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Abstract 
Common genetic variants can have profound effects on cellular function, but studying these effects in               
primary human tissue samples and during development is challenging. Human induced pluripotent            
stem cell (iPSC) technology holds great promise for assessing these effects across different             
differentiation contexts. Here, we use an efficient pooling strategy to differentiate 215 iPS cell lines               
towards a midbrain neural fate, including dopaminergic neurons, and profile over 1 million cells              
sampled across three differentiation timepoints using single cell RNA sequencing. We find that the              
proportion of neuronal cells produced by each cell line is highly reproducible over different              
experimental batches, and identify robust molecular markers in pluripotent cells that predict line-to-line             
differences in cell fate. We identify expression quantitative trait loci (eQTL) that manifest at different               
stages of neuronal development, and in response to oxidative stress, by exposing cells to rotenone.               
We find over one thousand eQTL that colocalise with a known risk locus for a neurological trait, nearly                  
half of which are not found in GTEx. Our study illustrates how coupling single cell transcriptomics with                 
long-term iPSC differentiation can profile mechanistic effects of human trait-associated genetic           
variants in otherwise inaccessible cell states. 

Introduction 
Genetic variation can significantly alter cell function, for example by altering gene            
expression. Human Induced Pluripotent Stem Cells (iPSCs) are a promising cellular model            
for assessing the cellular consequences of human genetic variation across different           
lineages, developmental states and cell types. In particular, human iPSCs facilitate the study             
of developmental time points and stimulation conditions that would be challenging to obtain             
in vivo​. The creation of cell banks containing hundreds of iPSC lines​1 provides an exciting               
opportunity to carry out pop ​ulation-scale studies ​in vitro​2–5​. However, differentiating iPSCs is            
expensive and labour-intensive, and differentiation experiments are difficult to compare due           
to substantial batch variation. Thus, studies of more than a handful of lines remain a               
significant challenge. Furthermore, most iPSC differentiation protocols produce a         
heterogenous population of cells of which the target cell type is a subset​6–8​. This variability in                
differentiation outcomes hinders efforts to dissect the genetic contributions to cellular           
phenotypes.  
 
Single cell sequencing has enabled “multiplexed” experimental designs, where cells from           
multiple donors are pooled together​2,9​. Pooling improves throughput and allows experimental           
variability between differentiation batches to be rigorously controlled, by enabling cell type            
heterogeneity to be accounted for in downstream analysis. To date, multiplexed           
experimental designs have only been applied to short differentiation protocols (over a period             
of days), that generate cells corresponding to very early stages of development, and ​have              
not captured developmental progression toward a mature cell fate. Population-scale pooling           
during long-term differentiation offers the opportunity to examine the effect of common            
genetic variants on gene expression in each cell population produced over neural            
development, providing a foundation for future mechanistic studies. 
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Here, we develop and apply a multiplexing strategy to profile the differentiation and             
maturation of more than two hundred iPSC lines derived from the Human Induced             
Pluripotent Stem Cell Initiative (HipSci) towards a midbrain neural fate, including           
dopaminergic neurons (DA). DA are involved in motor function and other cognitive            
processes and play key roles in neurological disorders, including Parkinson’s Disease ​10,11           
(PD​). To study how these cells differentiate, and how genetic background could influence             
differentiation, we employed a well-established protocol ​12 and collected cells at three           
maturation stages (progenitor-like, young neurons, and more mature neurons), covering 52           
days of differentiation. We additionally exposed cells on day 51 to rotenone, to explore how               
genetic variation shapes the neuronal response to oxidative stress. Using this system, we             
create ​the first map of expression quantitative trait loci (eQTL) at multiple stages of human               
neuronal differentiation, and identify nearly 500 novel trait / eQTL colocalisations. Using            
estimates of cell population composition based on single cell RNA-seq, we demonstrate that             
a strong, cell intrinsic-differentiation bias affects a significant proportion of iPSC lines, such             
that approximately 25% reproducibly fail to produce any neuronal cells.  

Results 

High-throughput differentiation of midbrain dopaminergic 
neurons 
We selected 215 iPSC lines derived from healthy donors by the HipSci project​1 for              
differentiation towards a midbrain cell fate, including dopaminergic neurons​12​. Differentiation          
experiments were multiplexed using pools containing between 7 and 24 cell lines per             
experiment (​Supplementary Table 1​). Immunochemistry confirmed ​that cells from both          
pooled and conventional differentiation of individual lines expressed protein markers          
associated with patterning of DA (LMX1A, FOXA2 and TH) (​Supplementary Fig. 1​). To             
capture transcriptional changes during neurogenesis and neuronal maturation, we performed          
single cell RNA sequencing (scRNA-seq) of cells captured at day 11 (D11, ​midbrain             
floorplate progenitors​), day 30 (D30, young post-mitotic midbrain neurons) and day 52 (D52,             
more mature midbrain neurons). To mimic an oxidative stress condition, we also profiled day              
52 neurons upon exposure to a sub-lethal dose of rotenone (ROT, 0.1 μM; 24 h) a chemical                 
stressor that preferentially leads to DA death in models of PD (​Fig. 1a​)​13​. 
 
After QC, we obtained a total of 1,027,401 cells across 19 cell pools​14 and four conditions                
(​Fig. 1a, Supplementary Table 1 ​). The cell line of origin for each cell was inferred from                
single cell RNA-seq read data using known genotypes made available by the HipSci             
consortium (using demuxlet,​15​). Adjustment for experimental batch effects using Harmony​16          
followed by Louvain clustering ​14 identified a total of 26 clusters (6, 7 and 13 clusters               
respectively at D11, D30, D52, ​Supplementary Fig. 2a ​). These clusters were then assigned             
to cell types by testing for enrichments of 48 literature-curated marker genes of major brain               
cell types (​Fig. 1b, ​ ​Supplementary ​ ​Fig. 2b,c; Methods ​). 
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Figure 1. ​Experimental design and cell type heterogeneity in pooled differentiations of iPSCs to a midbrain cell 
fate. (a) Experimental workflow for scRNA-seq analysis of iPSC-derived dopaminergic neurons. Time points at 
which cells were collected for scRNA-seq profiling (Day 11, Day 30, Day 52) are indicated. On day 51, half of 
the cells were stimulated with rotenone (ROT) for 24h to induce oxidative stress. (b) UMAP plot of all 
1,027,401 cells assayed, coloured by annotated cell type identity. Cells that were not collected at a given 
condition (time point, stimulus) are displayed in light grey. Prolif: Proliferating. (c) Barplot showing, for each 
condition, the fraction of cells assigned to each cell type.   

