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Computational Methods
Homology modeling and structure refinement of ABI1 and active ROP11 GTPase
The initial structures of AtABI1 and the active AtROP11 GTPase were modeled via homology modeling using Swiss-
Model.1 The crystal structure of AtABI2 (PDB ID: 3UJK2) was used as the template for modeling ABI1 (sequence
identity and similarity between ABI1 and ABI2: 87.17% and 57%). Two Mg2+ ions bound to the catalytic site of ABI1
were also included in the modeled ABI1. The crystal structure of active OsRAC1 (PDB ID: 4U5X3) was used as the
template for modeling ROP11 (sequence identity and similarity between OsRAC1 and ROP11: 82.95% and 56%). The
non-hydrolyzable GTP analog GMPPNP and Mg2+ in 4U5X were added to the modeled AtROP11 GTPase structure.
GMPPNP was subsequently replaced by GTP molecule to obtain the initial homology model of active AtROP11.

Explicit solvent molecular dynamics (MD) simulations were performed to refine the modeled structures of ABI1 and
ROP11. The initial structures were solvated using tleap in Ambertools 15.4 Extra Na+ and Cl− (150 mM) were added
to neutralize the system and mimic physiological environment. The parameters for GTP were obtained from AMBER
parameter database (http://research.bmh.manchester.ac.uk/bryce/amber/) and Amber ff14SB force field was used for
ABI1 and ROP11. The AMBER force field parameters for monovalent and divalent ions available in AMBER 18
software4 were used. The system was subjected to 10000 steps of minimization and subsequent 1 ns equilibration at
300 K. Production simulations were launched from the equilibrated configuration and run for 100 ns. The simulations
were run in isothermal-isobaric (300 K, 1 atm) ensemble using an integration time step of 2 fs. The temperature was
controlled using Langevin dynamics5 with the collision frequency of 2 ps−1 and the pressure was maintained using
Monte Carlo barostat. Periodic boundary condition was applied in all MD simulations. The particle-mesh Ewald
method was used to treat the electrostatic interactions, along with a 10 Å cutoff distance for van der Waals interactions.6
The SHAKE algorithm7 was applied to constrain the length of covalent bonds involving hydrogen atoms.

Coarse grained (CG) molecular dynamics (MD) simulations of ROP11 and ABI1 association
The atomic structures of ABI1 and ROP11 obtained after MD refinement were used to construct CG structural models
and run CG MD simulations using Martini force field.8,9 For ROP11, Q66L mutation was performed using Pymol to
mimic a constitutively active ROP11 (CA-ROP11).10,11 In such way, GTP and Mg2+ were not included in CA-ROP11
structure. The script Martinize.py (version 2.6, http://cgmartini.nl/index.php/tools2/proteins-and-bilayers) was used to
convert the atomic structures of CA-ROP11 and ABI1 to CG bead models and also generate theMartini topology files in
Gromacs format. In short, CG bead models were produced according to 4 heavy atoms to 1 bead mapping and different
types of beads were defined to represent different subgroup of atoms. Elastic network was applied in combination with
Martini model to conserve secondary, tertiary and quartenary structures without sacrificing realistic dynamics of the
proteins.12 ElNeDyn network was used to generate the topology files of the proteins.12

Next, the CG structural models of ABI1 and CA-ROP11 were randomly placed far away from each other to generate
50 configurations of ABI1/CA-ROP11 complexes, with their center-of-mass distance at least 25 Å. The 50 complex
structures were solvated using an equilibrated CG water box via Gromacs solvate command. Also, 30 CG Na+ and
31 Cl− beads were added to neutralize the system. The system was subjected to 0.2 ns equilibration in Gromacs.13
Production simulations were launched from the equilibrated configurations. Adaptive sampling approach was used
to efficiently sampling the association process between ABI1 and CA-ROP11.14 In the initial round of simulations,
the simulations started from 50 configurations. In the next rounds of simulations, the previously sampled com-
plex conformations were clustered into a certain number of states. A portion of the states with the lowest populations
were selected to start new simulations, with the initial velocities randomly assigned according to Boltzmann distribution.

