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Abstract 
Genomic imprinting and X chromosome inactivation (XCI) are two prototypical epigenetic 

mechanisms whereby a set of genes is expressed monoallelically in order to fine tune their 

expression levels. Defects in genomic imprinting have been observed in several 

neurodevelopmental disorders, in a wide range of tumors and in induced pluripotent stem cells 

(iPSCs). Single Nucleotide Variations (SNVs) are readily detectable by RNA-sequencing 

allowing determination of whether imprinted or X-linked genes are aberrantly expressed from 

both alleles, although standardised analysis methods are still missing. We have developed a 

tool, named BrewerIX, that provides comprehensive information about allelic expression of a 

large, manually-curated set of imprinted and X-linked genes. BrewerIX does not require 

programming skills, runs on a standard personal computer, and can analyse both bulk and 

single-cell transcriptomes of human and mouse cells directly from raw sequencing data. 

BrewerIX confirmed and extended previous observations regarding the aberrant expression of 

imprinted genes in pluripotent cells, in the early embryo and in breast cancer cells and identified 

new genes escaping XCI in human somatic cells. We believe BrewerIX will be useful for the 

study of genomic imprinting and XCI during development and reprogramming, and for 

detecting aberrations in cancer and iPSCs. Due to its ease of use to non-computational 

biologists, its implementation could become standard practice during sample assessment, thus 

raising robustness and reproducibility of future studies. 
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Main 

Gene imprinting is used to control the dosage of a specific set of genes (imprinted genes) by 

selectively silencing one of the two copies of the gene (either the maternal or the paternal 

allele). In female cells, also the genes on the X chromosome are expressed monoallelically 

thanks to a random epigenetic silencing mechanism called X chromosome inactivation (XCI).  

X-linked and imprinting diseases are the most common congenital human disorders, because 

loss-of-function mutations in the single expressed allele will not be buffered by the second 

silenced allele1. Imprinted genes were initially isolated as regulators of fetal growth and their 

aberrant expression has been related to cancer2–4. For these reasons, analysing the imprinting 

and XCI status is crucial in many fields including cancer research, regenerative medicine and 

assisted reproductive technology. 

Correct imprinting information and reactivation of X chromosome are criteria used to evaluate 

the quality of induced pluripotent stem cells (iPSCs). Although iPSCs hold the promise for 

effective approaches in regenerative medicine, disease modelling and drug screening (for 

review see Perrera and Martello5), their safety is compromised by frequent genetic and 

epigenetic aberrations, such as Loss of Imprinting (LOI) or a variable X chromosome status6–

15. 

 

Allelic expression can be determined by the presence of Single Nucleotide Variants (SNV) in 

RNA-sequencing (RNAseq) data. However, at the time of writing, no standardised pipelines 

for analysis of allelic expression of Imprinted and X-linked genes have been developed. 

Existing pipelines use different combinations of tools and rely on different parameters that 

were set to analyze specific data and to address specific questions15–17. Moreover, these 

pipelines need skilled bioinformaticians to be run. A complete and easy to use tool, which does 

not require programming skills, is still missing. 

 

Motivated by this need, we built BrewerIX, an app available for macOS and Linux Systems 

that looks for bi-allelic expression of experimentally validated imprinted genes (see 

Supplementary Table 1 and 2 for a manually curated list of human and mouse genes) and genes 

on the sex chromosomes. Bi-allelic expression of imprinted genes will indicate LOI. Bi-allelic 

expression of X-linked genes may indicate reactivation of the X chromosome, as expected in 

the early embryo18 or in naive pluripotent stem cells12,13,19,20, X chromosome erosion, as 
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observed after extensive culture of pluripotent cells21, or simply escape of single genes from 

the XCI mechanisms, as recently documented in somatic cells22,23. 

 

BrewerIX (freely available at https://brewerix.bio.unipd.it) takes as input either bulk or single-

cell RNAseq data, analyzes reads mapped over the SNV distributed on imprinted genes, X 

chromosome and Y chromosome and generates imprinting and XCI profiles of each sample 

displaying them in an intuitive way.  

BrewerIX implements three pipelines with different aims (Fig. 1a, Supplementary Fig. 1). The 

Standard pipeline is meant to rapidly have the imprinting and X inactivation status of a set of 

samples (Fig. 1a). Here, BrewerIX will align each sample, filter alignments and call Allele 

Specific Expression (ASE) Read counter (see Methods) using a set of pre-compiled bi-allelic 

SNVs. Before visualization, SNVs are collapsed by genes to create a table that is displayed by 

the user interface. The Complete pipeline sacrifices speed for the sake of completeness by using 

a larger set of SNVs, while the Tailored pipeline uses a specific set of SNVs that the user might 

detect from DNA-seq data (Supplementary Fig. 1). 

