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ABSTRACT7

With advances in synthetic biology and genome engineering comes a heightened awareness of potential misuse related

to biosafety concerns. A recent study employed machine learning to identify the lab-of-origin of DNA sequences to help

mitigate some of these concerns. Despite their promising results, this deep learning based approach had limited accuracy, is

computationally expensive to train, and wasn’t able to provide the precise features that were used in its predictions. To address

these shortcomings, we have developed PlasmidHawk for lab-of-origin prediction. Compared to a machine learning approach,

PlasmidHawk has higher prediction accuracy; PlasmidHawk can successfully predict unknown sequences’ depositing labs 63%

of the time and 80% of the time the correct lab is in the top 10 candidates. In addition, PlasmidHawk can precisely single

out the signature sub-sequences that are responsible for the lab-of-origin detection. In summary, PlasmidHawk represents

a novel, explainable, accurate tool for lab-of-origin prediction of synthetic plasmid sequences. PlasmidHawk is available at

https://gitlab.com/treangenlab/plasmidhawk.git

8

Introduction9

Thanks to the advancement of genome engineering and sequencing technology, researchers now have the capability to readily10

read and write DNA sequences1. This new technology has the promise of significantly improving the quality of human life11

through various fields, such as increasing agricultural yields2, accelerating drug discovery3 or advancing gene therapy4. While12

the use cases of this exciting technology enabling the bio-economy are largely positive, biosecurity, IP infringement, and13

potential misuse remain as concerns5. As a proof of principle, in response to previously outlined concerns, Allen et al. utilized14

a set of signature sequences with length k, also referred as signature k-mers, to differentiate artificial sequences from natural15

genomes and plasmids6. Although this promising k-mer based matching approach offers the ability to distinguish artificial16

sequences from a set of background sequences, there is still a need to develop a predictive pipeline that enables to handle an17

enormous amount of input sequences and reveal finer details of a given synthetic sequence. To meet the need, Nielsen et al.18

introduced a software tool to link artificial sequences with their depositing labs by using deep learning7. Despite the complex19
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computational challenge, the prediction accuracy was promising: 48% accuracy in correctly identifying the lab-of-origin for an20

unknown sequence if allowed one prediction, and up to 70% accuracy if allowed ten predictions. To date, deep learning has21

been wildly applied in analyzing genomic data as the amount of data has grown larger and more complex8. Applications of22

deep learning include gene annotation9, sequence pattern identification10, discovering biomarkers11, and inferring cell function23

and structure12. At its core, machine learning, and in particular deep learning, is utilized for classification based on training24

data and learning hidden patterns and structure in the data13. Although deep learning based approaches have been at the core of25

tremendous successes and popularity in many areas, including computer vision14, natural language processing15, and robotics16,26

it has some intrinsic disadvantages. First, it has limited explainability; models are often unable to fully detail the features and27

decision making process that led to a given classification or prediction17. Second, the computational cost and carbon footprint28

of such methods are skyrocketing while processing ever-increasing amounts of biological data18. Third, the predictions heavily29

rely on representative training data and the optimizations of hyperparameters19.30

To address this, we introduce a fully transparent, efficient, explainable approach to assist end users in identifying the31

lab-of-origin of engineered DNA sequences. We solve the synthetic sequence tracking problem from an alignment perspective.32

Specifically, we make predictions by integrating the information of common sequences and “signature" sequences used in33

plasmid constructs via a pan-genome data structure. Pan-genomes have been studied for nearly two decades20. Pan genomes34

serve as a high-level summary of a biologically related group of genomes by capturing all of the group’s core and accessory35

regions, though the exact definition of a pan-genome can vary based on the application. In this paper, we define a pan-genome36

as a collection of genomic regions that are common or unique to synthetic biology research labs. Pan-genomes are frequently37

applied to capture the genomic diversity of a bacterial clade21. Many bioinformatic tools have been developed to build38

pan-genomes, such as Roary22, seq-seq-pan23, VG24, and Plaster25. To the best of our knowledge, Plaster is the only existing39

method that offers a linear time construction algorithm enabling it to scale to massive DNA sequence repositories. Building off40

of our prior work, we have developed a pan-genome for all available synthetic plasmid sequences using Plaster. We then use41

this synthetic sequence pan-genome as a framework for predicting the lab-of-origin of previously unseen, newly engineered42

sequences.43

In this study, we demonstrate that pan-genome alignment combined with a lab score correction technique can successfully44

predict the lab-of-origin of an engineered DNA sequence 63% of the time. Around 80% of the time the source lab is included45

in the top 10 predicted labs. This approach has very few pre-processing steps, a quick update time for adding new known46

sequences, and a detailed and interpretable explanation for its predictions. This is in stark contrast to the previous Convolutional47

Neural Network (CNN) model which must be retrained to incorporate a single newly labeled sequence, and which is intrinsically48

a black box model.49
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Figure 1. PlasmidHawk Pipeline: First, a pan-genome from the Addgene plasmids is built by Plaster. The plasmids are then
aligned back to the final pan-genome to annotate the pan-genome with the depositing lab information for each aligned fragment.
To predict the lab-of-origin of an unknown plasmid, PlasmidHawk aligns the unknown plasmid to the annotated pan-genome
(Prediction Step 1) and counts the number of aligned fragments for each lab (Prediction Step 2). PlasmidHawk returns the labs
that have the maximum number of aligned fragments as the predicted labs for lab-of-origin (Prediction Step 2). Finally,
PlasmidHawk calculates the plasmid corrected score for each lab. This step takes the labs with the minimum corrected score as
a final refinement step of its predictions for lab-of-origin (Prediction Step 3).