 
Among these, we identified six dominant cell types that were making up at least 10% of the                 
cells at any time point (​Supplementary Fig. 2c​). These included two main cell type              
populations at day 11: proliferating and non-proliferating midbrain floorplate progenitors          
(both expressing ​LMX1A​, ​FOXA2 and expressing ​MIK67​, ​TOP2A when proliferating ​17​). At           
days 30 and 52, four additional dominant cell types were identified. Two of these additional               
cell types appeared neuronal and two were non-neuronal (characterised by expression and            
lack of the pan-neuronal markers ​SNAP25 and ​SYT1 respectively​)​. The two neuronal            
populations could be further divided into midbrain dopaminergic neurons, which expressed           
NR4A2, PBX1, TMCC3​17–19 and serotonergic neurons (Sert), which expressed ​TPH1, TPH2​,           
GATA2 ​20​. The two non-neuronal cell types corresponded to ependymal-like cells, detected           
both at days 30 and 52 (Ependymal 1 ​21​) and astrocyte-like cells, unique to day 52               
(Astrocyte-like ​22,23​). We also identified a neuroblast population, specific to day 11 (4% of all              
cells at day 11) expressing pro-neuronal genes (​NEUROD1​, ​NEUROG2​, ​NHLH1​24,25​) and an            
additional neuronal population (expressing ​SNAP25 and ​SYT1 ​) that could not be assigned to             
a specific neuronal identity (Unknown neurons 1, present at Day 30 and Day 52 at around                
7%). Finally, we identified four additional rare cell types (<2% of cells sampled at any time                
point), including a second ependymal-like population (Ependymal 2), a proliferating neuronal           
serotonergic population (Prolif. Serotonergic neurons), and two additional neuronal         
populations which could not be annotated unambiguously (Unknown neurons 2, Unknown           
neurons 3, ​Fig. 1b, Supplementary Fig. 2c ​). 
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UMAP projection of cells collected across all time points, stimuli and lines revealed broad              
co-clustering of cell types, but with noticeable differences between time points and stimuli             
(​Fig. 1b ​). We observed substantial variation in the cell type proportions across time points              
and stimuli (​Fig. 1c​). For example, the proportion of DA upon ROT stimulation was              
significantly reduced (30% reduction upon stimulation, Fisher’s exact test, p=2.2x10 ​-16​),          
consistent with previous observations that dopaminergic neurons are most affected by           
apoptosis due to oxidative stress​26–28​. 
 
Collectively, our population-scale scRNA-seq analysis revealed a surprisingly diverse         
repertoire of cell types, enabling study of both cell line differentiation propensity and the              
identification of genetic variants that act in a cell type-specific manner.  

Intrinsic variation in differentiation efficiency between iPSC 
lines 
iPSC differentiation protocols are highly variable but the biological basis for this remains             
largely obscure, which hinders efforts to rationally select cell lines for specific applications             
29,30​. We found substantial variation in the proportions of different cell types produced by              
different iPSC cell lines at each time point (​Fig. 2a​, ​Supplementary Fig. 3a,             
Supplementary ​Table 2 ​). Using principal component analysis of cell type fractions per cell             
line and pool, we identified the proportion of midbrain neurons (DA and Sert) on day 52 as                 
the largest axis of variation (PC1, 47% variance, ​Supplementary Fig. 3b-d ​). ​Since DA and              
Sert cells are derived from similar progenitor populations ​in vivo​, it is not surprising that both                
populations are observed in our differentiation experiment​31​. ​This motivated us to estimate            
“differentiation efficiency” for each iPSC line, defined as the sum of the proportions of DA               
and Sert cells produced on day 52 (​Fig. 2b​). We assessed the reproducibility of this               
measure of differentiation efficiency using data from 35 lines that were differentiated twice, in              
two different pools. Importantly, we found that iPSC line differentiation efficiency defined in             
this way was highly reproducible between different pools (Pearson R=0.75; p=2x10 ​-6​; ​Fig.            
2d​).  
 
Given the robustness of these results, we wondered if they were generalisable to other              
neuronal differentiation approaches. We therefore differentiated a pool of 18 lines (pool 4)             
into cerebral organoids for 113 days​32 and profiled the resulting cell populations using             
scRNA-seq (11,445 cells, Fig. 2c, Methods ​). Remarkably, we found that the proportion of             
brain cell types (all neural, glial, and neural progenitor cells, ​Supplementary Fig. 4 ​)             
produced by each line in the cerebral organoids was strongly correlated with differentiation             
efficiency as estimated from the dopaminergic differentiation (​Fig. 2e,f​, ​R=0.94; p=2x10 ​-5​;           
n=12). Taken together, these results strongly suggest that variation in iPSC neural            
differentiation efficiencies arise primarily due to cell-intrinsic factors. Furthermore, the          
consistency of differentiation efficiency suggests these properties extend to neuronal          
differentiation more generally. 
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Figure 2. ​Reproducible variation in differentiation trajectories. (a) Box plot showing, for each cell type, the 
proportions of that cell type across cell lines on day 52. Each point indicates a different cell line. We defined the 
sum of the proportions of DA and Sert cells generated at day 52 as differentiation efficiency. (b) Hierarchical 
clustering of (cell line,pool) combinations by differentiation efficiency. Pools are shown in the first bar and the 
colours indicate in which of 10 pools (for which we had data at all time points, used to define differentiation 
efficiency; Supplementary Fig. 3, Methods) each line was differentiated. Differentiation replicates, where the 
same line was present in 2 pools, are shown in the second bar (replicate 1 in red and replicate 2 in blue). 
UMAPs, highlighting the distributions of cells on day 52 for two selected cell lines with low and high 
differentiation efficiencies respectively (​HPSI0514i-fiaj_1, in seagreen​ and HPSI1213i-hehd_1, in dark blue) 
(right). (c) Experimental workflow for scRNA-seq analysis of iPSC-derived cerebral organoids using one pool 
consisting of 18 cell lines, profiled using scRNA-seq after 113 days of differentiation. UMAPs of the two 
resulting cell populations. UMAP legend: 1: FPP, 2: P_FPP 3: Neuroblasts, 4: DA, 5: Sert, 6: Proliferating Sert, 
7: Astro, 8: Epen1, 9: Epend2, 10: U_Neur1, 11: U_Neur2, 12: U_Neur3 ; a: Neural cells, b: Intermediate 
progenitors, c: Radial glial progenitors, d: Satellite cells, e: Mesenchymal cells, f: Myotube, g: PAX7+ cells, h: 
Wnt+cells. (d) Scatter plot showing  estimated differentiation efficiency between differentiation replicates (i.e. 
cell lines differentiated in two different pools, n=35). Highlighted are the two cell lines from (b). (e) UMAPs of 
two representative cell lines making non-brain and brain cell types in the organoid study. The two cell lines 
selected are the same as in b. (f) Scatter plot of differentiation efficiency as measured using midbrain 
dopaminergic neuronal differentiation (x-axis) versus differentiation efficiency as measured in organoid 
differentiation (y-axis) for  a subset of 12 iPS cell lines in common. Highlighted are the two cell lines from (b). 
Astro: Astrocyte-like; DA: Dopaminergic neurons, Epen1:  Ependymal-like1,  FPP: Floor Plate Progenitors, 
P_FPP: Proliferating FPP, Sert:  Serotonergic neurons, U_Neur1,2,3: Unknown neurons 1,2,3. 
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iPSC gene expression signatures predict neuronal 
differentiation efficiency 
Motivated by the reproducibility of differentiation outcomes across multiple independent          
pools, we tested for associations between differentiation efficiency and other experimental           
and biological factors (​Supplementary Table 3)​, but found no or weak associations with cell              
line passage number (p=0.77), donor sex (p=0.008), chromosome X activation status           
(p=0.01, ​Methods ​), or PluriTest scores​33​ (p=0.01, ​Methods ​). 
 