The CG MD simulations were performed with Gromacs 201913 in isothermal-isobaric (300 K, 1 atm) ensemble using
an integration time step of 20 fs. The temperature control was achieved with the velocity rescale (V-rescale) thermostat
using a coupling constant of the order of 1 ps. The pressure control was realized with the Parrinello-Rahman barostat,
with a coupling constant of 16 ps and compressibility of 3*10−4 bar−1. Periodic boundary conditions were applied in
all MD simulations. The particle-mesh Ewald method was used to treat the electrostatic interactions, along with a 11
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Å cutoff distance for van der Waals interactions.6 In total, 5 rounds of adaptive sampling simulations were performed,
leading to an aggregate of 10.05 ms simulations (Table S2).

Markov state model analysis of simulation data on CA-ROP11 and ABI1 association
Markov state model (MSM) was used to analyze the conformational ensemble of ABI1 and CA-ROP11 resulted from
CG MD simulations. MSM is a powerful method to analyze large-scale MD simulation data on biomolecules.15,16
Generally, MSMs characterize biomolecule conformation ensemble as discrete conformational states and inter-state
transition probabilities between them.15,16 The equilibrium probabilities of individual states can then be estimated from
MSM, allowing us to gain insights into the probable configurations of ABI1/CA-ROP11 complex.

The discretization of conformational space was achieved by identifying a set of structural features to represent individual
configurations and then clustering these configurations into a certain number of states. In total, 6 structural metrics were
calculated to differentiate various configurations, including the center-of-mass distance between ABI1 and CA-ROP11
as well as 5 angles or dihedral angles that describe the relative orientation and position of ABI1 and CA-ROP11 (Fig.
S2). Time-lagged independent component analysis was performed to identify several slowest degrees of freedom (tICs)
resulted from linear combination of the original metrics.17 K-means clustering were then performed on the identified
slowest motions to cluster the CG configurations into a certain number of states. MSMs were then constructed based
on the clustering results. The matrix of transition probabilities was determined with a lag time τ using maximum
likelihood approximation. The optimal lag time (τ) was chosen based on the convergence of the implied timescales of
MSMs and the number of clusters (N) as well as the number of tICs (M) were optimized via cross validation ranked by
the variational GMRQ objective function (Fig. S3).18 All MSMs were constructed using the MSMBuilder 3.419 and
the MSM hyperparameters were optimized using the Osprey software.20 The final MSM hyperparameters were 600
clusters, 4 tICs, and 800 ns lag time.

All atom MD simulations for structural refinement of 23 candidate complex structures
The 25 MSM states with the largest equilibrium populations were converted back to atomic structural models using
the script backward.py (http://www.cgmartini.nl/index.php/downloads/tools/240-backward).21 The backward mapping
was performed using the wrapper initram.sh, which calls backward.py and subsequently relaxes the resulting structure
through energy minimization and molecular dynamics based relaxation. Due to the possible inaccuracy of structural
models from backward mapping, we aligned the atomic structures of ABI1 and GTP-bound ROP11 to these 25 com-
plexes and sought to use MD simulations to further refine these candidate complex structures. We observed that 3 states
among the top 25 states were similar so that we merged the 3 states, resulting in 23 states to be optimized.

The atomic structures of the 23 candidate complexes were solvated with water molecules and counterions. Two parallel
MD simulations were launched from the equilibrated configurations with Amber 184 and each was run for 240 ns to
relax the atomic structures. The same set of force field parameters and simulation protocols as in the step of structural
refinement of homology models were used to run these simulations. After the simulations were finished, the root mean
square deviation of these complex structures and the center-of-mass distance between ABI1 and ROP11 were calculated
to characterize the relative stability of the 23 complex structures. Based on these simulation data, we further excluded
10 complex structures, leading to 13 remaining candidate complex structures.