Results50

Neural Network vs PlasmidHawk Performance51

We have developed a software called PlasmidHawk to predict the lab-of-origin of unknown synthetic DNA sequences. Lab-of-52

origin prediction with PlasmidHawk consists of three steps. The first step is to build a pan-genome from the synthetic plasmid53

training data using Plaster25. Second, in addition to building the pan-genome, PlasmidHawk annotates the pan-genome with54

records of which unique plasmid regions originated from which depositing labs. Lastly, PlasmidHawk predicts the lab-of-origin55

of new, unseen plasmids in the test data set by aligning those plasmids to the previously constructed and annotated pan-genome56

(Fig. 1).57

To begin the experiments, we select full plasmid sequences from labs who have at least ten deposited plasmids in Addgene58

for use as our input dataset. We split the sequences into two groups: the training group and the testing group. We use the59

training sequences to construct and annotate the synthetic plasmid pan-genome sequence Ptrain. The pan-genome Ptrain contains60

a set of unique sequence fragments. Each fragment is denoted by its start and end positions in the pan-genome. Fragments are61

appended to one another creating a linear pan-genome with a delimiter sequence of N’s between consecutive fragments. Each62
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fragment is further annotated with a list of the depositing labs who have sequences that align to the fragment.63

After building and annotating the pan-genome, we predict the lab-of-origin of the sequences in the test set. In order to64

identify the lab-of-origin of an unknown plasmid, PlasmidHawk aligns a given test plasmid p to the input pan-genome and65

identifies the best aligned regions in the pan-genome (Fig. 1 Prediction Step 1). It then selects the pan-genome fragments that66

overlap with those aligned regions. We refer to these selected fragments as aligned fragments for the plasmid p. After identifying67

the aligned fragments, PlasmidHawk uses the fragments to predict the depositing lab or labs. Though PlasmidHawk, for68

instance in MAXmode, can return multiple labs as the most likely labs of origin, for this study we only allow one lab to be69

the true depositing lab. PlasmidHawk has two prediction modes: MAXmode and CORRECT mode. MAXmode predicts the70

lab-of-origin based on the set of labs who have the maximum number of aligned fragments for the plasmid p (Fig. 1 Prediction71

Step 2). Alternatively, CORRECT mode returns the lab or labs with the minimum “lab score". CORRECT mode attempts to72

refine the set of labs from MAXmode by calculating the lab score which we introduce in this work. The lab score is calculated73

by weighting aligned fragments for each lab (Fig. 1 Prediction Step 3) (Methods).74

To evaluate the performance of PlasmidHawk, we reran the deep learning experiments based on the description in Nielsen75

et al.7. We used the same data set used for the PlasmidHawk lab-of-origin prediction experiments. We construct and train76

the same CNN to predict the lab-of-origin of synthetic sequences. The final trained CNN can predict the correct lab-of-origin77

36.5% of the time. The correct lab is ranked within the top 10 predicted labs 66.8% of the time (Fig. 2a). Our CNN prediction78

results are only slightly lower than the reported results in Nielsen et al., in which the accuracy is 48%, and 70% of the time the79

depositing lab is included in the top 10 predicted labs. Therefore, we believe our CNN experiments can fairly represent the80

performance of CNNs in lab-of-origin predictions. We believe the cause for the slight drop in performance between our CNN81

and the CNN built in Nielsen et al. is the larger size of our more up-to-date training dataset and the minor difference in how82

the true depositing source labs for each sequence were determined (Methods). We can further optimize the neural network to83

improve the results, but, in general, we do not expect a significant boost in prediction accuracy.84

MAXmode accuracy85

To begin comparing the lab-of-origin prediction accuracy between the CNN and PlasmidHawk MAXmode, we only consider86

the PlasmidHawk MAXmode prediction results, considering only the case where the true source lab is reported as the single87

best prediction. A prediction result containing more than just the source lab in the highest scoring prediction set, or that does not88

contain the true source lab in this set, is classified as an incorrect prediction. In this case, PlasmidHawk MAXmode can reach89

43.2% accuracy. To further compare the results between the CNN and PlasmidHawk MAXmode, we calculate the accuracies90

when considering the 5, 10, 20, and 50 best scoring predicted labs (Fig. 2a) (Methods). Overall, PlasmidHawk MAXmode91

behaves slightly better than the CNN does in all categories.92

CORRECT mode accuracy93

PlasmidHawk CORRECT mode identifies source labs by calculating lab scores for all the labs selected from MAXmode94

(Methods). The lab(s) with the lowest lab score values are considered as the final lab-of-origin predictions. Using the same test95
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Rank PlasmidHawk CNN