Next, we assessed whether differentiation efficiency was associated with particular patterns           
of gene expression in undifferentiated iPSCs. Using data from independent bulk RNA-seq            
data available for a subset of 184 iPSC lines included in this study​1​,​34 we identified significant                
associations with differentiation efficiency for 2,045 genes (983 positive and 1,062 negative            
associations; F-test, FDR < 5%; ​Fig. 3b,c; Supplementary Table 4, Methods ​). Notably,            
when defining poor differentiation as a binary outcome (differentiation efficiency < 0.2),            
genome-wide gene expression profiles in undifferentiated iPSCs were able to predict           
differentiation outcomes (logistic regression; 100% precision at 35% recall assessed using           
cross-validation; ​Supplementary ​Fig. 5a,b; Methods ​). This result was robust to alternative           
thresholds for defining poor differentiation outcomes. Using this model, we generated           
predicted scores for all 812 HipSci lines with bulk RNA-seq data (​Supplementary ​Table 5 ​).              
This analysis indicated that a substantial fraction of lines in the HipSci resource (26%) were               
predicted to produce < 20% neuronal cells under the differentiation conditions we tested.             
Furthermore, we tested whether the same experimental and biological factors previously                     
associated with differentiation efficiency replicated in this larger sample and found consistent                       
results. ​(​Supplementary Table 3; Methods ​). Finally, we also observed substantial variation            
in predicted outcomes of different lines from the same donor (​Supplementary Fig. 5c-e​),             
suggesting that donor genetic background is unlikely to play a role in driving differentiation              
biases. 
 
Next, since iPSC cultures are heterogeneous, we hypothesised that the identified predictive            
gene signatures might arise from varying proportions of an iPSC subpopulation. To test this              
hypothesis, we re-analysed scRNA-seq data from 112 iPSC lines that were assayed            
previously under iPSC culture conditions similar to those used here ​2​, 45 of which were also               
included in this study, Methods ​, ​Fig. 3a ​). We identified 5 clusters, all but one of which                
expressed similarly high levels of core pluripotency markers (​NANOG​, ​SOX2 ​, ​POU5F1​,           
Supplementary ​Fig. 6a,b; Methods ​). We found that genes whose expression predicted           
poor differentiation (e.g ​UTF1 ​) were highly enriched in one of those clusters (cluster 2), while               
genes whose expression were predictive of successful differentiation (​TAC3​), were          
downregulated in cluster 2 relative to the remaining iPSC clusters (​Fig. 3d,e​). In comparison,              
other cell clusters did not show such equivalent enrichment in differentiation marker genes             
(​Supplementary Table 6 ​). 
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Figure 3. ​A gene expression signature in iPSCs is associated with neuronal differentiation efficiency. (a) Venn 
diagram indicating the overlap of cell lines included in this study and two recent iPSC studies, a bulk RNA-seq 
study ​34​ and a single cell RNA-seq study​2​. (b) Histogram of Pearson correlation coefficients between variation 
in gene expression of individual genes (from bulk RNA-seq​34​) and differentiation efficiency. Two representative 
genes ( ​UTF1​, ​TAC3 ​) are highlighted. (c) Example of genes from (b) whose gene expression in iPSC (based 
on bulk RNA-seq) is negatively (​UTF1​) and positively (​TAC3​) correlated with differentiation efficiency. (d) 
UMAPs of single-cell RNA-seq profiles in iPSCs from 112 donors​2​. Colours denote the expression level of the 
two example genes from (b),(c): ​UTF1​ and ​TAC3​. Cluster 2 is shown by the dashed lines. (e) Comparison of 
marker gene association results with expression markers of the cluster 2. For each gene, the Pearson 
correlation coefficient of association between the gene and differentiation efficiency (x-axis; iPSC gene 
expression assessed using bulk RNA-seq, as in (b)) is compared to its log fold change between cluster 2 and 
the other clusters (y-axis, scRNA-seq). (​UTF1​, ​TAC3 ​) are highlighted. (f) Scatterplot between the proportion of 
cells assigned to cluster 2 (y-axis) and differentiation efficiency (x-axis) across 45 cell lines which were 
included in both sets of experiments. Where multiple measurements were available for a given cell line, these 
were averaged.  

As a direct confirmation of this hypothesis, we also tested for and confirmed an association               
between the fraction of cells in cluster 2 and differentiation efficiency for each cell line               
(Pearson R=-0.76, p=2.05 x10 ​-9​; ​Fig. 3f ​). We used additional data from ​2 to assess the               
consistency of the fraction of cluster 2 cells across replication experiments, finding high             
concordance (Pearson R=0.9; n=23, ​Supplementary ​Fig. 6c ​). Using the known relationship           
between iPSC bulk RNA-seq and the proportion of cluster 2 cells, we predicted this              
proportion for 182 cell lines included in our differentiation experiments, and confirmed the             
negative correlation with differentiation efficiency (Pearson R=-0.49; p=3x10 ​-12​,        
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Supplementary Fig. 6d; Methods ​). Finally, we also analysed an additional scRNA-seq           
dataset from iPSCs derived from Lymphoblastoid Cell Lines​35 (LCLs). Using our single cell             
analysis pipeline, we also identified a cluster of cells with a concordant expression profile to               
cluster 2 (​Methods, Supplementary Fig. 7 ​). Taken together, these results provide further            
evidence that a subpopulation of iPS cells with poor differentiation capability is consistently             
detected across different human iPSCs banks, and that this bias can be robustly predicted              
using expression markers at the iPSC stage. ​Importantly, despite the variability in                
differentiation efficiency, our single-cell sequencing approach enabled us to examine multiple                     
disease-relevant cell populations for many cell lines. Correlating changes in gene expression with                         
common genetic variants associated with various traits in GWAS could provide insights into                         
disease mechanisms. 

 eQTL discovery and comparison with ​in vivo​ eQTL maps 
We next focused on understanding how individual-to-individual genetic variation influenced          
gene expression across these cell types during differentiation and in response to stimulation.             
Specifically, we mapped ​cis ​expression quantitative trait loci (eQTL) separately for each of             
the 14 distinct cell populations that corresponds to the profiled “cell type”-“condition”            
contexts. eQTL were mapped by calculating aggregate expression levels for each donor,            
considering common gene-proximal variants (MAF>0.05, plus or minus 250 kb around           
genes; ​Methods ​). Variability in differentiation efficiency between lines resulted in substantial           
differences in the number of cells collected for each donor (​Supplementary ​Fig. 8a ​),             
affecting accuracy of the estimates of aggregated expression. To account for this source of              
noise, we adapted commonly used eQTL mapping strategies​2 based on linear mixed models             
(LMMs) by incorporating an additional variance component into the model (​Methods​). This            
approach greatly increased the power to map eQTL, resulting in a total of 4,087 genes with                
at least one eQTL in any of the contexts (hereafter “eGene”, FDR < 5%, ​Fig. 4a,                
Supplementary Fig. 8b, Supplementary Table 7 ​). 
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Figure 4. ​Mapping of ​cis​ eQTL in distinct cell contexts (“cell types”-“conditions”) identified across midbrain 
differentiation. (a) Cumulative number of genes with at least one eQTL (eGenes) for each cell type and 
condition (D11 = Day 11; D30 = Day 30; D52 = Day 52; ROT = Rotenone stimulation). (b) Left: day 52-specific 
eQTL for ​HSPB1 ​in DA (rs6465098; FDR < 5%, Methods). Shown are ​Manhattan plots for DA at day 30 (top), 
day 52 (bottom) ​. Right: a rotenone stimulus-specific eQTL for ​ACSF3​ in Sert (rs12597281, right). Shown are 
Manhattan plots for rotenone stimulated Sert at day 52 (top) and unstimulated day 52 Sert (bottom). (c) 
Comparison of the number of genes with at least one eQTL (number of eGenes; FDR < 5%; y-axis) as a 
function of effective sample size (number of unique donors; x-axis) across studies and cell types. Left: results 
from overlapping eQTL results in this study with ​in vivo​ eQTL maps from GTEx, divided into brain tissues and 
non-brain tissues. In red, the result from our study when aggregating across cell types and conditions. Right 
panel shows a magnified view of results from our study coloured by cell type and shaped by condition. (d) 
Sharing of eQTL signals discovered in our study for different cell types and conditions, as well as in two recent 
iPSC studies​2,34​ with ​in vivo ​ brain eQTL maps (from GTEx). Violin plots show the extent of eQTL sharing 
(Methods​), with each of 13 GTEx brain eQTL maps.  