Replica exchange umbrella sampling MD simulations for potential of mean force calculations
To further differentiate the 13 candidate complex structures, we sought to calculate potential of mean force (PMF)
for separating ABI1 and ROP11 in these different complex structures. The PMFs were determined by separating two
proteins in the presence of a series of conformational, positional and orientational restraints and then performing replica
exchange umbrella sampling (REUS) MD simulations to estimate the conformational probability distribution with
respect to separation distance r . By applying these restraints, it effectively reduce the configuration entropy of complex
and accelerate the convergence of separation PMF. In total, there were 7 harmonic restraints applied during separation,
including two relating to conformational changes in ABI1 and ROP11 (denoted by subscripts BABI1, BROP11) and 5
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relating to relative position and orientation between two proteins. The conformational restraints acting on heavy-atom
RMSD of the backbone in each protein (BABI1, BROP11) restrict protein structural fluctuations and deviations from the
starting associate state. Three angular restraints acting on the relative orientation of two proteins (denoted by subscript
o, including Θ, Φ, Ψ) and two on the relative position (denoted by a, including φ, θ) limit the configuration space when
two proteins are separated.

REUS MD simulations22 were used to calculate the separation PMFs of the 13 candidate complex structures. REUS
simulations were performed using NAMD 2.13 software23. The complexes were solvated with a sufficiently large water
box which encompasses both ABI1 and ROP11 when fully separated. After 20000 steps energy minimization, each
system was equilibrated in NPT ensemble for 1 ns. An additional 200 ps simulation for each system was performed to
measure the average values of all restrained CVs in the associated state. Next, steered MD simulations were performed
to slowly increase the center-of-mass distance between ABI1 and ROP11 (r) by 15 Å over 8 ns, in order to generate
starting structures for REUS MD simulations. From the trajectory, 31 structures with r evenly spaced between the
minimum and the maximum distances were chosen as the starting structures for REUS MD simulations (31 windows,
0.5 Å/window). The starting structure in each umbrella window was equilibrated for 1 ns and then each replica was
run for 8 ns. The force constants for the restrained CVs were given in Table S3. The separation PMF was estimated
using the multistate Bennett acceptance ratio (MBAR) method with pymbar python package24. The trajectories from
simulations were sorted and subsampled to ensure uncorrelated samples for estimating PMF. According the separation
PMFs, we identified 3 candidate complex structures which show relative higher stability as compared to other states.

Replica exchange umbrella sampling MD simulations for standard binding free energy calcu-
lations
We sought to determine the absolute standard binding free energy (∆Go

bind
) of the 3 candidate complex structures.

The PMF-based approach to determining ∆Go
bind

was developed by prior studies.25,26,27 The detailed theory of this
method was thoroughly described in our previous work.28 Integration of the separation PMF contributes to the major
component of ∆Go

bind
. Next, the contributions of adding the conformational and angular restraints on the associated

state and removing them from the fully dissociated state to ∆Go
bind

were also computed and then subtracted from the
free energy component resulting from separation PMF. Given the equilibrium association constant, ∆Go

bind
is given by

∆Go
bind = −β

−1ln(KeqCo) (1)

where β is the reciprocal of the product of gas constant and temperature, and Co is standard concentration of 1 M,
which is 1/1661 Å3. Keq can be expressed as in equation 2.

Keq = S∗I∗e
−β[(Gbulk

B1,c
−Gsite

B1,c
)+(Gbulk

B2,c
−Gsite

B2,c
)]

∗e−β[(G
bulk
o −Gsite

o )−Gsite
a ]

(2)

The term S∗ addresses the removal of positional restraints (θ, φ) on one protein, which is separated from the other
protein along r instead of free diffusion. S∗ is given by

S∗ = r∗2
∫ π

0
dθsinθ

∫ 2π

0
dφe−βua (θ,φ) (3)

where r∗ is a point far from the binding site and ua = uθ+uφ . The term I∗ is given by