MAX CORRECT

1 43.2±1.0% 63.4±4.8% 34.5±2.8%

5 71.4±1.0% 78.0±2.2% 57.2±4.2%

10 79.8±0.9% 80.7±1.6% 68.2±4.4%

20 85.9±0.7% 82.9±1.1% 76.7±4.3%

50 93.2±0.2% 84.3±1.0% 85.1±3.5%
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Figure 2. Prediction results and statistical analysis. a The performances of plasmid lab-of-origin prediction using
PlasmidHawk and CNN. b Linear regression analysis between averaged lab Jaccard distances and averaged lab scores. Each
dot represents a lab. The x axis shows averaged lab Jaccard distances. The larger the averaged lab Jaccard distance is, the more
unique a lab’s plasmids are. The y axis is the averaged lab score. Labs with smaller averaged lab scores are more likely to be
returned by PlasmidHawk CORRECT mode as predicted source labs. c Principal component analysis of labs based on lab
Jaccard distances. The colors label labs based on their sequences’ host cells. The size of the dot corresponds to the percentage
of the most abundant host cells inside a lab. Red: mammalian lab (M), blue: yeast lab (Y), green: bacterial lab (B), black: N/A
lab (NA). d The distribution of different lab types visualized over the averaged lab Jaccard distance and averaged lab score for
each lab. e A clade of the lab phylogenetic tree. Labs who belong to the same academic family or have collaborated with each
other are highlighted with the same color.
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data sets used in the MAXmode prediction experiments, PlasmidHawk CORRECT mode has around 63% accuracy. 80% of the96

time the source lab is in the top 10 predicted labs (Fig. 2a). In addition, when compared to the CNN approach, the accuracies of97

both MAXmode and CORRECT mode, except for CORRECT mode with single lab predictions, have lower standard deviations98

(Fig. 2a). This means that in general lab-of-origin predictions from PlasmidHawk are more consistent.99

Lab Scores and Lab Sequence Similarities100

PlasmidHawk CORRECT mode lab-of-origin experiments show that calculating the lab score can significantly improve the101

accurracies of predicting source labs (Fig. 2a). Lab scores are calculated by summarizing all the weights of different parts of102

query sequences. The magnitude of the weights are decided by the uniqueness of the sequences (Methods). PlasmidHawk then103

normalizes the lab scores and chooses labs with the minimum lab score as their final lab-of-origin prediction. Based on the104

workflow of CORRECT mode, we posit that labs with more unique sequences are more likely to have lower lab scores, that is,105

be identified as depositing labs.106

To validate our hypothesis, we propose to describe the relationship between lab scores and the uniqueness of each lab using107

a regression model. First, we need to quantify the dissimilarities of a lab’s plasmids among other labs. To do that, we employ108

Jaccard distances, also called lab Jaccard distances in this paper, to estimate the differences between two labs’ sequences109

(Methods). A large pairwise lab Jaccard distance indicates there are few shared sequences between two labs. To summarize the110

idiosyncrasies of a lab’s sequences, we average all the pairwise lab Jaccard distances for individual labs, in order to generate a111

single value, referred as the averaged lab Jaccard distance, to represent the uniqueness of a lab’s sequences compared to the112

other 895 labs’ sequences. Additionally, we calculate averaged lab scores for each source lab (Methods). In general, the smaller113

averaged lab score a lab has, the more likely the lab is nominated as the true source lab by PlasmidHawk CORRECT mode.114

After getting averaged lab scores and averaged Jaccard distances for all the depositing labs, We fit a linear regression model115

between these two variables. As averaged lab Jaccard distances increase, averaged lab scores decrease (P value < 2.2e−16,116

adjR2 = 0.23) (Fig. 2b). The result shows that lab scores reflect the distinctness of labs sequences. It also indicates that117

CORRECT mode tends to link query sequences with labs who have more unique sequences.118

Lab Clustering and Lab Phylogenetic Tree119

DNA engineering techniques have revolutionized the way people study biology. Among them, engineered plasmids are wildly120

used as vehicles to deliver and express non-native DNA into different host cells. At the beginning, scientists focused on121

expressing engineered plasmids inside bacteria. Recently, as DNA manipulation techniques have matured, people have shifted122

their attention from bacterial to mammalian cells in order to control and understand more complex cellular systems. Despite the123

rapid development in synthetic biology, there is no suitable approach to compare sequence similarities across different labs. The124

averaged lab Jaccard distance provides an initial attempt in comparing the uniqueness of individual labs’ sequences. In addition,125

the averaged lab Jaccard distance provides a way to quantify the development of plasmid engineering. Since one of the major126

trends in plasmid engineering is the shift from bacterial to mammalian hosts, in this section we evaluate the uniqueness of a127

6/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.22.110270doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110270
http://creativecommons.org/licenses/by-nd/4.0/


lab’s sequences from a host cells perspective.128

To do that, we first classify labs into different groups based on the highest percentage of their plasmids’ host cells. To129

simplify this problem, even though there are many different types of vector hosts shown in Addgene, we simply classify labs130

into four categories: mammalian (M), bacterial (B), yeast (Y) or N/A (NA). If a lab has more mammalian vectors than other131

types of vectors, the lab will be labelled as a mammalian lab (M). If a lab does not have a single plasmid belonging to bacterial,132

yeast or mammalian vectors, it is classified as N/A.133

To identify the distribution of different target host cells across labs, we label their lab type in Fig. 2b to generate Fig. 2d.134