 

The end-point of the pipelines is a table that is visualized by the user interface (UI). The UI 

presents the results using two graphical panels. The gene summary panel shows a matrix of 

dots with as many rows as the number of genes and as many columns as the number of samples 

analyzed. The size and the color of the dot is proportional to the confidence of our estimate: i) 

the larger the dot, the higher the number of SNVs supporting our estimate; ii) the brighter the 

color, the closer to 1 is the average of the allelic ratios (minor/major) of all bi-allelic SNVs. 

Empty dots are genes with no evidence of bi-allelic expression. Lack of a dot means that no 

reads overlapped the SNVs available for the gene, indicating that the gene was not detected. 

The SNVs summary panel shows a set of barplots (one set for each sample) with as many bars 

as the number of SNVs per gene. Here blue is the color of the reference allele and red is the 

alternative/minor one. Solid colors indicate bi-allelic SNVs, transparent colors indicate mono-

allelic SNVs, while  those SNVs that do not meet the minimal coverage are shown in gray. 

When a gene shows no evidence of any genuine bi-allelic SNVs, we collapse the counts over 

a virtual SNV (named “rs_multi”) to give an indication of its expression. 
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The UI allows to set different filters according to the dataset features, based on the following 

4 parameters:  

1. the overall depth, representing the number of reads mapping on a given SNV;  

2. the minor allele count, indicating the absolute number of reads mapping on the less frequent 

SNV variant among the two detected (i.e. the minor allele); 

3. the threshold to call a bi-allelic SNV, which can be either a cutoff on the allelic ratio (AR, 

minor/major allele) or the p-value of a binomial test; 

4. the minimal number of bi-allelic SNVs needed to call a bi-allelic gene, based on the 

assumption that when a gene is expressed bi-allelically, multiple bi-allelic SNVs should be 

detected. 

 

Default values of the parameters have been empirically selected to minimize the number of 

false positives. A false positive call is a SNVs not present in the DNA, detected only at the 

RNA level due to sequencing and caller errors. We reasoned that false positive calls can be 

estimated using genes on sex chromosomes, of whom only a single allele is present. Thus, we 

analyzed bulk RNAseq samples of 6 normal male BJ fibroblasts from 3 published datasets (see 

Supplementary Table 3, describing all datasets used in this study). We collected on sex 

chromosomes all the SNV with an overall depth of >=5 reads in at least one sample. Then we 

evaluated the false positive ratio at increasing thresholds (minor allele count and overall depth) 

as the ratio between the number of bi-allelic SNVs (those with an AR >= 0.2 as in 15 and 24) 

over the total number of SNVs detected in the sample (those with more than 5 reads). 

As shown in Fig. 1b, the frequency distribution of false positive rate shows a clear elbow point 

at a minimal coverage of 20 reads and 4 reads for the minor allele finding an average of 2 false 

positive calls every 105 SNVs analyzed. No biallelic SNVs were detected in Y in any of the 

analyzed samples. Looking at the distribution of the false positive SNVs in the X chromosome, 

we found no correlation between the calls and the number of tested SNV (Supplementary Fig. 

2). 

 

To gain further confidence in methods based on RNAseq data, we calculated the number of 

false positive calls detected by SNP-array, a technique specifically developed and extensively 

used to detect SNVs. We analyzed genomic DNA from BJ fibroblasts profiled with Affymetrix 

Mapping 250K Nsp SNP Array, and we found that the number of false positives detected was 
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100 times higher (2 every 103 evaluated SNVs, Supplementary Fig. 3) confirming that RNAseq 

data is more accurate in detecting allelic imbalance.  

 

Although the defined thresholds minimize false positives, we investigated their power of 

detecting actual bi-allelic genes. For this reason, we analyzed the pseudo-autosomal region 1 

(PAR1), a short region of homology between the X and Y chromosomes which behaves like 

autosomes and  contains 22 genes expressed bi-allelically. Our results indicate that the number 

of bi-allelic calls in PAR1 is significantly higher (p=0.031 Wilcoxon signed rank test) than the 

mean number of false positives detected in the remaining part of the X chromosome 

(Supplementary Fig. 2).  

To further test the capacity to detect actual bi-allelic expression, we analyzed RNAs-seq data 

from female human naive iPSCs (HPD08 - GSM2988908), bearing two active X 

chromosomes13,20. We detected 104 bi-allelic genes on the entire X chromosome out of 382 

detected genes. Overall we conclude that the chosen parameters allow detection of bi-allelic 

expression while minimising false-positive calls. 