I∗ =
∫
site

dre−β[W (r)−W (r
∗)] (4)

which includes the contribution from the separation PMF W(r).
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The exponential terms in equation 2 are related to adding the restraints on the associated state (denoted by site) and
removing the restraints from the dissociated state (denoted by bulk). These terms can be determined by calculating a
series of PMFs for individual restraints and integrating over the PMFs. REUSMD simulations along the restrained CVs
were performed to calculate the free energy contributions of adding those restraints to the associated state and removing
them from the dissociated state. To generate a wide range of starting structures for each restrained CV, we performed
6 ns temperature-accelerated MD simulations, coupling with the respective CV to a dummy particle experiencing a
temperature of 2500 K. The starting structures for REUS windows were chosen from the accelerated MD trajectory,
with a window size of 0.05 Å for conformational restraints and 1° for angular restraints. Each replica was equilibrated
for 1 ns and then run for 8 ns. The force constants used were 1000 kcal·mol−1·Å−2 for RMSD restraints and 2.5
kcal·mol−1·°−2 for angular restraints. The PMFs were determined using MBAR. For some of the RMSD restraints, we
performed additional targeted MD simulations and umbrella sampling simulations to expand the ranges of PMFs and
ensure the convergence of PMFs. Given the PMFs, the contributions of adding and removing restraints to ∆Go

bind
can

be calculated via numerical computations. Please refer to our previous work for more details.28

Residue-residue Interaction energies and protein energy network analysis
To identify the critical residue pairs for intermolecular interaction between ABI1 and ROP11, we performed residue-
residue interaction energies and protein energy network analysis on MD trajectories using gRINN version 1.1.0.hf1
(https://grinn.readthedocs.io/en/latest/).29 gRINN computes pairwise residue non-bonded interaction energies by re-
peatedly calling the MD simulation engine in GROMACS 201913. Default values of 60% percent cutoff and 20 Å
filtering distance cutoff were used, which implied that only the residue pairs between ABI1 and ROP11 whose center-
of-mass distances are less than 20 Å in at least 60% of trajectory frames will be included in the calculation. In total, 250
frames of all-atom MD trajectories for the state 160 and the state 240 were used for the calculations. Residue pairwise
correlations and protein energy network (PEN) were also computed using gRINN. Protein energy network (PEN) was
constructed by considering individual residues as nodes and mean interaction energies between residue pairs as the
‘weight’ for the edges that connect these residue nodes. Using PEN, node-based network metrics including degree and
betweenness-centralities were obtained to assess the importance of each residue in terms of protein stability.
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Table S1. Overview of the computational simulations and analysis method performed in this study.

step system method force
field

software #atoms/beads size (Å3) ensemble simulation
time

1 ROP11 ac-
tive structure

homology
modeling

- Swiss-Model - - - -

2 ROP11
structure
refinement

all atom MD Amber
ff14SB

Amber 18 35,714
atoms

67*67*81 NPT 100 ns

3 CA-ROP11
(Q66L)-
ABI1
association

adaptive
sampling,
coarse
grained MD

Martini Gromacs
2019

∼22,000
beads

∼140*
140*140

NPT 10.05 ms

4 analysis of
complex en-
semble

Markov state
model

- MdTraj,
MSMBuilder

- - - -

5 structural re-
finement of
top 23 can-
didate com-
plexes

all atom MD Amber
ff14SB

Amber 18 ∼170,000
atoms

∼120*
120*120

NPT 240*23*2
ns

6 PMF and
binding
free energy
calculations

REUS MD Amber
ff14SB

NAMD 2.13 ∼95,000
atoms

∼80*
95*138

NPT >=8
ns/window

7 Residue
interaction
energies
and pro-
tein energy
network
analysis

- Amber
ff14SB

gRINN - - - -
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Table S2. Summary of the adaptive coarse grained MD simulations of the association process between ABI1 and
CA-ROP11 (Q66L). In the initial round of simulations, the simulations started from 50 configurations where ROP11
and ABI1 were randomly placed far away from each other. In the next rounds of simulations, the previously sampled
complex conformations were clustered into a certain number of states. A portion of the states with the lowest populations
were selected to start new simulations, with the initial velocities randomly assigned according to Boltzmann distribution.