The size of each dot corresponds to the percentage of the prominent vector hosts for each lab (ties are resolved arbitrarily using135

lexicographic ordering of the types). For example, a lab classified as a mammalian lab could have only 20% mammalian vectors,136

with bacterial and yeast plasmids occupying less than or equal to 20% of the lab’s plasmids, and with the rest not belonging137

to any of the three host types we are considering (NA). Fig. 2d shows that labs focusing on engineering mammalian vectors138

are likely to have lower averaged lab Jaccard distances and higher averaged lab scores. Based on this result, we may roughly139

conclude that overall synthetic plasmids expressed in mammalian cells have lower sequence diversities and are less prone to140

have their lab-of-origin be identified by PlasmidHawk CORRECT mode than plasmids designed for yeast and bacterial cells.141

In addition, we generated a PCA plot using the distance matrix of lab Jaccard distances for all labs and color the labs based142

on their host classification (Fig. 2c). The PCA plot shows a clear separation between mammalian labs and other types of labs143

along PC1. PC1 recovers the variation of host vector lab types and reveals these lab types as distinct, visually apparent clusters144

spanning across PC1. PC2 captures the variation within lab type group clusters. The principal component analysis further145

verifies our findings in Fig. 2d.146

Furthermore, we construct a lab phylogenetic tree using lab Jaccard distances to reveal the academic relationships among147

all the labs (Methods). Figure 2e displays one of the clades of the lab phylogenetic tree. Branch lengths represent the distances148

between labs. In Figure 2e, principal investigators who belong to the same academic family or have collaborated with each other149

are highlighted by the same color. This indicates that the lab phylogenetic tree, which is derived from the alignment between150

the synthetic plasmid pan-genome and the original plasmid sequences, has the potential to reveal the academic genealogies in151

addition to being used for bioforensics.152

Comparisons with BLAST-based and CNN-based approaches153

In Nielsen et al., researchers hand selected a plasmid from the Voigt lab (pCI-YFP,JQ394803.1) which exists in Genbank but154

not in the Addgene dataset, to compare the performances of the CNN and BLAST in identifying the source lab for an unknown155

sequence. BLAST fails to predict the lab-of-origin of pCI-YFP, ranking the Voigt lab 5th in its prediction. On the other hand,156

the CNN approach correctly predicted the plasmid with a significant p-value.157

To evaluate PlasmidHawk’s performance, we predict the source lab for pCI-YFP using PlasmidHawk. We input the158

complete pan-genome Pc, which compacts all the plasmids from labs who have at least 10 deposited full sequences in Addgene.159

Three labs, including Drew Endy, Ellington Andrew and Christopher Voigt, are identified as the set of top lab predictions160
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Rank BLAST CNN PlasmidHawk

1 Michele Calos Christopher Voigt Drew Endy,Ellington Andrew, 
Christopher Voigt

2 Drew Endy Christopher Anderson

3 David Waugh Alfonso Jaramillo

4 Keith Joung David Bartel

5 Christopher Voigt Chang-Zheng Chen

a

b

Figure 3. BLAST, CNN and PlasmidHawk prediction comparisons and interpretation a BLAST, CNN and PlasmidHawk
lab-of-origin prediction results. b The number of labs annotated for the regions of pCI-YFP that aligned to different fragments
in the synthetic pan-genome. Less than 20 labs have sequences aligned at 17-100nt and 2681-2750nt positions (red bars).

using PlasmidHawk MAXmode (Fig.3a). It is worth noting here that this means that all three of these labs have the exact same161

amount of aligned fragments in the complete pan-genome Pc.162

One of the advantages of using PlasmidHawk is that it can provide the alignment details of a given plasmid to explain163

the reasoning behind its prediction (Fig.3b). pCI-YFP aligns to a total of eight fragments in Pc. The three labs selected by164

PlasmidHawk have all eight fragments. Among those eight fragments, six fragments have been used by more than 200 labs165

(grey bars in Fig. 3b). Those are common sequences used in the plasmid construction process. 17-100nt and 2681-2750nt in166

pCI-YFP are two regions that help PlasmidHawk narrow down the number of lab candidates (red bars in Fig. 3b). Only four167

labs have the fragment that aligned to 17-100nt in pCI-YFP. These labs are Drew Endy, Ellington Andrew, Christopher Voigt168

and Jaramillo Alfonso. 18 plasmids from Chirstopher Voigt, 2 plasmids from Ellington Andrew and 1 plasmids from Drew169

Endy in the training set align to the fragment (Supplementary Note Fig. 2). The 2 plasmids from Ellington Andrew were first170

published in Tabor et al.26, which Ellington Andrew and Christopher Voigt are co-authors of. In other words, 20 out of 21171

training plasmids from the final predicted labs are from the Voigt lab.172

In PlasmidHawk CORRECT mode, Drew Endy is the first prediction being returned for the lab-of-origin. Because the173