 
The largest number of eQTL were detected in progenitor cell populations, likely reflecting             
increased detection power due to the larger number of well-represented donors (>100 cells             
per donor; ​Methods, ​Supplementary Fig. 8 ​). Notably, the cumulative number of genes with             
an eQTL in each cell type increased substantially when considering cells further progressed             
along the differentiation axis, as well as upon stimulation (​Fig. 4a​). For example, in DA cells,                
eQTL mapping in matured cells (day 52) identified an additional set of 270 egenes compared               
to day 30 cells.  
 
An example of a timepoint-specific eGene is ​HSPB1, ​for ​which SNP rs6465098 is an eQTL               
in D52 cells, but not D30 (​Fig. 4b​). ​HSPB1 encodes a heat shock protein that plays a key                  
role in neuronal differentiation ​36 and for which changes in gene expression have been             
observed in neurons after ischemia ​37 and associated with toxic protein accumulation in            
Alzheimer disease ​38,39​.  
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Similarly, we detected 196 additional eGenes with a rotenone-specific effect in DA and Sert              
neurons. As an example, rs12597281 is an eQTL for ​ACSF3 ​in rotenone stimulated             
serotonergic neurons at day 52, but not in unstimulated cells (​Fig. 4b​). ​ACSF3 encodes an               
acyl-CoA synthetase localized in the mitochondria and for which inherited mutations have            
been associated with a metabolic disorder, combined malonic and methylmalonic aciduria           
(CMAMMA), where patients exhibits a wide range of neurological symptoms including           
memory problems, ​psychiatric problems and/or cognitive decline ​40​.  
 
These examples highlight how changes in the expression of genes known to be associated              
with human disease can be transient and specific to a cell type and state. More importantly,                
this data shows how our experimental design brings an extra level of resolution to              
understand the disease mechanisms that were previously inaccessible from primary tissues           
and open up new experimental avenues. 
 
To test how our eGene discovery relates to previous studies, we compared the number of               
eGenes identified in this study with bulk eQTL maps from ​in vivo tissues from the GTEx                
consortium​41 (​Methods ​). To aid the comparability between bulk and single-cell eQTL maps,            
we aggregated eQTL across cell types and found that the number of discovered eGenes              
was similar to that expected in a primary tissue of the same sample size (​Fig. 4c​). However,                 
when focusing on individual cell populations, we observed fewer “cell type”-“condition” eQTL            
than detected in GTEx tissues of similar sample size, likely due to the decreased              
representation of donor cells.  
 
A key question of eQTL maps from ​in vitro iPS-based models is how closely these resemble                
eQTL maps from primary tissues that differ in cell composition. To explore this, we tested the                
extent to which regulatory variants were shared between eQTL maps in three resources: 1)              
the current study, 2) GTEx brain tissues (n=13 tissues), and 3) bulk and single-cell RNA-seq               
profiles of HipSci iPS cell lines​2,34​, as measured by genome-wide consistency of eQTL effect              
sizes (using MASHR​42​; ​Methods ​). We found that as iPSCs were differentiated to            
increasingly mature neuronal cell types, the extent of eQTL sharing consistently increased            
(​Fig. 4d ​). This provides additional confidence that eQTL discovered in iPS-derived neuronal            
populations mimic ​in vivo eQTL maps. Consistent with the trend of increased eQTL sharing,              
we also observed that the fraction of eQTL that are not represented in GTEx brain tissues                
decreases as the cells become more mature (​Supplementary Fig. 9a​). Interestingly, while            
iPS-derived eQTL maps mimic ​in vivo ​GTEx Brain eQTL maps, we also identified 2,203              
eQTL that could not be detected in GTEx brain tissues (q-value>0.05 in any of 13 tissues,                
Methods ​), demonstrating the utility of iPSC and scRNA analysis to discover regulatory            
changes in disease associated genes.  

Co-localization of eQTL with disease risk variants 
The identified cell-type specific eQTL maps across different differentiation contexts provide a            
unique opportunity to understand human disease traits and their genetic risk factors            
identified by genome-wide association studies (GWAS). To systematically test for such           
colocalization events, we applied COLOC​43 (​Methods ​) to the summary statistics from 25            
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n ​eurological traits, eQTL discovered in our study, as well as eQTL obtained from GTEx              
(​Methods, ​Supplementary ​Table 8,9 ​).  
 
In total, we ​identified 1,052 eQTL in our study with evidence of colocalization with at least                
one disease trait (​Fig. 5a,b​), 485 of which were found only in our data set. This corresponds                 
to an additional ~10% of co-localization events of GWAS variants compared to eQTL across              
all GTEx tissues (5,028 across 48 tissues, ​Fig. 5b ​). Notably, 298 (61%) of the              
co-localizations in our data were associated with eQTL detected in later differentiation            
stages (D52) or upon stimulation (D52 ROT, ​Supplementary Fig. 9b​).  
 
 

 
 

Figure 5. ​Colocalization analysis with 25 neuro-related GWAS traits. (a) Venn diagram showing the numbers 
of colocalization events overlapping between our study, GTEx brain and GTEx non brain tissues. (b) Heatmap 
showing the posterior probability of colocalization (PP4 from COLOC; Methods) for our eQTL that colocalised 
with one or more GWAS traits. N: Neuronal differentiation (this study), B: GTEx Brain, O: Other GTEx tissues. 
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(c) Locus zoom plots around the ​SFXN5​ gene. The Schizophrenia GWAS association (left) is colocalised with 
the eQTL​ ​in ​ ​rotenone stimulated serotonergic neurons at D52 (second panel from the left). No colocalization 
signal was detected in unstimulated serotonergic neurons at D52 (third panel from the left) or any other brain 
GTEx tissues as illustrated here with GTEx Brain Amygdala (rightmost panel). The lead variant is indicated 
with a purple diamond and other points were coloured according to the LD index (r2 value) with the lead 
variant. (d) A midbrain progenitor-specific eQTL for ​FGR1​ associated with schizophrenia. We identified a 
colocalization event with this eQTL in both proliferating (second panel from the left) and non-proliferating floor 
plate progenitors (third panel from the left) at day 11. No colocalization was found in any other cell type from 
our study (not shown) nor in any brain GTEx tissues (shown with GTEx Brain Hypothalamus, rightmost panel).  
 