 

Our default parameters for standard bulk RNAseq samples (>10M reads/sample) are 20, 4 

and 0.2 for overall depth, minor allele count and AR respectively. Additionally, we call a 

gene bi-allelic when at least 2 bi-allelic SNVs  are detected, in order to filter out potential 

sequencing artifacts. To test BrewerIX functionalities we analyzed 8 datasets, including both 

bulk and single cell RNAseq, different organisms (human and mouse) and different 

biological systems (iPSCs, cancer cells, early embryonic development).  

 

Reprogramming of human somatic cells to pluripotency is associated with imprinting 

abnormalities5, both in the case of conventional, or “primed”, iPSCs and in the case of naive 

iPSCs6–8,13,15,25–27. We analyzed 10 isogenic bulk RNAseq samples, including 6 BJ fibroblast, 

1 primed iPSC line and 3 naive iPSCs. We run the analysis both in Complete mode (Fig. 1c) 

and Standard mode (Supplementary Fig. 4), obtaining highly comparable results. MEG3 

showed bi-allelic expression specifically in naive iPSCs (Fig. 1c-d), as previously reported13,28. 

Several other imprinted transcripts, such as H19, MEG8, INPP5F and NLRP2 showed bi-allelic 

expression in naive iPSCs.  

To experimentally validate these results and further demonstrate the accuracy of the default 

parameters, we performed Sanger sequencing after PCR amplification of genomic DNA from 
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1 naive iPSC line and confirmed the presence of 12 randomly selected SNVs (Supplementary 

Table 4 and Fig. 1e), while bi-allelic expression of MEG3 was confirmed in 3 independent 

naive iPSC lines (Fig. 1e). A second dataset of human fibroblasts (HFF) and matching naïve 

iPSCs (HPD0613) was analyzed in Standard mode, confirming bi-allelic expression of H19, 

MEG3, INPP5F and NLRP2 only in naive cells (Supplementary Fig. 5), as previously 

reported13,19,28.  

 

We analyze a dataset of murine Embryonic Stem cells (mESCs) expanded under different 

culture conditions. Yagi and colleagues reported that expanding mESCs in 2i/L conditions 

resulted in LOI, while mESCs in S/L conditions mostly retained correct imprinting29. With 

BrewerIX we obtained identical results for 7 out of 8 imprinted genes analyzed by Yagi and 

colleagues (Fig. 1f). The eighth gene, Zim2, showed a too low overall sequencing depth and 

was not analyzed. We conclude that BrewerIX detected LOI events in both human and mouse 

naive pluripotent stem cells from bulk RNAseq data, in agreement with previous 

analyses13,28,29. 

 

Next, we wanted to compare the performance of BrewerIX on matching bulk and single-cell 

RNAseq data.  Using bulk samples from mESCs cultured in 2i/L or S/L conditions30, we 

identified 19 LOI events, with Ddc showing LOI specifically in 2i/L and Gatm, Pon2 and Blcap 

showing LOI only in S/L (Fig. 1g). 

We then analyzed single-cell data  (384 cells from 2i/L and 288 from S/L) using our default 

parameters, considering a gene bi-allelically expressed when a single SNVs was found bi-

allelic in at least 20% of cell analyzed expressing such gene (Fig 2a). We observed that those 

genes with multiple bi-allelic SNVs in bulk analysis, such as Impact,  Lin28a, and Inpp5, were 

found bi-allelic also in a large fraction (>50%) of single cells analyzed. Several LOI events 

were detected only in bulk samples, possibly because single-cell RNAseq detects preferentially 

the 3’ end of transcripts, limiting the number of SNVs detected. Despite such limitation, some 

bi-allelic genes could be detected only by single-cell RNAseq (e.g. Ccdc40, Peg10 and Plagl1), 

indicating that only single-cell RNAseq allows the detection of LOI events occuring in a 

limited fraction of cells. 

 

Deng and colleagues analyzed the gene expression of single cells from oocyte to blastocyst 

stages of mouse preimplantation development describing that in female embryos the paternal 
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X chromosome is activated beyond the four-cell stage and subsequently silenced30. BrewerIX 

results were highly concordant with those generated with a custom pipeline by Deng and 

colleagues, confirming the transient reactivation of the paternal X chromosome (Fig. 2b and 

Supplementary Fig. 6). Next, we observed an expected monoallelic expression of most of the 

imprinted genes (Fig. 2c and Supplementary Fig. 7), although few of them, such as Gnas, 

Nap1l4, Cd81, Usp29, showed bi-allelic expression at several stages of pre-implantation 

embryos, suggesting that imprinted expression might be consolidated later in development. 