Voigt lab has the largest number of fragments and Drew Endy has the smallest number of fragments in the pan-genome174

among the three predicted labs, the lab score of the Voigt lab is the highest and the lab score of the Drew Endy lab is the175

lowest. Since the Voigt lab has the fourth most number of different fragments in the pan-genome, if there is more than one176
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lab identified in PlasmidHawk MAXmode, the Voigt lab will typically rank lower in PlasmidHawk CORRECT mode. Based177

on the PlasmidHawk CORRECT mode lab-of-origin prediction experiments described above, 12 out of 15 times Voigt lab’s178

plasmids can be correctly identified. In all those 12 correct predictions, the Voigt lab is the only lab who has the maximum179

number of aligned fragments.180

In general, the lab score can rank the source lab higher than the other labs identified in the PlasmidHawk MAXmode, but181

it is also biased towards picking labs with fewer fragments in the pan-genome. PlasmidHawk can return the predicted labs182

from PlasmidHawk MAXmode as well as their lab score for a given plasmid. Users have the ability to select the predicted labs183

based on their applications.184

In the end, PlasmidHawk successfully predicted the correct lab for pCI-YFP as being in the set of labs containing the highest185

number of aligned fragments using PlasmidHawk MAXmode. In this case, PlasmidHawk has higher accuracy when compared186

to BLAST, but lower specificity when compared to the CNN. However, we again stress that PlasmidHawk additionally187

reveals its detailed decision making process and successfully identifies the signature sequences of the source lab. This human188

interpretable decision making process not only yields state of the art performance when analyzing all test set plasmids but also189

reveals the hidden intricacies of the pCI-YFP classification process. In an actual bioforensics setting, this type of evidence190

can be both crucial to a correct lab-of-origin assignment as well as necessary for a proper final justification which is human191

interpretable.192

Discussion193

This study demonstrates that aligning unknown sequences to the synthetic plasmid pan-genome can effectively identify194

engineered DNA sequences’ lab-of-origin. Approaches based around knowledge of the problem coupled with standard tools195

such as simple alignment based methods can reach similar or better accuracy as state-of-the-art neural network based approaches.196

At the same time, PlasmidHawk provides deeply interpretable prediction results by providing unique sequence fragments197

responsible for identifying the source labs. As shown in the case of pCI-YFP, PlasmidHawk can even help elucidate a more in198

depth story of shared sequence fragments that are shared by many labs when constructing their synthetic plasmids as opposed199

to more unique regions used by very few labs. However, due to challenges such as these sequences that are commonly shared200

by many labs, about 60% of the time an unknown plasmid still cannot be successfully narrowed down to only the single correct201

depositing lab by PlasmidHawk MAXmode. To help ameliorate this difficulty, we have introduced the lab score for inferring202

the single correct lab-of-origin. The lab score helps order the set of predicted labs from PlasmidHawk MAXmode based on203

the pan-genome annotation. The incorporation of lab score increases the prediction accuracy from MAXmode’s 43.2% to204

CORRECT mode’s 63%.205

Our work demonstrates an alignment-based approach can achieve high prediction accuracy while simultaneously providing206

detailed explanatory capabilities. Meanwhile, we are aware it has potential shortcomings versus a machine learning based207

approach. One issue with our method, for instance, is in determining the size and similarity thresholds for creating and adding208
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novel fragments to the synthetic plasmid pan-genome. In a CNN model, more subtle signatures involving only one or a small209

handful of SNPs used by a particular lab can be captured, whereas this could potentially be overlooked by PlasmidHawk.210

Along these lines, plasmid design seems to be becoming more standardized27. In this standardization, sequences from a plasmid211

can be organized into different modules based on their functions. Researchers can then easily combine different modules to212

build a variety of plasmids. While this can significantly increase plasmid construction efficiency for synthetic biologists, it can213

have the unintended consequence of potentially weakening the available signal for determining the lab-of-origin, which may214

increase the concern of PlasmidHawk’s system using too coarse grained shared fragments as its primary source of signal for215

predictions.216

Despite these concerns, along with the high prediction accuracy, PlasmidHawk preserves three main advantages over the217

deep learning approach for lab-of-origin prediction. First, the pan-genome alignment method has the ability to handle large218

amounts of input synthetic sequences quickly. Whenever a newly engineered sequence is created, the established synthetic219

plasmid pan-genome can be quickly updated by adding the unique parts of new sequences to the end of the pan-genome.220

The update time is less than 1s per plasmid25. On the other hand, for the deep learning approach, the CNN model has to be221

entirely re-trained whenever there are new sequences coming in. As more and more synthetic sequences are being added into222

the database, the computational and environmental cost for neural network approaches will increase alongside18. Second,223