 
Among the most interesting colocalization events was an eQTL for ​SFXN5​, a mitochondrial             
amino-acid transporter, which was specific to the rotenone-stimulated serotonergic neurons          
at day 52, and which co-localized with a Schizophrenia hit (PP4=0.76, ​Fig. 5c ​). Exposure to               
rotenone is known to induce oxidative stress by inhibiting the mitochondrial respiratory chain             
complex I​44,45​. We therefore speculate that the specific genetic signal observed for the             
mitochondrial gene SFXN5 in serotonergic neurons is a possible factor modulating           
environmental stress response.  
 
Another example that colocalized with a Schizophrenia GWAS variant was an eQTL for             
FGFR1 ​, detected both in proliferating and non proliferating floor plate progenitors at D11             
(PP4=0.93 and 0.88 respectively, ​Fig 5d ​). Previous studies have shown that nuclear ​FGFR1             
plays a key role in regulating neural stem cell proliferation and central nervous system              
development, in part, by binding to the promoters of genes that control the transition from               
proliferation to cell differentiation ​46​. Additionally, it was shown that altered ​FGFR1 ​signaling            
was linked to the progression of the cortical malformation observed in schizophrenia ​47​.  
 
These examples suggest that a combination of genetic and environmental factors during an             
early developmental stage might contribute to schizophrenia pathology and illustrate how           
these data represent a valuable resource to understand the molecular basis of complex             
neurological disease. 

Discussion 
Characterising the function of human trait-associated genetic variation requires large scale           
studies performed in disease-relevant cell types and states. Here, we demonstrate how            
human iPSCs can be efficiently profiled at scale throughout a long-term differentiation to a              
midbrain cell fate. We uncover a highly reproducible, cell-intrinsic neuronal differentiation           
bias and show how this bias can be robustly predicted using simple gene expression              
profiling in the pluripotent cell state. This result sets the stage for the optimized design of                
future large scale iPSC experiments, where cell lines can be rationally selected ​a priori              
without the need for laborious testing of differentiation capacity. Importantly, our analysis            
also identified several hundred trait-associated genetic changes in gene expression that           
have not been previously identified. Overall, our study demonstrates the utility of pooled             
iPSC differentiation and single-cell analysis for revealing the function of disease-associated           
genetic variation in otherwise inaccessible cell states.  
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Despite a modest sample size, our study reveals a disproportionately large number of novel              
disease-eQTL colocalisations compared with GTEx tissues of equivalent sample size. For           
example, the number of novel disease-eQTL colocalisations added by GTEx liver or            
cerebellar hemisphere (n=208, 215 respectively) are 80 and 107, respectively, compared to            
485 in this study. A simple explanation for this result is that our experiment profiled               
expression states that are hard to capture using post-mortem tissue, including timepoints            
during neuronal differentiation and rotenone exposure. Additionally, we detected many eQTL           
that were specific to individual cell types, enabled by the single-cell resolution of our study.               
These signals, while present, are challenging to detect in bulk tissue because the relevant              
cell types are often rare. Taken together, these results suggest that many “missing”,             
disease-relevant eQTL likely remain to be discovered using single cell sequencing of both             
primary tissue and ​in vitro ​cell models. 
 
A second implication of our study is that, despite growth competition between cell lines,              
multiplexing experiments retain sufficient cells per donor to perform robust genetic analysis,            
even following extended periods in culture ​(Supplementary Fig. 8, Supplementary Table           
2​). Although cell lines were pooled at similar numbers, we observed extensive variation             
throughout our experiment in the numbers of cells produced by different lines. For example,              
50% of the cells we sequenced were produced by only 12% of lines. Future technical               
improvements, such as more precise matching of growth rates of cell lines within pools, or               
line selection based on predicted differentiation capacity using markers in the iPS state may              
further increase the utility of multiplexed iPSC differentiation. 
 
The “quality” of human iPSCs has previously been carefully examined using both genetic             
and functional genomic data ​33,48–50​. Despite these efforts, differentiation bias among cell lines            
has been widely appreciated but poorly understood. The underlying mechanisms have been            
hypothesised to involve epigenetic factors, environmental factors such as culture conditions,           
or changes acquired by cells over time in culture, or cell type of origin. To the best of our                   
knowledge, the work presented here is the first to systematically survey differentiation biases             
at the scale of an entire cell bank. To address this question, we leveraged the large number                 
of cells in the HipSci bank and the detailed phenotyping of each of these lines. We excluded                 
the cell type of origin hypothesis​51 in this instance since all HipSci lines were skin-derived.               
We also observed relatively weak relationships between differentiation efficiency and other           
biological factors, such as X chromosome inactivation status, which has been described as             
relevant for other differentiation lineages​2​. Instead, we found that variability in differentiation            
outcomes can be largely explained by cell-intrinsic factors that are maintained over multiple             
freeze/thaw cycles. When we tested if these factors were due to the genetic variant inherited               
from the donor (​52​), we found that a strong donor component was unlikely due to the poor                 
correspondence in predicted differentiation outcomes between lines derived from the same           
individual (​Supplementary Fig. 5c,d,e​). Additionally, we did not detect significant effects in            
a genome-wide association analysis with predicted differentiation outcomes (p>5x10 ​-8​,         
n=540, MAF=0.05). Given these results, we suggest the two most likely candidates for future              
investigation are somatic genetic changes or persistent changes to cell line epigenomes that             
occur early in cellular reprogramming.  
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In particular, our analysis indicates that the reduced production of neurons was best             
correlated with increased abundance of a specific subpopulation (cluster 2) of pluripotent            
cells that express the transcription factor ​UTF1 and other genes at elevated levels.             
Counterintuitively, the proportion of cells in this subpopulation was positively correlated with            
the proportion of neuroblast cells on Day 11, but lower fractions of dopaminergic and              
serotonergic neurons at later stages of differentiation. One possible explanation is that cell             
lines that commit earlier to a neuronal fate disproportionately lose neurons upon passaging             
at Day 20. Alternatively, cluster 2 may preferentially give rise to radial glial cells that more                
readily switch to an astroglial and ependymal differentiation programme ​53​. In support of this              
hypothesis, we identified several upregulated genes in cluster 2, including ​SIX3 ​, ​MT1F and             
PITX2 ​, that are thought to play a role in astrocyte and ependymal cell biogenesis​54–56              
(​Supplementary Table 4​). We speculate that culture methods that reduce iPSC           
heterogeneity may reduce the fraction of iPSC lines that resist efficient neuronal            
differentiation. We also note that our findings do not explain all of the variance in neuronal                
differentiation capacity, and future studies will be required to more fully understand the             
biological basis of the differentiation bias we have observed here.  
 
Based on molecular markers that are predictive for differentiation bias, we estimate that 16%              
of iPSC lines in the HipSci resource produce few to no identifiable neuronal cell types under                
the conditions tested. While the production of neuronal cells was intrinsically limited in these              
cell lines, the fact that this effect was associated with particular cell lines but not with                
particular donors suggests that cell banks that contain multiple lines per donor can be most               
effectively utilised for applications involving neural differentiation by the rational selection of            
cell clones. Importantly, this ​a priori ​selection is enabled by gene expression profiling data              
from the pluripotent state that is easily obtainable and often already available.  
 