Round Parallel simulations Simulation time (µs) Aggregate (ms)
1 50 21 1.05
2 100 10 1
3 200 10 2
4 200 10 2
5 400 10 4

Total simulation time: ∼10.05 milliseconds
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Table S3. The restrained CVs and the corresponding force constants used in REUS MD simulations on the separation
of candidate ROP11-ABI1 complex structures.

CV k f orce

B1,c 25 kcal·mol−1·Å−2

B2,c 25 kcal·mol−1·Å−2

Θ 0.1 kcal·mol−1·°−2

Φ 0.1 kcal·mol−1·°−2

ψ 0.1 kcal·mol−1·°−2

φ 0.1 kcal·mol−1·°−2

θ 0.1 kcal·mol−1·°−2

r 25 kcal·mol−1·Å−2
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Table S4. The 20 residue-residue pairs between ABI1 and ROP11 with the highest mean interaction energy (MIE) in
state 160. MIE was calculated from a 500-ns all-atom MD trajectory using gRINN.29

ROP11 residues ABI1 residues MIE (kcal/mol)
K32 D278 -22.49
K163 Q299 -18.18
K32 D351 -16.15
K32 W350 -15.79
D36 H179 -14.58
T29 R409 -11.13
D127 W300 -9.82
T35 R304 -9.20
K32 D282 -8.19
D36 R137 -8.00
K32 D261 -7.74
V41 K412 -7.39
D36 R304 -7.19
K32 M353 -7.15
K163 D282 -5.92
N44 Q408 -4.40
D123 W300 -4.33
Y37 D347 -3.99
Y37 R137 -3.91
T35 D351 -3.57
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Table S5. The 20 residue-residue pairs between ABI1 and ROP11 with the highest mean interaction energy (MIE) in
state 240. MIE was calculated from a 250-ns all-atom MD trajectory using gRINN.29