PlasmidHawk is not restricted to predict labs with a small number of deposited plasmids. It has the potential to identify a given224

plasmid as having originated from a lab that only has one recorded plasmid in the training data set. On the other hand, the CNN225

requires labs to have enough plasmids in the training set to then be able to be predicted. Third, the pan-genome alignment226

approach can associate specific regions of an unknown sequence to the source lab. By doing this, PlasmidHawk provides227

detailed evidence to support its lab classifications. When combined, these three benefits create a white box approach that, when228

compared to the deep learning method, make PlasmidHawk a welcome addition to the current methods in biodefense and229

bioforensics.230

Finally, we have demonstrated a new way to characterize research diversity and relationships among synthetic biology231

labs. By aligning synthetic plasmids from each depositing lab to the synthetic plasmid pan-genome, we are able to capture232

the resemblances and variations between all labs engaged in synthetic plasmid engineering. The lab phylogenetic tree we233

have created not only reveals the research structure in synthetic biology, but also implies academic lineage and collaborations.234

More work on comparative genomics approaches based on phylogenetics can further assist to trace back the lab-of-origin of an235

unknown plasmid.236

Overall, the aim of our study is not to diminish the achievement of deep learning in genomic analyses, but to point out237

the value of investigating traditional comparative genomics methods such as by using genome alignment. We believe a truly238

optimal method would combine the benefits of both well studied and interpretable methods like genome alignment with the239

power of deep learning models such as the CNN model of Nielsen et al..240
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Methods241

Addgene Dataset242

We acquired a plasmid dataset from Addgene in January 2019. Addgene is a synthetic plasmid repository. It was used in243

Nielsen et al. to conduct the deep learning lab-of-origin prediction study. DNA sequences in Addgene can be classified into244

four categories: full plasmid sequences submitted by Addgene, partial sequences submitted by Addgene, full plasmid sequences245

submitted by a depositing lab, and partial sequences submitted by a depositing lab. There are a total 51,047 complete sequences,246

in which 28,879 are uploaded by Addgene, and 73,7272 partial sequences. The DNA sequences and their metadata are stored247

in a JavaScript Object Notation (JSON) file. In Nielsen et al., a plasmid depositing lab was parsed directly from the JSON file.248

However, the JSON file we obtained had no deposting lab information. To decide a plasmid’s depositing lab, we first found249

information from its Genbank file. We took the last author in the first published paper of the plasmid as the depositing lab. For250

the plasmids without Genbank files, we looked up the author information through its PubMed ID (PMID) or PMCID in the251

JSON file. If we still could not find its depositing lab, we parsed the depositor information directly from the Addgene website.252

PlasmidHawk Workflow253

The main goal of our study is to predict engineered plasmids’ lab-of-origin by aligning unknown plasmids to a synthetic plasmid254

pan-genome. In order to do that, we developed a lab-of-origin prediction software called PlasmidHawk. It consists of three255

modules: pan-genome construction, pan-genome annotation, and lab-of-origin prediction. In general, the three modules should256

be used sequentially for plasmid lab-of-origin detection. Each module can also be applied independently for other scientific257

purposes.258

For the first module, PlasmidHawk takes in plasmids from the Addgene database and constructs a synthetic plasmid259

pan-genome P using Plaster . Plaster is a state-of-the-art linear pan-genome construction algorithm25. The final pan-genome260

P is composed of a set of sequence fragments F = [ f0, f1, ... fn]. Each fragment is at least 50bp long (default) and connected261

to neighboring fragments by a delimiter sequence of 10 “N" nucleotides. After building the synthetic plasmid pan-genome,262

PlasmidHawk aligns input plasmids back to the pan-genome. Plasmid sequences extending over a defined fragment are263

separated. If a pan-genome fragment has at least 20bp (default) matching with sequences from an input plasmid, the fragment264

is annotated with that plasmid’s depositing lab.265

To predict the lab-of-origin of an unknown plasmid p, PlasmidHawk aligns the plasmid p to the reference pan-genome P

built in the first step. It then extracts aligned pan-genome fragments from the pan-genome. Each aligned pan-genome fragment

has a match of at least 20bp with the plasmid p. PlasmidHawk MAXmode then outputs lab(s) with the highest number of

aligned fragments as the predicted source lab(s). To further improve the lab-of-origin prediction accuracy, PlasmidHawk

CORRECT mode calculates lab scores for labs returned from PlasmidHawk MAXmode. CORRECT mode takes lab(s) with the

minimum lab score as the final prediction as explained in full detail in the following section and visualized in Fig. 4. Briefly,

the value of a lab’s score depends on the total number of pan-genome fragments each lab has and the number of labs sharing
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the same aligned fragments. Mathematically, the lab score for lab l, denoted as Sl , is

Sl =− ∑
f∈Fl

log(
1

n f ∗ tl
)

where Fl is the aligned fragments set for lab l. It includes all the aligned fragments lab l has for the query sequence. n f is the266

number of labs sharing fragment f in the pan-genome P. And tl is the total number of fragments lab l has in P.267

Lab Score268

After obtaining a list of potential source labs from MAXmode, PlasmidHawk CORRECT mode attempts to further narrow269

down the labs to the true source lab. To do that, it calculates lab scores to rank labs returned from MAXmode as shown in Fig.270

