine: An Official Journal of 
the International Society for Magnetic Resonance in Medicine, 41(1), 163-170.  

Bannister, P. R., Brady, J. M., & Jenkinson, M. (2004). TIGER–a new model for spatio-temporal realignment 
of fMRI data. In Computer Vision and Mathematical Methods in Medical and Biomedical Image 
Analysis (pp. 292-303): Springer. 

Barakat, N., Mohamed, F. B., Hunter, L., Shah, P., Faro, S., Samdani, A., . . . Mulcahey, M. (2012). Diffusion 
tensor imaging of the normal pediatric spinal cord using an inner field of view echo-planar imaging 
sequence. American journal of neuroradiology, 33(6), 1127-1133.  

Brooks, J. C., Beckmann, C. F., Miller, K. L., Wise, R. G., Porro, C. A., Tracey, I., & Jenkinson, M. (2008). 
Physiological noise modelling for spinal functional magnetic resonance imaging studies. 
NeuroImage, 39(2), 680-692.  

Caballero-Gaudes, C., & Reynolds, R. C. (2017). Methods for cleaning the BOLD fMRI signal. NeuroImage, 
154, 128-149.  

Ciric, R., Wolf, D. H., Power, J. D., Roalf, D. R., Baum, G. L., Ruparel, K., . . . Davatzikos, C. (2017). 
Benchmarking of participant-level confound regression strategies for the control of motion artifact 
in studies of functional connectivity. NeuroImage, 154, 174-187.  

Cohen-Adad, J., Gauthier, C. J., Brooks, J. C., Slessarev, M., Han, J., Fisher, J. A., . . . Hoge, R. D. (2010). BOLD 
signal responses to controlled hypercapnia in human spinal cord. NeuroImage, 50(3), 1074-1084.  

Cohen-Adad, J., Levy, S., & Avants, B. (2015). Slice-by-slice regularized registration for spinal cord MRI: 
SliceReg. Paper presented at the Proceedings of the International Society for Magnetic Resonance 
in Medicine 23rd Annual Meeting and Exhibition, Toronto, Canada. 

Cohen-Adad, J., Rossignol, S., & Hoge, R. (2009). Slice-by-slice motion correction in spinal cord fMRI: 
SliceCorr. Paper presented at the Proceedings of the 17th Annual Meeting of the International 
Society for Magnetic Resonance in Medicine. 

De Leener, B., Lévy, S., Dupont, S. M., Fonov, V. S., Stikov, N., Collins, D. L., . . . Cohen-Adad, J. (2017). SCT: 
Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. NeuroImage, 
145, 24-43.  

Glover, G. H., Li, T. Q., & Ress, D. (2000). Image-based method for retrospective correction of physiological 
motion effects in fMRI: RETROICOR. Magnetic Resonance in Medicine: An Official Journal of the 
International Society for Magnetic Resonance in Medicine, 44(1), 162-167.  

Gracely, R. H., Lota, L., Walter, D., & Dubner, R. (1988). A multiple random staircase method of 
psychophysical pain assessment. Pain, 32(1), 55-63.  

Griffanti, L., Douaud, G., Bijsterbosch, J., Evangelisti, S., Alfaro-Almagro, F., Glasser, M. F., . . . Carone, D. 
(2017). Hand classification of fMRI ICA noise components. NeuroImage, 154, 188-205.  

Jenkinson, M. (2006). Image registration and motion correction. Paper presented at the Proc Int Soc Magn 
Reson Med. 

Keliris, G. A., Shmuel, A., Ku, S.-P., Pfeuffer, J., Oeltermann, A., Steudel, T., & Logothetis, N. K. (2007). Robust 
controlled functional MRI in alert monkeys at high magnetic field: effects of jaw and body 
movements. NeuroImage, 36(3), 550-570.  

Kelly Jr, R. E., Alexopoulos, G. S., Wang, Z., Gunning, F. M., Murphy, C. F., Morimoto, S. S., . . . Hoptman, M. 
J. (2010). Visual inspection of independent components: defining a procedure for artifact removal 
from fMRI data. Journal of neuroscience methods, 189(2), 233-245.  

Kim, B., Boes, J. L., Bland, P. H., Chenevert, T. L., & Meyer, C. R. (1999). Motion correction in fMRI via 
registration of individual slices into an anatomical volume. Magnetic Resonance in Medicine: An 
Official Journal of the International Society for Magnetic Resonance in Medicine, 41(5), 964-972.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.20.103986doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.103986


 

 

 30 

Lawrence, J. M., Kornelsen, J., & Stroman, P. W. (2011). Noninvasive observation of cervical spinal cord 
activity in children by functional MRI during cold thermal stimulation. Magnetic Resonance 
Imaging, 29(6), 813-818. doi:https://doi.org/10.1016/j.mri.2011.02.008 

Leitch, J. K., Figley, C. R., & Stroman, P. W. (2010). Applying functional MRI to the spinal cord and brainstem. 
Magnetic Resonance Imaging, 28(8), 1225-1233.  

Marcus, D. S., Harms, M. P., Snyder, A. Z., Jenkinson, M., Wilson, J. A., Glasser, M. F., . . . Ramaratnam, M. 
(2013). Human Connectome Project informatics: quality control, database services, and data 
visualization. NeuroImage, 80, 202-219.  