ROP11 residues ABI1 residues MIE (kcal/mol)
D127 R189 -65.05
K128 E190 -32.65
D16 K372 -28.93
D133 K391 -20.86
D68 K371 -13.16
H129 E190 -12.78
H134 K391 -11.79
V90 K391 -6.47
D133 S146 -5.66
D68 K372 -5.25
G65 K372 -4.27
P135 K391 -3.92
Y130 K391 -2.88
S88 E400 -2.72
K128 N186 -2.50
Y37 Q408 -2.43
D133 Y129 -2.4
D127 A144 -2.11
D133 A144 -2.05
L124 R189 -1.72
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Fig. S1. Evaluation of the quality of homology models of AtROP11 and AtABI1. (A) Root mean square deviation
between the crystal structures of OsRAC1 (the GTPase template for ROP11, PDB ID: 4U5X) and seven active GTPases
with varying degrees of sequence identify to OsRAC1 (PDB IDs: 1E96, 1I4T, 2WKP, 2WKR, 2WKQ, 2W2V, and
4F38) are generally smaller than 2.2 Å. (B) The crystal structures of OsRAC1 and seven GTPases share the same fold,
and the switch II and the insert region are highly conserved while the switch I region demonstrates slight variation. As
the sequence identity between AtROP11 and OsRAC1 is 82.95%, the homology model of ROP11 using OsRAC1 as
the template is of good quality. (C) Structural comparison between the homology model of ABI1 (template PDB ID:
3UJK, lime) and the crystal structure of ABI1 (PDB ID: 3JRQ, yellow). The RMSD between two structures is 1.42 Å.
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Fig. S2. Schematic of CG models of ABI1 and CA-ROP11 and CGMD simulations. Atomic (left) and CG bead (right)
representations of (A) ABI1 and (B) CA-ROP11. Backbone beads of ABI1 and CA-ROP11 are shown in lime and blue,
respectively. Sidechain beads are shown in purple. (C) A representative view of explicit solvent and periodic CG MD
simulation box.
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Fig. S3. Schematic of structural features used for clustering ABI1/CA-ROP11 complex conformations. In both ABI1
and ROP11, three points (P1, P2 and P3 in ABI1, P1′ , P2′ and P3′ in CA-ROP11) were defined as the centers of mass
of groups of atoms. The distance between P1 and P1′ characterizes the distance between ABI1 and CA-ROP11. The
angles Θ (P2-P1-P1′) and θ (P1-P1′-P2′) as well as the dihedral angles Φ (P3-P2-P1-P1′), φ (P1-P1′-P2′-P3′) and ψ
(P2-P1-P1′-P2′) together characterizes the relative position and orientation between ABI1 and CA-ROP11.
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Fig. S4. Hyperparameter selection for construction of Markov state models of ABI1/CA-ROP11 association. (A)
Convergence of the implied timescales of the slowest processes captured by MSMs with respect to increasing lag times.
A lag time of 800 ns was used for the final MSM. (B) GMRQ scores for ranking how well MSMs with various numbers
of clusters and tICs capture the slowest processes of ABI1 and ROP11 association. Based on the GMRQ scores, the set
of parameters (600 clusters and 4 tICs) was chosen to construct the final MSM.
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Fig. S5. ABI1-ROP11 conformational ensemble sampled from CG MD simulations. Conformational free energy
landscape projected onto (A) φ and θ and (B) the two slowest degrees of freedom (tIC1, tIC2) resulted from time-lagged
independent component analysis of the clustering metrics. Top 25 most populated MSM states are mapped onto the
free energy landscape according to their tIC1 and tIC2 values. (C) The equilibrium populations of top 25 states ranked
by descending order. Sum of the populations of the top 25 states is greater than 80% of the total populations. The three
states with similar complex structures are highlighted in red.
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Fig. S6. Plots of RMSD, with respect to the first frame of each trajectory, for the 23 candidate complex structures
during 240 ns all atom MD simulations.
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Fig. S7. Plots of center-of-mass distance for the 23 candidate complex structures during 240 ns all atomMD simulations.
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Fig. S8. Potential of mean force profiles for separating the top 13 candidate complex structures in the presence of
conformational and angular restraints. The error bars on the PMFs are shown. The PMF depths indicate relative
stability of the 13 candidate complex structures.
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Fig. S9. Individual PMFs for all restraint components on (A) state 160, (B) state 240, and (C) state 3. Plots for the
conformational and angular restraints Bsite

ABI1,c and Bbulk
ABI1,c , Bsite

ROP11,c and Bbulk
ROP11,c , Θ, Φ, ψ, φ and θ are shown along

with the error bars on the PMFs.
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Fig. S10. The predicted complex structure (state 160) remains highly stable within 500 ns simulations. RMSD from
the initial frame and the center-of-mass distance between ABI1 and ROP11 are plotted with respect to simulation time.
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Fig. S11. (A) The candidate complex structure of the state 240 and (B) the molecular interactions at ABI1-ROP11
interface in the state 240. The state 240 is stabilized via the electrostatic interaction between both the charged residue
pairs in ABI1 and ROP11 and GTP and K404 in ABI1.
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Fig. S12. The association pathway between ABI1 and CA-ROP11 to form state 240 predicted fromCGMD simulations.
The initial interaction between ABI1 and CA-ROP11 is mediated by the charged residues in ABI1 and the insert region
of CA-ROP11. Next, CA-ROP11 adapts the orientation to rotate around ABI1 and assumes the pose in state 240. This
transition pathway was generated by performing transition path theory analysis on the MSM from CGMD simulations.
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Fig. S13. The candidate complex structure of the state 3 where both N- and C-terminal residues of ROP11 are involved
in forming the interface, which is unlikely to be physical.
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Fig. S14. Identification of critical residue-residue pairs in state 240. (A) Mean interaction energy (MIE) matrix and
(B) residue correlation matrix for the residue-residue pairs between ABI1 and ROP11. Network analysis reveals the
degree and betweenness-centrality (BC) of the residues in (C) ROP11 and (D) ABI1. The residues in ROP11 and ABI1
with high degree and BC are highlighted.
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