4. Essentially, lab scores are assigned to individual labs through a weighting function. Labs with lower lab scores have a higher271

chance to be the real depositing labs. The weighting function used to calculate lab scores is derived from our key observations272

that despite the maximum number of aligned fragments being the same among multiple labs, pan-genome fragments shared273

by many labs are potentially less informative versus fragments shared by few labs. Also, labs with less total fragments in the274

pan-genome can be weighted higher when making the final predictions.275

Specifically, after constructing and annotating the reference pan-genome, CORRECT mode first calculates weights for each276

lab, denoted as Wl for lab l, and each fragment, referred as Wf for fragment f , based on the pan-genome annotations. The lab277

weight Wl =
T
tl

, where T is the total number of fragments in the reference pan-genome and tl is the total number of fragments278

lab l has in the pan-genome. Wl is the reciprocal of the fraction of fragments annotated by lab l inside the pan-genome. The279

fragment weight Wf =
1

n f
, where n f is the total number of labs annotated to fragment f (Fig. 4).280

To calculate the final scores used for prediction, CORRECT mode goes through all the labs returned by MAXmode and all281

the aligned fragments for each of these labs and calculates a joint weight Wl, f for each aligned fragment f and lab l. To calculate282

Wl, f , PlasmidHawk first identifies the set of aligned fragments Fl for each lab l identified by MAXmode. CORRECT mode283

then calculates Wl, f by multiplying Wl and Wf , and normalizing it with its maximum possible value (T ). The normalization284

bounds Wl, f between 0 and 1. Mathematically,285

Wl, f =Wf ∗Wl/T =
1

n f ∗ tl
(1)

CORRECT mode then does a log transformation of each joint weight to avoid multiplication operations and potential

overflows when calculating the final single fragment lab score Sl, f . It adds a final negative sign to each transformed value to

make the final scores positive.

Sl, f =−log(Wl, f ) (2)
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Figure 4. PlasmidHawk CORRECT mode workflow. After building the reference pan-genome, CORRECT mode calculates
fragment weights and lab weights according to the pan-genome annotations. To predict the lab-of-origin of an unknown
sequence, PlasmidHawk first aligns the query sequence to the pan-genome and identifies candidate source labs through
MAXmode: in this case, lab A and lab C. CORRECT mode then calculates lab scores for the labs output from MAXmode. In
the end, CORRECT mode predicts the lab with the minimum lab score, lab A, as the depositing lab.
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Finally, CORRECT mode sums the Sl, f of all the fragments in Fl to generate the final lab score Sl for lab l used for the final286

prediction. The lab with the lowest Sl is chosen as the predicted lab-of-origin as outlined in Fig. 4.287

Sl = ∑
f∈Fl

(Sl, f ) (3)

PlasmidHawk Lab of Origin Prediction288

Given the nature of neural networks, the CNN needs a certain number of plasmids from each lab to train, test and validate289

the neural network. Although PlasmidHawk does not have this kind of requirement, in order to have a fair comparison290

between the CNN and PlasmidHawk, we only choose labs with at least 10 complete plasmids (“Full Repository" or “Full291

Depositor") sequences in Addgene to conduct this experiment. A total of 38,681 plasmid sequences from 896 labs are used in292

this experiment. To evaluate the performance of PlasmidHawk, sequences are split into two groups: three plasmids from each293

lab are randomly selected for testing and the remaining plasmids are used for the training set. We utilize the training plasmids294

to build and annotate the synthetic plasmid pan-genome. We evaluate PlasmidHawk prediction accuracy using plasmids in the295

test data set. The entire process is repeated five times.296

To assess the lab-of-origin prediction accuracies of MAXmode and CORRECT mode, we test PlasmidHawk at different297

thresholds; we test the accuracy when considering the top 1, 5, 10, 20, and 50 labs output from PlasmidHawk. For MAXmode,298

we only consider the top predictions at or above the threshold, and eliminate sets of predictions whose inclusion would cause299

there to be more predictions than the threshold. For CORRECT mode, we only consider the scored, ordered list created from the300

top set of predictions from MAXmode. For example, when setting the threshold at 1, for MAXmode, we only consider correct301

predictions when the top set of predicted labs contains only a single lab and that is the correct depositing lab. If MAXmode302

outputs more labs in the top set of predictions than the threshold, no labs are considered and the prediction is considered303

incorrect, even if the correct lab is in the top set of predictions. For CORRECT mode with a threshold of 1, we order the top set304

of MAXmode predictions, and only consider the single best scoring prediction. As another example, when setting the threshold305

at 5, and MAXmode outputs a set of two labs as the top predictions, two labs in the second best set of predictions, and two labs306

in the third best set of predictions, the four labs in the top two sets would be considered and the two labs in the third set would307

not be considered. In this and all other cases, CORRECT mode considers only the top set of labs from MAXmode, thus for308

the top 5 threshold it would still only consider the ranked list of the top two labs from MAXmode. In addition, if a set of labs309

in CORRECT mode have the same lab score and their rankings are around the threshold, we would arbitrarily select few labs310

from the set and add them into our final prediction lists. By doing this, the number of labs in a CORRECT mode prediction311

result equals to the threshold. For instance, if the threshold is 1 and there are two labs with the same lab score returned from312