 

Next, we analyzed a human somatic single-cell RNAseq dataset17 and observed that 38 genes 

showed bi-allelic expression in 20% of cells (Fig. 2d). Only 4 of these genes (GLIS3, GNAS, 

ATP10A and TFPI2) were also found bi-allelic by the authors of the original study17. We 

extended the analysis to X-linked genes and found that, out of 608 detected genes, 35 genes 

escaped XCI in at least two individuals (Fig. 2e). Notably, only 16 out of 35 (45%) were 

previously identified as escapees31. We conclude that BrewerIX efficiently identifies LOI and 

XCI escape events occurring in small fractions of somatic cells from single-cell 

transcriptomes. 

 

Different cancers, such as breast, kidney and lung, are characterized by frequent expression 

level changes of imprinted genes, often accompanied by DNA methylation level changes in 

several imprinted domains, such as the PEG3, MEST and GNAS32. To test whether BrewerIX 

could detect LOI events in cancer cells, we analyzed 515 single cell samples and matching 

bulk samples from 11 breast cancer patients33. 

We first defined what SNVs could be detected in bulk samples from patients using BrewerIX 

in Complete mode. Such SNVs list was then used to interrogate in Tailored mode the single-

cell dataset, in which the authors classified the cells as Tumor and non-Tumor (i.e. stromal and 

immune cells surrounding the tumor). 

 

From bulk RNAseq data, we found that 7 imprinted genes showed bi-allelic expression, among 

them DNMT1 and GNAS were detected in at least 4 patients (Fig. 2f).  

DNMT1 and GNAS were also found bi-allelic in the single-cell dataset, in a high percentage 

of both tumor and non-tumor cells  (Fig. 2g). We detected 18 additional bi-allelic genes, 

including MEST and OSBPL5 that showed bi-allelic expression specifically in tumor cells. 

Such results indicate that single-cell analyses outperform bulk analyses in the case of 
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heterogeneous cancer samples and that imprinting abnormalities might be much more 

widespread in cancer cells than currently thought. 

 

The results obtained by BrewerIX on the selected case studies outcompeted published custom 

pipelines confirming and extending published results, demonstrating the reliability and 

usefulness of the tool. For the analysis of relatively homogeneous cell populations, such as 

pluripotent cells in culture, we conclude that bulk RNAseq data allowed robust identification 

of LOI events. Conversersely, when heterogeneous populations of cells, such as cancer 

samples, are analyzed, only single-cell measurements allowed to detect widespread events of 

LOI or XCI escape, indicating that such phenomena might have been underestimated for 

technical limitations.  

Due to the ease of use of BrewerIX to non-computational biologists, we believe that its 

implementation could become standard practice during assessment of newly generated 

pluripotent cells, as well as for the study of the molecular mechanisms underlying genomic 

imprinting and XCI, hopefully raising robustness and reproducibility of future studies. 
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Methods 
 

General overview 

BrewerIX is implemented as a native graphical application for Linux and macOS. Upon 

installation, BrewerIX automatically downloads all the required software dependencies and 

data for both the human and mouse species, which are then cached for later usage. An intuitive 

user interface guides the user to configure the analysis. 

BrewerIX requires a directory where the FASTQ files are stored. All the FASTQs will be 

processed and all of them need to have homogeneous read layouts (all single-end or all paired-

end). After choosing the appropriate read layout, the user can choose among three analysis 

modes: Standard, Complete and Tailored. 

The Standard and Complete mode run with pre-compiled set of SNVs: bi-allelic and bi-allelic 

plus multi-allelic respectively (see “Precompiled sets of SNVs” paragraph for details). The 

Tailored mode requires a user-defined set of SNVs. Finally, the user has the option of 

exploiting multiple processing cores on his system to speed-up the analysis. All the three 

analysis modes end up saving a “brewer-table” and opening the user interface to browse results. 

The results are organized by the user interface in tabs named “Imprinted Genes”, 

“Chromosome X” and “Chromosome Y” that give access to the respective analyses. All the 

tabs are organized similarly: the left panel provides a gene summary, while the right panel 

displays per-gene SNV details. 

The gene summary has samples in the columns and genes on the rows. Position of the samples 

can be arranged just dragging them in the correct order. Genes on the rows are sorted according 

to their genomic position (chromosome and transcription start site). The circles represent the 

summarized allelic ratio for each gene in the sample: the size of the circle reflects the number 

of SNVs used to compute the average allelic ratio. 

Default settings can be easily changed using the “Options” menu. “Filter SNVs” controls 

tunable parameters related to SNVs: overall depth, minimal number of minor allele count, 

number of bi-allelic SNVs to call a gene as bi-allelic . Moreover, the user can choose to call a 

bi-allelic SNV based on a fixed threshold or a binomial test. “Filter genes” allows the user to 

choose the set of genes to display: all, only those detected (i.e. those with a sufficient overall 

depth) or only those genes that are bi-allelic in at least one sample that was analyzed. 