In summary, our study clearly demonstrates how iPSC differentiation combined with single            
cell RNA-seq unlocks population level studies in increasingly complex, dynamic and           
biologically realistic cellular models. We anticipate that future uses of this model system will              
focus on experimental settings that are challenging or impossible with primary cells. These             
could include high resolution sampling along extended differentiation times to more complex            
differentiation trajectories, such as cell organoids, or involve large panels of disease            
relevant-stimuli and drug exposures. Collectively, our study will guide future efforts to            
understand the common genetic basis of neurological disorders, and facilitate the           
development of iPSC-based approaches for modelling and treating these diseases. 
 

Methods 

Human iPSC culture 
Feeder-free human iPSCs were obtained from the HipSci project​1​. Lines were thawed onto             
tissue culture-treated plates (Corning, 3516) coated with 10 µg/mL VitronectinXF (StemCell           
Technologies, 07180) using complete Essential 8 (E8) medium (Thermo Fisher, A1517001)           
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and 10 µM Rock inhibitor (Sigma, Y0503). Cells were expanded in E8 medium for 2               
passages using 0.5 µM EDTA pH 8.0 (Thermo Fisher, 15575-020) for cell dissociation.  

Pooling and differentiation of midbrain dopaminergic neurons 
iPSC colonies were dissociated into a single-cell suspension using Accutase (Thermo           
Fisher, A11105-01) and resuspended in E8 medium containing 10 µM Rock inhibitor. Cells             
were counted using an automated cell counter (Chemometec NC-200) and a cell suspension             
containing an equal amount of each iPSC line was prepared in E8 medium containing 10 µM                
Rock inhibitor and seeded at 2 x 10 ​5 ​cells per cm​2 on 0.01% Geltrex- (Thermo Fisher,                
A1413202) coated plates. Each pool of lines contained between 7 to 24 donors. 24h after               
plating, neuronal differentiation of the pooled lines to a midbrain lineage was performed as              
described by​12 with minor modifications: 1. SHH C25II was replaced by 100nM SAG (Tocris,              
6390) in the neuronal induction phase. 2. On day 20, the cells were passaged with Accutase                
containing 20 units/mL of papain (Worthington, LK00031765) and plated at 3.5 x 10 ​5 ​cells              
per cm​2​ on 0.01% Geltrex-coated plates for final maturation. 

Rotenone stimulation 
On day 51 of differentiation, the cells were exposed for 24h to freshly prepared 0.1 μM                
rotenone (Sigma, R8875, purity HPLC ​≥ 95%​) diluted in neuronal maturation medium​12​. The             
final DMSO concentration was 0.01% in all exposure conditions. Unstimulated control           
samples (i.e. DMSO only) were taken concurrently. 

Generation of cerebral organoids 
Cerebral organoids were generated according to the enCOR method as previously described            
by​32​. Briefly, one pool of 18 iPSC lines was thawed and expanded for 1 passage before                
seeding 18,000 cells onto PLGA microfilaments prepared from Vicryl sutures. STEMdiff           
Cerebral Organoid kit (Stem Cell Technologies, 08570) was used for organoid culture with             
timing according to manufacturer's suggestion and Matrigel embedding as previously          
described ​57​. From day 35 onward the medium was supplemented with 2% dissolved Matrigel             
basement membrane (Corning, 354234), and processed for scRNA-seq after 113 days of            
culture.  

G​eneration of single cell suspensions for sequencing 
On harvesting days, the cells were washed once with 1X ​DPBS (Thermo Fisher, 14190-144)              
before adding either Accutase (day 11) or Accutase ​containing 20 units/mL of papain (days              
30 and 52). The cells were incubated at 37°C for up to 20 min (day 11) or up to 35 min (days                      
30 and 52) before adding DMEM:F12 (Thermo Fisher Scientific, 10565-018) supplemented           
with ​10 µM Rock inhibitor and 33 μg/mL DNase I (Worthington, LK003170, only for days 30                
and 52). The cells were dissociated using a P1000 and collected in a ​15 mL tube capped                 
with a 40 µm cell strainer. After centrifugation, the cells were resuspended in ​1X ​DPBS               
containing 0.04% BSA (Sigma, A0281) and washed 3 additional times in ​1X ​DPBS             
containing 0.04% BSA. Single-cell suspensions were counted using an automated cell           
counter (Chemometec NC-200)​ and concentrations adjusted to 5 x 10 ​5​ cells/mL. 
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Organoids were washed twice in ​1X ​DPBS before adding EBSS ​(​Worthington, LK003188)            
dissociation buffer containing 19 U/mL of papain, 50 μg/mL of ​DNase I and 22.5X of               
Accutase. Organoids were incubated in a shaking block (750 rpm) at ​37°C for 30 min. Every                
10 min, the organoids were triturated using a P1000 and BSA-coated pipette tips until large               
clumps were dissociated. Dissociated organoids were transferred into a new tube capped            
with a 40 µm cell strainer and pelleted for 4 min at 300g. After centrifugation, the cells were                  
resuspended in EBSS containing 50μg/mL of ​DNase I and 2 mg/mL ovomucoid            
(Worthington, LK003150). 0.5 volume of EBSS, followed by 0.5 volume of 20 mg/mL             
ovomucoid were added to the top of the cell suspension and the cells were mixed by flicking                 
the tube. ​After centrifugation, the cells were resuspended in ​1X ​DPBS containing 0.04%             
BSA. Single-cell suspensions were counted using an automated cell counter and           
concentrations adjusted to 5 x10 ​5​ cells/mL. 

Immunohistochemistry  
Cells were fixed in 4% paraformaldehyde (Thermo Fisher Scientific, 28908) for 15 min,             
rinsed 3 times with PBS1X (Sigma, D8662) and blocked with 5% normal donkey serum              
(NDS; AbD Serotec, C06SBZ) in PBST (PBS1X + 0.1% Triton X-100, Sigma, 93420) for 2h               
at room temperature. Primary antibodies were diluted in PBST containing 1% NDS and             
incubated overnight at 4 ​°C​. Cells were washed 5 times with PBS1X and incubated with              
secondary antibodies diluted in PBS1X for 45 min at room temperature. Cells were washed              
3 more times with PBS1X and Hoechst (Thermo Fisher Scientific, H3569) was used to              
visualize cell nuclei. Image acquisition was performed using Cellomics array scan VTI            
(Thermo Fisher Scientific). 
The following antibodies were used:  
FOXA2 (Santa Cruz, sc101060 - 1/100) 
LMX1A (Millipore, AB10533 - 1/500) 
TH (Santa Cruz, sc-25269 - 1/200) 
MAP2 (Abcam, 5392 - 1/2000) 
Donkey anti-chicken AF647 (​Thermo Fisher Scientific​, A21449) 
Donkey anti-mouse AF488 (​Thermo Fisher Scientific​, A11008) 
Donkey anti-mouse AF555 (​Thermo Fisher Scientific​, A31570) 
Donkey anti-rabbit AF488 (​Thermo Fisher Scientific​, ​A21206 ​) 
Donkey anti-rabbit AF555 (​Thermo Fisher Scientific​, A27039) 

Chromium 10x Genomics library and sequencing 
Single cell suspensions were processed by the Chromium Controller (10x Genomics) using            
Chromium Single Cell 3’ Reagent Kit v2 (PN-120237). ​On average, 15,000 cells from each              
10x reaction were directly loaded into one inlet of the ​10x Genomics chip (​Supplementary              
Table 1 ​)​. ​All the steps were performed according to the manufacturer's specifications.            
Barcoded libraries were sequenced using HiSeq4000 (Illumina, one lane per 10x chip            
position) with 50bp or 75bp paired end reads to an average depth of 40,000-60,000 reads               
per cell. 