CORRECT mode, we will arbitrarily select one lab as the CORRECT mode prediction.313
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Convolutional Neural Network Architecture and Lab of Origin Prediction314

The CNN architecture was constructed based on Nielsen et al. All the CNN parameters are set to their optimized values from315

Nielsen et al.. In the original experimental design, the authors reported splitting the data set into six subsets because of memory316

limitations. We replicate this by separating the training data into six subsets, then load and train one at a time in each epoch.317

After training, we save the final model and parameters.318

We use the same plasmid data set from the PlasmidHawk experiments to train, validate and test the CNN approach. We319

randomly pick three plasmids from each lab as the validation data set and then pick additional three plasmids as the test data320

set. The remaining plasmids are used as the training set. We preprocess and encode the DNA sequences. As in Nielsen et al.,321

we set all the DNA sequences to 8000bp long by truncating the long DNA sequences and padding the short DNA sequences322

with Ns. Characters other than A, T, C, or G in the DNA sequences are converted to Ns. We append the sequence’s reverse323

complement to itself with 48 Ns in between. We translate those processed sequences as a one-hot vector with length 16,048324

where A=[1000], T=[0100], G=[0010],C=[0000]. The depositing lab is encoded as a one-hot vector with total length 896. This325

experiment is repeated five times.326

To evaluate the CNN prediction accuracy, we calculate the percentage of plasmids in the test data set correctly identified327

their lab-of-origin while considering the top 1, 5, 10, 20, and 50 predicted labs from CNN. We then compute the average328

percentages of correct predictions and their standard deviations at different thresholds (1, 5, 10, 20, 50).329

Averaged Lab Jaccard Distance and Averaged Lab Score330

To evaluate the relationships between lab scores and the uniqueness of labs’ plasmids, we calculate the lab Jaccard distance331

between all labs. The lab Jaccard distance quantifies the sequence similarities between all plasmids between two labs. To332

measure lab Jaccard distances, we first build and annotate a complete synthetic plasmid pan-genome using all plasmids from333

labs who have at least 10 complete sequences. We then extract all the fragments annotated with lab A to fragment set FA. We334

do this again for all labs. We define the lab Jaccard distance between two labs, lab A and lab B, as JD(A,B) = 1− J(FA,FB),335

where J(FA,FB) =
|FA∩FB|
|FA∪FB| represents the Jaccard index between two labs (Fig.5). We built a distance matrix between all labs by336

calculating the pairwise Jaccard distances between every pair of labs. This distance matrix was used, for instance, to build the337

lab phylogenetic tree and also to calculate the “averaged lab Jaccard distance" for each individual lab. The averaged lab Jaccard338

distance for a lab is simply the average of all the cells in the corresponding row or column for that lab in the distance matrix.339

To calculate a lab’s “averaged lab score", we first run CORRECT mode on all test plasmids from the five independent340

lab-of-origin prediction experiments. If CORRECT mode returns a score for the true depositing lab for a plasmid, we assign341

that returned lab score to that plasmid. A lab’s “averaged lab score" is the average of all assigned lab scores for all test plasmids342

corresponding to that lab.343
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Figure 5. Lab Jaccard distance calculation. To calculate lab Jaccard distances between two labs, such as lab A and lab C, we
first build a fragment set, FA and FC, for each lab. A fragment set contains all the pan-genome fragments annotated by the
corresponding labs. The lab Jaccard distance between lab A and lab C is JD(A,C) = 1− J(FA,FC), where the Jaccard index
(J(FA,FC)) is the fraction of shared pan-genome fragments out of all the different fragments lab A and C have. A large lab
Jaccard distance represents two labs have few shared sequences.

pCI-YFP Prediction Analysis344

To identify pCI-YFP’s depositing lab, we input the pCI-YFP sequence, the complete synthetic pan-genome sequence, and the345

pan-genome annotation information into PlasmidHawk. PlasmidHawk returns the predicted labs and their lab scores. It also346

outputs alignment results. We retrieve the aligned pan-genome fragments of pCI-YFP and the list of labs having those aligned347

fragments to create the alignment plot (Fig. 3b). In addition, we align all the plasmids that are used in building the complete348

pan-genome and have shared sequences with pCI-YFP from 17-100nt.349

Lab Phylogenetic Tree350

We apply RapidNJ28 to construct a lab phylogenetic tree based on lab Jaccard distances. RapidNJ employs the neighbour-joining351

method29 to build phylogenetic trees. The visualization is conducted with the interactive tree of life (https://itol.embl.de)30.352

The full lab phylogenetic tree can be viewed in: http://itol.embl.de/shared/qiwangrice.353

Statistical Analysis354

The principal component analysis is conducted using the sklearn.decomposition function31. The explained variances for PC1355

and PC2 are 2.1 and 0.4. All the code is available in the gitlab repository.356

Code availability357

PlasmidHawk is written in Python and is available at https://gitlab.com/treangenlab/plasmidhawk.git358

16/19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.22.110270doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110270
http://creativecommons.org/licenses/by-nd/4.0/


Data availability359

All results supporting this study are available on Gitlab. The raw sequences used in this study are available upon request.360
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