Additionally, the user can control the source of imprinted genes to be included in the analysis: 

human and mouse have 3 sources that can be combined (see “Knowledge base” paragraph). 
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Finally, the user can control the allelic ratio measure, as either minor allele / major allele, or 

minor allele / total counts. Clicking on the gene names or on the dots will open (or update) the 

right-hand panel that will display the SNVs used to perform the call. Each SNV is represented 

with a bar where reference allele counts are in blue and alternatives in red (see SNV calling 

section). An empty bar means no reads are available for that SNV. Gray bars indicate SNVs 

that do not reach the overall depth to be considered detected. Bright colors indicate that the 

SNV is bi-allelic; dim colors indicate a SNV that is not bi-allelic. Both left and right panels can 

be saved as PDF files. Moreover, the right panel (i.e. the gene summary) can be exported as a 

tab-delimited file to allow further analysis. All exports reflect the filters chosen. 

 

Implementation Details:  

User Interface 

The BrewerIX graphical interface is distributed as a native application for both Linux and 

macOS. It is written in the Haskell programming language and makes use of the wxWidgets 

cross-platform GUI library. Plots are generated using the Cairo library and its PDF output 

capabilities. The Linux version of the application is packaged using the AppImage tool. 

 

Core Computational Pipeline 

The computational pipeline is implemented in Python and is available as a Python package 

called brewerix-cli at github.com/Romualdi-Lab/brewerix-cli. The pipeline performs the 

alignment, allelic count and creation of the result table called “brewer-table”. The pipeline can 

be run also using the command line interface (CLI) implemented by brewerix-cli itself. The 

final output of the CLI is the “brewer-table” that is parsed by the visual interface to produce 

the BrewerIX visual outputs. The CLI has been though for advanced users willing to analyze 

their own set of genes or genomes of different species. The minimum required inputs are the 

following: a genome (fasta format) and its index for hisat2, genome dict (computed with 

GATK) and genome fasta index, a bed file indicating the region of interest (i.e. imprinted genes 

and genes on the sex chromosomes), a set of bi-allelic SNVs with reference alleles that must 

be present in the reference genome. 

 

Knowledge base 

We manually curated a comprehensive set of imprinted genes from different sources. For 

human and mouse imprinted genes, we collected the data from the Geneimprint database 
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(http://geneimprint.com/) and Otago database (http://igc.otago.ac.nz/home.html). We excluded 

all genes labeled as “predicted” or “notImprinted” and manually curated “conflicting data”. We 

added human imprinted genes identified by Santoni and colleagues17 

(https://doi.org/10.1016/j.ajhg.2017.01.028) and mouse imprinted genes regulated by 

H3K27me3 in the early embryo, identified by Inoue and colleagues34 

(https://doi.org/10.1038/nature23262). The “Gene filters” command on the User interface 

allows choosing any combination of these resources. The manually curated gene lists are shown 

in Supplementary Tables 1 and 2.  

The manually curated list of imprinted genes, together with genes on X and Y chromosomes, 

are the starting point to build the Knowledge base. Upon first usage, BrewerIX downloads the 

pre-built species-specific Knowledge base. This task needs to be done only once. 

The Knowledge base contains the genome, the genome index directory, the bi-allelic SNV file, 

the multi-allelic SNV file, the regions with the genes of interest. 

To create a custom Knowledge base, we implemented a Python package called brewerix-

prepare-knowledgebase that is able to create a knowledge base for brewerix-cli from the 

ENSEMBL database. Minimal inputs are the species (must be a valid ensembl species), the 

chromosomes and a list of the genes of interest (tested on ENSEMBL 98 for mouse and 

human).  

 

Precompiled sets of SNV 

BrewerIX comes with two precompiled sets of SNVs: bi-allelic set and a multi-allelic set of 

SNVs for both human and mouse. SNVs were downloaded from ENSEMBL variants 

(annotation version 98). We removed INDELs and the SNVs whose reference alleles differed 

from the reference genome. Bi-allelic SNVs and multi-allelic SNVs were assigned to the bi-

allelic and multi-allelic set accordingly. 

 

Alignments 

BrewerIX requires fastq files as input. The pipeline works with homogeneous library layout 

i.e. all fastqs are either single or paired end. The fastq files are aligned to a reference genome. 