Single-cell data pre-processing 
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Sequencing data generated from the Chromium 10x Genomics libraries (see above) were            
processed using the CellRanger software (version 2.1.0) and aligned to the GRCh37/hg19            
reference genome. Counts were quantified using the CellRanger “count” command, with the            
Ensembl 84 reference transcriptome (32,738 genes) with default QC parameters.  
 
For each of 19 pooled experiments, donors (i.e. cell lines) were demultiplexed using             
demuxlet​15​, using genotypes of common (MAF>1%) exonic variants available from the           
HipSci bank, and a doublet prior of 0.05. Only single cells with successful donor identification               
were retained for further analysis. This step filtered out two types of droplet: those containing               
two or more cells from different individuals, and those containing no cells, but that contained               
a mixture of free-floating RNA and had therefore passed the CellRanger UMI filter (above).  
 
Further quality control was applied to exclude eight 10x samples, where a 10x sample is               
defined as the cells sequenced from one inlet of a 10x chip. In particular: samples for pool                 
10 on Day 11 were excluded because of an issue in the library preparation. Samples for pool                 
12 on Day 52 were excluded on the basis of low cell viability (72.1% in the                
rotenone-stimulated sample), and outlying gene expression (with the first principal          
component in gene expression separating this sample from others at the same time point).              
The two 10x reactions for pool 13 on Day 30 were excluded on the basis of low quality                  
metrics, likely as a result of cell overloading (~25,000 cells loaded). Finally, cells from an               
outlier cell line (HPSI0913i-gedo_3) were excluded. This cell line contributed a very high             
proportion of cells to samples from pool 14 (91%), and had outlying gene expression, raising               
concerns that this cell line had acquired a large-effect somatic mutation (​Supplementary            
Table 1 ​). 

Normalisation, dimensionality reduction, and clustering 
Two sets of analyses were performed: i) analysis of each time point independently, ii) a               
combined analysis of a subsample of 20% of cells from all time points (used only for                
visualisation purposes; ​Fig. 1​).  
 
First, independent analysis of time points allowed efficient batch effect correction (as all             
samples were from the same time point, containing similar mixtures of cell types), as well as                
reducing computational demands (by reducing the number of cells analysed together). For            
the analysis of each time point independently, the following steps were performed: counts             
were normalised to the total number of counts per cell. Only genes with non-zero counts in                
at least 0.5% of cells were retained. The top 3,000 most variable genes were then selected,                
after controlling for mean-variance dependence in expression data. The first 50 principal            
components (PCs) were calculated. Batch correction was applied on the level of PCs using              
Harmony​16​, with each 10x sample treated as a distinct batch. UMAP and clustering was              
performed using these transformed PCs. Clustering was performed using Louvain clustering           
with 10 nearest neighbours. Analysis steps besides batch correction were carried out using             
the Scanpy package ​58​. Clusters were mapped to cell types using a set of literature-curated              
48 marker genes of major brain cell types. When two clusters show the same gene set                
enrichment they were assigned the same cell type identity (​Supplementary Fig. 2​). 
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Second, for the combined analysis of all time points (for visualization purposes only), the              
same steps were applied, except that only a random subsample of 20% of cells were               
included in the analysis (following filtering for cells with donor assignment), and the definition              
of batches for the Harmony batch correction step. In particular, in order for each batch to                
have a similar mixture of cell types, each pool (rather than each 10x sample) was considered                
as a distinct batch. 

Batch correction and clustering of the organoid dataset 
The same steps of dimensionality reduction, batch correction and clustering described above            
were applied to the cerebral organoid data. This identified eight clusters that were mapped to               
different cell types (neural cells, intermediate progenitor cells, radial glial progenitor cells,            
satellite cells, mesenchymal cells, myotube and Wnt and PAX7 positive cells) using 24             
marker genes (​Supplementary Fig. 4 ​). 

Batch correction and clustering of the two single cell iPSCs datasets 
The same dimensionality reduction, batch correction and clustering steps described above           
were applied to the two single cell iPSC datasets analysed ​2,35 (​Supplementary Fig. 6,7 ​). For              
the Cuomo et al dataset​2​, normalised (by CPM) and log-scaled data were taken from the               
original publication and no further normalisation was performed. For the Sarkar et al             
dataset​35​, count data were normalised and log-scaled as described above for our data             
(normalised to total counts per cell). Note that in both cases only QC-passing cells (as               
defined in the original publications) from these datasets were included. This analysis            
identified five and four clusters in the two different datasets, respectively. 

Definition of differentiation efficiency 
We computed cell type proportions for each cell line in each pool (i.e. all (cell line, pool)                 
combinations) at each time point. Based on these proportions, (cell line, pool) combinations             
were clustered, based on Euclidean distance (​Fig. 3b, Supplementary Fig. 3​). Only (cell             
line, pool) combinations for which at least 10 cells were present at all time points were                
included in the heatmap in ​Supplementary Fig. 3a and in the PCA analysis shown in               
Supplementary Fig. 3 ​. 
 
Differentiation efficiency was defined as the sum of the proportion of serotonergic and             
dopaminergic neurons present on Day 52. The differentiation efficiency of iPSC lines was             
calculated as the average of the efficiencies across all pools in which that cell line was                
included. That is, for those iPSC lines which were included in multiple pools, differentiation              
efficiency was averaged across the results from differentiation in independent pools           
(replicates, as in ​ Fig. 2b​). 

Predictive model of differentiation efficiency from iPSC gene expression 
A logistic regression classifier was trained to predict midbrain neuron differentiation failure            
(differentiation efficiency < 0.2, from above definition) of iPSC lines from their gene             
expression at the iPSC stage. For cell lines that were differentiated multiple times, their              
differentiation efficiency was taken as the mean of its differentiation efficiencies in the             
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replicate experiments. Gene expression data was available from independent bulk RNA-seq           
experiments​34​. The feature set was all expressed genes (i.e. genes with mean            
log2(TPM+1)>2, n=13,475). The model was trained and tested using the scikit-learn           
(v0.21.3) package in Python, with the function sklearn.linear_model.LogisticRegression. L1         
regularisation was used, with default parameter settings (inverse regulation strength = 1.0).            
Precision-recall was evaluated using leave-one-out cross validation. That is, for each data            
point in turn, a model was trained on all other data, and its ability to predict the left out data                    
point was evaluated. 
 
When predicted scores for two lines from the same donor were present, we classified donors               
into concordant good differentiators when both lines scored > 0.5 (n=183), concordant bad             
differentiators when both lines scored < 0.5 (n=25). Finally, “discordant” donors were donors             
for which the two lines scored differently, one >0.5, one <0.5 (n=62). Bulk RNA-seq              
expression of ​UTF1 ​and TAC3 ​for these lines confirmed such predictions (​Supplementary            
Fig. 5d ​) 

X chromosome inactivation (XCI) status 
XCI was assessed by considering allele-specific expression (ASE) from the X chromosome,            
as quantified by bulk RNA-seq. Allele-specific counts were obtained for SNPs present in             
DBSNP using GATK ReadCounter with the command ‘GenomeAnalysisTK.jar -T         
ASEReadCounter -U ALLOW_N_CIGAR_READS --minMappingQuality 10 --minBaseQuality      
2’. Heterozygous SNPs located on the X chromosome for which the total number of              
overlapping reads was > 20 were retained for analysis. For each SNP, the ASE fraction was                
defined as the fraction of reads mapping to the less expressed allele (thus the ASE fraction                
was ≤ 0.5 for all SNPs). For each sample, the XCI status was quantified as the mean ASE                  
fraction of all heterozygous X chromosome SNPs in that sample. 