Middleton, D. M., Mohamed, F. B., Barakat, N., Hunter, L. N., Shellikeri, S., Finsterbusch, J., . . . Mulcahey, 
M. (2014). An investigation of motion correction algorithms for pediatric spinal cord DTI in healthy 
subjects and patients with spinal cord injury. Magnetic Resonance Imaging, 32(5), 433-439.  

Nichols, T. E. (2017). Notes on creating a standardized version of DVARS. arXiv preprint arXiv:1704.01469.  
Niitsuma, H., & Maruyama, T. (2010, 31 Aug.-2 Sept. 2010). Sum of Absolute Difference Implementations 

for Image Processing on FPGAs. Paper presented at the 2010 International Conference on Field 
Programmable Logic and Applications. 

Oakes, T. R., Johnstone, T., Walsh, K. O., Greischar, L. L., Alexander, A. L., Fox, A. S., & Davidson, R. J. (2005). 
Comparison of fMRI motion correction software tools. NeuroImage, 28(3), 529-543.  

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic 
correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 
59(3), 2142-2154.  

Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods to 
detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage, 84, 320-341.  

Rempe, T., Wolff, S., Riedel, C., Baron, R., Stroman, P. W., Jansen, O., & Gierthmühlen, J. (2015). Spinal and 
supraspinal processing of thermal stimuli: an fMRI study. Journal of Magnetic Resonance Imaging, 
41(4), 1046-1055.  

Sabaghian, S., Dehghani, H., Batouli, S. A. H., Khatibi, A., & Oghabian, M. A. (2020). Fully automatic 3D 
segmentation of the thoracolumbar spinal cord and the vertebral canal from T2-weighted MRI 
using K-means clustering algorithm. Spinal Cord. doi:10.1038/s41393-020-0429-3 

Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead, J., Calkins, M. E., . . . Gur, R. E. 
(2013). An improved framework for confound regression and filtering for control of motion artifact 
in the preprocessing of resting-state functional connectivity data. NeuroImage, 64, 240-256.  

Seshamani, S., Fogtmann, M., Cheng, X., Thomason, M., Gatenby, C., & Studholme, C. (2013). Cascaded 
slice to volume registration for moving fetal FMRI. Paper presented at the 2013 IEEE 10th 
International Symposium on Biomedical Imaging. 

Shakil, S., Keilholz, S. D., & Lee, C.-H. (2016). Adaptive change point detection of dynamic functional 
connectivity networks. Paper presented at the 2016 38th Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society (EMBC). 

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., . . . Flitney, 
D. E. (2004). Advances in functional and structural MR image analysis and implementation as FSL. 
NeuroImage, 23, S208-S219.  

Summers, P. E., Brooks, J. C. W., & Cohen-Adad, J. (2014). Chapter 4.1 - Spinal Cord fMRI. In J. Cohen-Adad 
& C. A. M. Wheeler-Kingshott (Eds.), Quantitative MRI of the Spinal Cord (pp. 221-239). San Diego: 
Academic Press. 

Tong, Y., Hocke, L. M., & Frederick, B. B. (2019). Low frequency systemic hemodynamic" noise" in resting 
state BOLD fMRI: Characteristics, Causes, Implications, Mitigation Strategies, and Applications. 
Frontiers in neuroscience, 13, 787.  

Triantafyllou, C., Polimeni, J. R., & Wald, L. L. (2011). Physiological noise and signal-to-noise ratio in fMRI 
with multi-channel array coils. NeuroImage, 55(2), 597-606.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.20.103986doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.103986


 

 

 31 

Tsai, D.-Y., Lee, Y., & Matsuyama, E. (2008). Information entropy measure for evaluation of image quality. 
Journal of digital imaging, 21(3), 338-347.  

Turk, E. A., Luo, J., Gagoski, B., Pascau, J., Bibbo, C., Robinson, J. N., . . . Malpica, N. (2017). Spatiotemporal 
alignment of in utero BOLD-MRI series. Journal of Magnetic Resonance Imaging, 46(2), 403-412.  

Vahdat, S., Lungu, O., Cohen-Adad, J., Marchand-Pauvert, V., Benali, H., & Doyon, J. (2015). Simultaneous 
brain–cervical cord fMRI reveals intrinsic spinal cord plasticity during motor sequence learning. 
PLoS biology, 13(6).  

Van Der Zwaag, W., Da Costa, S. E., Zürcher, N. R., Adams, R. B., & Hadjikhani, N. (2012). A 7 tesla FMRI 
study of amygdala responses to fearful faces. Brain topography, 25(2), 125-128.  

Vassiliadis, S., Hakkennes, E. A., Wong, J. S. S. M., & Pechanek, G. G. (1998, 27-27 Aug. 1998). The sum-
absolute-difference motion estimation accelerator. Paper presented at the Proceedings. 24th 
EUROMICRO Conference (Cat. No.98EX204). 

Weber II, K. A., Chen, Y., Wang, X., Kahnt, T., & Parrish, T. B. (2016). Lateralization of cervical spinal cord 
activity during an isometric upper extremity motor task with functional magnetic resonance 
imaging. NeuroImage, 125, 233-243.  

Woolrich, M. W., Ripley, B. D., Brady, M., & Smith, S. M. (2001). Temporal autocorrelation in univariate 
linear modeling of FMRI data. NeuroImage, 14(6), 1370-1386.  

Worsley, K. J., Liao, C. H., Aston, J., Petre, V., Duncan, G., Morales, F., & Evans, A. (2002). A general statistical 
analysis for fMRI data. NeuroImage, 15(1), 1-15.  

	

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.20.103986doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.103986