The user can choose between Mouse GRCm38.p6 or human GRCh38.p13 genome. Alignments 

are performed using Hisat2 (version 2.1.0, default parameters) and filtered to keep only reads 

laying on genes of interest. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2020. ; https://doi.org/10.1101/2020.05.20.105841doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.105841
http://creativecommons.org/licenses/by-nc-nd/4.0/


SNV calling 

SNVs are called only at multi allelic SNVs using HaplotypeCaller from GATK v4.1. Calls are 

performed as if all the samples have the same genotype, i.e. all in the same batch. The reference 

and the most represented alternative allele are selected. We set the following parameters: “--

max-alternate-alleles 1 -stand-call-conf 1 --alleles multi_allele_vcf_file --dbsnp 

multi_allele_vcf_file”.  

 

Allelic count 

Allelic count is performed using ASEReadCounter with default parameters from GATK v4.1. 

This tool, given a set of loci and a bam file, allows computing the reads bearing the reference 

and the alternative allele. Sample-specific results are collapsed into an ASER table. 

 

The brewer-table 

The brewer-table is created by the core computational pipeline and contains all the SNVs that 

were detected by at least 5 reads. To reduce the table size, genes without any alternative allele 

in any of the detected SNVs are collapsed into a meta-SNV that gives an indication about the 

coverage of the gene under analysis.  

 

False-positive detection evaluation 

To evaluate BreweIX performance we first estimated the number of false positives. We analyze 

6 male BJ fibroblasts looking for how many SNVs are called bi-allelic in the X chromosome. 

We reasoned that all the bi-allelic SNVs called outside the Pseudoautosomal Regions (PARs) 

are false positives, given that male cells have only one copy of the X chromosome. 

We considered all SNVs on the sex chromosomes with an overall depth of >=5 reads in at least 

one sample. A SNV is biallelic when its allelic ratio >= 0.2 (minor/major) and we increased 

the allele count and overall depth to find the optimal cut. We found  a clear elbow point at a 

minimal coverage of 20 and 4 reads for the minor allele finding an average of 2 false positive 

calls every 105 SNVs analyzed. 

Although such value appeared low, we wanted to compare it against the false-positive rate 

obtained with an independent technique that has been developed and used for analysis of SNVs, 

SNP-arrays. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2020. ; https://doi.org/10.1101/2020.05.20.105841doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.105841
http://creativecommons.org/licenses/by-nc-nd/4.0/


We compared the number of SNVs in X chromosome from RNAseq to the number of SNVs in 

the X chromosome detected by Affymetrix SNP-array using BJ DNA sample (GEO accession 

GSE72531) and obtained 2 false-positive bi-allelic SNVs every 103 evaluated SNVs. 

 

Case Studies  

We chose as case studies 7 datasets that were very diverse, in order to fully exploit all the 

features of the tools we have developed. In the following sections we will describe in detail the 

workflow of each dataset. All RNAseq data but one were downloaded from GEO database 

using fastq-dump from sra-tools version 2.8.2. Only mouse ESCs dataset was downloaded from 

Array Express via direct link. 

All datasets images were created using the BrewerIX-core imprinted genes (i.e. genes curated 

from geneimprint DB and Otago) unless stated otherwise. Moreover images were created 

showing only “significant” genes with default parameters i.e minimal coverage of 20, 4 reads 

for the minor allele, allelic ratio (mino/major) >= 0.2 and at least two or one biallelic SNV per 

gene in bulk and single cell sequencing respectively. 

 

BJ fibroblast dataset. 

We collected BJ RNAseq data from 3 sources on the GEO database: GSE110377 (BJ fibroblast 

GSM2988896; primed iPSC GSM2988902, naive iPSC GSM2988898, GSM2988903, 

GSM2988904), GSE126397 (BJ fibroblasts GSM3597749 and GSM3597750) and GSE63577 

(BJ fibroblasts  GSM1553088-GSM1553090). To deal with the heterogeneous read layout 

(single and paired-end) of the sequencing data, we aligned each batch to the reference human 

genome using hisat2, with default parameters. We use BrewerIX-cli to run the analysis starting 

from the alignment files (bams). We used the “complete” analysis mode and loaded the 

“brewer-table” on the visual interface to explore the results.  

 

HFF dataset 

HFF normal samples were downloaded from GSE93226 (GSM2448850-GSM2448852) while 

reprogrammed iPSC from  GSE110377 (GSM2988900).  As for the BJ fibroblast dataset, we 

computed single and paired end alignments separately (hisat2, default parameter) and then run 

brewerix-cli in “standard” mode. Panels summarizing the results have been generated with 

BrewerIX’s User interface. 
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Yagi et al. dataset - mouse ESCs. 

Yagi dataset (GEO accession GSE84164; GSM2425488-GSM2425495) was fully analyzed by 

brewerIX with the Complete analysis mode. To generate the figure, we selected from the 

brewer-table only those genes shown in Yagi et al. and submitted the new table back to 

BrewerIX. 