Association of cell line metadata features with differentiation efficiency 
We tested for associations between differentiation efficiency and the cell line donor’s sex             
(n=199, t-test) as well as XCI status (on the subset of female lines; n=97), passage number                
(n=195), two pluripotency scores (n=196, F-test). The pluripotency scores used were the            
pluritest score and the novelty score, which were generated in the course of banking the               
HipSci cell lines​33​. 
 
Next, we tested the same features for associations with the predicted differentiation scores             
we estimated for a larger set of HipSci lines as described above (​Supplementary Table 5​).               
Again, we tested for associations with a cell line’s donor sex (n=812, t-test) as well as XCI                 
status (n=342), two pluripotency scores (n=797, F-test). We note that, unlike in our             
experiments, this dataset included cell lines in both feeder and feeder-free culture            
conditions, and therefore we tested this as an additional factor denoted ‘feeder free status’              
(n=812, t-test). 
 
We corrected for multiple testing separately for the two sets of tests performed using              
Bonferroni correction. Results from this analysis are in ​Supplementary Table 3​. 
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Differential expression analysis  
Differentiation expression analysis between each cluster and the others in the single cell             
iPSC datasets was performed using scanpy’s function “tl.rank_genes_groups”, grouping by          
each cluster at a time ​58​. Briefly, the function computes Z-scores as well as log fold changes.                
Nominal p-values are computed using a t-test like test, using approximated log mean values,              
whilst adjusted p-values using Benjamini-Hochberg. We report significant results at FDR <            
5% (​Supplementary Table 6 ​).  

cis​ eQTL mapping 
For ​cis eQTL mapping, we followed Cuomo et al ​2​, and adopted a strategy similar to               
approaches commonly applied in conventional bulk eQTL analyses​1​. We considered          
common variants (minor allele frequency (MAF) > 5%) within a ​cis-​region spanning 250kb             
up- and downstream of the gene body for ​cis QTL analysis. Association tests were              
performed adapting a linear mixed model (LMM), previously used for single cell ​cis ​eQTL              
mapping ​2​. However, instead of accounting for population structure we used a random effect             
term to account for varying numbers of cells per donor. Briefly, for each donor we introduced                
a variance term 1/n, accounting for the varying numbers of cell used to estimate mean               
expression level for each donor. All models were fitted using LIMIX​59,60​. The values of all               
features were standardized and the significance was tested using a likelihood ratio test             
(LRT). To adjust for experimental batch effects across samples, we included the first 15              
principal components calculated on the expression values in the model as fixed effect             
covariates. These batch effects usually affect the expression of many genes, and therefore             
are detectable in the principal components of expression. Furthermore, such global batch            
effects are orthogonal to the effects of a single cis regulatory variant on the expression of                
one gene. In order to adjust for multiple testing, we used an approximate permutation              
scheme, analogous to the approach proposed in ​61​. Briefly, for each gene, we generated             
1,000 permutations of the genotypes while keeping covariates, random effect terms, and            
expression values fixed. We then adjusted for multiple testing using this empirical null             
distribution. To control for multiple testing across genes, we then applied the Storey’s Q              
value procedure ​61,62​). Genes with significant eQTL were reported at an FDR < 5%. 
 
We performed eQTL mapping as described above for each of the well represented (top 4               
cell type per condition with at least 20% cells) contexts (cell type, time point and stimulus                
status, ​Supplementary Table 6​). Gene expression for each donor was calculated as the             
mean of log-transformed counts-per-cell-normalised expression across cells (including cells         
from different pools, where applicable). Each individual quantification (i.e. expression of a            
donor in a particular cell type) was only included in the eQTL mapping analysis if it                
represented the mean of >10 cells. For each context (cell type, condition), all genes detected               
in at least 1% of cells of that context were included (this varied from 11,659 to 13,536 genes                  
tested). The minimum P-value SNP per gene (lead eQTL variant) is reported in             
Supplementary Table 6 ​. 
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We also performed cis eQTL mapping for all 14 contexts without using the noise matrix               
accounting for the number of cells, resulting in a substantially smaller number of discoveries              
(​Supplementary Figure 8b ​). 

Sharing of eQTL signal with GTEx brain tissues 
To quantify the amount of sharing between each two pairs of eQTL maps (our cell               
type-condition maps to each of 13 eQTL maps of brain tissues from GTEx) we used the                
MASHR software ​42​. Briefly, the effect sizes (betas) were calculated for each SNP-gene pair             
across the 14 cell type-condition eQTL maps from our study and extracted from the 13 brain                
tissues from the GTEx catalogue, as well as two iPSC eQTL maps, using scRNA-seq and               
bulk RNA-seq respectively​2,34​. Only genes expressed in all GTEx tissues, in iPSC​34 and all of               
our contexts were included (n=6,205). To calculate the sharing of effects we selected the              
top eQTL SNP per gene, based on the effect sizes in the tissues with more than 150                 
samples. Four random SNPs per gene were selected as a background for the calculation of               
the data driven covariance; we also included a canonical covariance matrix as            
recommended ​63​. Next, we extracted the posterior betas, using MASHR, and estimated           
pairwise levels of sharing between conditions/tissues where we defined shared as “​the same             
sign and effect size within a factor 0.5 of each other”​. 

Colocalization analysis between neuro-related GWAS traits 
We collected summary statistics for 25 GWAS traits that were either neurodegenerative/            
neuropsychiatric diseases or related to behaviour and intelligence, and that have at least 5              
GWAS loci with the significance threshold of p=5.0x10 ​-8 (​Supplementary Table 8​). We then             
defined GWAS subthreshold loci as 1Mb-wide genomic windows with at least one SNP at              
P​-value<10e-6, centring the window around the index variant (variant with minimum ​P​-value            
in the window). If there were multiple subthreshold loci within a 1Mb window, we merged               
them and took the index variant with the minimum ​P​-value overall. Statistical colocalization             
analysis between 14 eQTL maps from our study and 48 eQTL maps from GTEx (v7) and                
those GWAS loci was performed using the COLOC package ​43​, implemented in R with default              
hyperparameter setting. We tested any gene whose transcription start site (TSS) and eQTL             
lead variant (minimum P-value SNP for the gene) were both within the 1Mb window centered               
at each GWAS index variant. We tested all SNPs located between the GWAS index variant               
and the top eQTL (within the window) variant with 500Kb extensions either side. We              
matched SNPs between eQTL and GWAS based on chromosomal position and           
reference/alternative alleles. Genes with the posterior probability of colocalization (PP4)          
greater than 0.5 were defined as GWAS colocalization.  

Data availability 
Single cell RNA-seq data will be made available soon. 

Code availability 
All scripts are available in the following github repository: 
https://github.com/single-cell-genetics/singlecell_neuroseq_paper/ 
The eQTL mapping pipeline is available here: 
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https://github.com/single-cell-genetics/limix_qtl ​/  

URLs 
HipSci: ​http://www.hipsci.org ​. GTEx:​ ​https://www.gtexportal.org/home/datasets 
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