 

Kolodziejczyk et al. / Kim et al.  dataset - mouse ESCs 

In this dataset, we analyzed mES cells cultured in 2i/L or S/L downloaded from Array Express 

under the accession E-MTAB-2600. We analyzed three bulk samples (one cultured in 2i/L and 

two in S/L) and 682 single cell samples (384 cultured in 2i/L and  288 in S/L). 

Both bulk and the single cell RNAseq datasets were analyzed using BrewerIX in Standard 

mode. Bulk data visualization on the three samples was performed using BrewerIX User 

interface. 

Single cell RNAseq results were visualised using custom R code available at 

github.com/Romualdi-Lab/. Results were summarized by the two categories: 2i/L and S/L. We 

analyzed genes that are expressed in at least 10 cells in at least one category. We considered a 

gene bi-allelically expressed when at least one SNV was found bi-allelic in at least 20% of cells 

analyzed expressing such gene (other parameters remain default). 

 

Deng et al. dataset - oocyte to blastocyst 

Single cell RNAseq dataset were downloaded from GEO accession GSE45719 (GSM1112490-

GSM1112581 and GSM1112603-GSM1278045; female samples include GSM1112504-

GSM1112514, GSM1112528-GSM1112539, GSM1112543-GSM1112553, GSM1112626-

GSM1112640, GSM1112656-GSM1112661, GSM1112696-GSM1112697, GSM1112702-

GSM1112705; male samples include GSM1112490-GSM1112503, GSM1112515-

GSM1112527, GSM1112540-GSM1112542, GSM1112554-GSM1112581, GSM1112611-

GSM1112625, GSM1112641-GSM1112653, GSM1112654-GSM1112655, GSM1112662-

GSM1112695, GSM1112698-GSM1112701, GSM1112706-GSM1112765; for remaining 

samples no sex specification were available). Analysis has been carried out using BrewerIX in 

“standard” mode. The computed values were used for downstream custom analysis (code can 

be found at github.com/Romualdi-Lab/). 

For the X chromosome, we performed the analysis plotting the average of the allelic ratios in 

each developmental stage for male and female samples. We used developmental stages where 
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both male and female samples were present. Thus, we considered 4 male, 6 female in middle 

2-cell (mid2cell); 4 male, 6 female for late 2-cell (late2cell); 3 male, 11 female for 4-cell (4cell); 

27 male, 23 female for 16-cell (16cell); 28 male, 15 female for early blastocyst (earlyblast). To 

evaluate the performance of BrewerIX in detecting paternal-X chromosome re-activation, we 

downloaded Deng’s processed dataset from the supplementary material of the manuscript30. 

To avoid any bias, we analyzed genes shared by Deng’s processed dataset and BrewerIX 

generated data. 

For imprinted genes, we plotted the Average Allelic Ratio (AAR) for each gene in each 

developmental stage. We analyzed the following developmental stages: 4 zygotes (zy), 8 early 

2cell (early2cell), 12 middle 2 cell (mid2cell), 10 late 2cell (late2cell), 14 4-cell (4cell), 47 8-

cell (8cell), 58 16-cell (16cell), 43 early blastocyst (earlyblast), 60 middle blastocyst 

(midblast), 30 late blastocyst (lateblast) and 10 fibroblast. 

 

Santoni et al. / Garieri et al. dataset -  human somatic cells 

We used available data from 772 human fibroblasts (we analyzed 229, 159, 192 and 192 for 

IND1, IND2, IND3 and IND4 respectively) and 48 lymphoblastoid (IND5) cells from 5 female 

individuals (GEO accession GSE123028, GSM3493332-GSM3494151). 

Single-cell RNAseq dataset was analyzed using BrewerIX in standard mode. The single cell 

RNAseq visual reports were produced with custom R code available at github.com/Romualdi-

Lab/. 

Results were summarized by individuals. We analyzed genes that are expressed in at least 10 

cells in at least four categories.  We considered a gene bi-allelically expressed when at least 

one SNV was found bi-allelic in at least 20% of analyzed cells that express that gene (other 

parameters remain default).  

 

Chung  dataset - Breast cancer 

Chung and colleagues33 analyzed 11 patients representing four subtypes of breast cancer 

(luminal A - BC01 and BC02, luminal B - BC03, HER2+ - BC04, BC05 and BC06 or triple 

negative breast cancer - TNBC – BC07-11). They obtained 515 single cell transcriptome 

profiles and 12 matched samples with bulk RNAseq from 11 patients (GEO accession 

GSE75688 all the samples listed in GSE75688_final_sample_information.txt.gz; B03 has both 

primary breast cancer and lymph node metastases). Bulk samples from the breast cancer dataset 

were analyzed using BrewerIX in Complete mode. Visual inspection was performed using 
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BrewerIX. The single-cell RNAseq dataset was run using the tailored mode with the SNV file 

created from analysis with Complete mode of the bulk matching RNAseq data. The single-cell 

RNAseq visual reports were produced with custom R code.  

Cell sample annotations were downloaded from GEO database. Results were summarized by 

patients and according to available annotation further divided into tumor and non-tumor class 

(i.e. stromal and immune cells surrounding the tumor). Patients were included in the analysis 

if profiled for at least 8 tumor and 8 non-tumor cells. The numbers of cell analyzed for each 

patient class combination are the following: BC03_nonTumor=18, BC03_Tumor=15, 

BC03LN_nonTumor=43, BC03LN_Tumor=10, BC04_nonTumor=8, BC04_Tumor=47, 

BC06_nonTumor=10, BC06_Tumor=8, BC07_nonTumor=24, BC07_Tumor=26, 

BC07LN_nonTumor=26, BC07LN_Tumor=26. 

We analyzed genes that were expressed in at least 2 cells in at least six categories.  We 

considered a gene bi-allelically expressed when at least one SNV was found bi-allelic in at 

least 20% of analyzed cells that express that gene (other parameters remain default). Code to 

reproduce the figure can be found at github.com/Romualdi-Lab/ as well. 

 

SNP detection via PCR followed by Sanger sequencing  

Genomic DNA (gDNA) was extracted from cellular pellet with Puregene Core Kit A (Qiagen) 

according to the manufacturer's protocol; 1μg gDNA was used as a template for PCR using the 

Phusion High-Fidelity DNA polymerase (NEB, cat. M0530L).  

Total RNA was isolated from cellular pellet using a Total RNA Purification kit (Norgen Biotek, 

cat. 37500), and complementary DNA (cDNA) was generated using M-MLV Reverse 

Transcriptase (Invitrogen, cat. 28025-013) and dN6 primers (Invitrogen) from 1000 ng of total 

RNA following the protocols provided by the manufacturers, including a step of TurboDNAse 

treatment (Thermo Scientific). cDNA was diluted 1:5 in water and used as a template for PCR 

using the Phusion High-Fidelity DNA polymerase; gDNA and cDNA were amplified by PCR 

using primers detailed in the Supplementary Table 5. PCR was conducted with the following 

program: denaturation at 98°C for 30s; 35 cycles of denaturation at 98°C for 10 s, annealing at 

temperature depending on primer sequence (Tm–5°C) for 30 s, elongation at 72°C for 15 s; 

final elongation at 72°C for 10 min. 

PCR reaction products were resolved and imaged by agarose gel electrophoresis. The 

remaining PCR products were purified using the QIAquickPCR purification kit (Qiagen, cat. 

28106) and direct sequencing was performed using the same primers used for PCR 
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amplification. Each PCR region of interest was sequenced at least twice, using both forward 

and reverse primers. Sanger sequencing was performed by Eurofins Genomics 

(https://www.eurofinsgenomics.eu/en/custom-dna-sequencing/gatc-services/lightrun-tube/). 

Sequence analysis and peak detection were performed using freely available ApE software 

(https://jorgensen.biology.utah.edu/wayned/ape/). 

 

Data Availability  

All RNAseq data used in this study were publicly available and obtained from either the Gene 

Expression Omnibus (GEO) database under the accession codes GSE110377; GSE126397; 

GSE63577, GSE110377; GSE126397; GSE63577 GSE93226; GSE110377 GSE84164 

GSE123028 GSE45719 GSE75688 or from Array Express under the accession code E-MTAB-

2600. Additional details about all datasets used in the study are in Supplementary Table 3. The 

raw Sanger sequencing data file underlying Fig. 1e and Supplementary Table 4 are provided 

as a Source Data file. 

 

Code availability  

BrewerIX is freely available for academic users at https://brewerix.bio.unipd.it and all code 

and tutorials are available at https://github.com/Romualdi-Lab/brewerix-cli under AGPL3 

licence. 
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FIGURE 1 
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Figure 1. Analyses of Imprinted gene expression in naive pluripotent cells with BrewerIX 

a, BrewerIX rational and overall implementation scheme for the Standard pipeline. b, False 

positives bi-allelic calls estimated by analysis of transcripts on the X chromosome in 6 male 

BJ fibroblasts samples. On the x axis thresholds combination of overall depth and minimal 

coverage of the minor allele. c, BrewerIX gene summary panel results on bulk RNAseq data 

from isogenic human fibroblasts and primed (HPD00) and naive (HPD01/3/4) iPSCs. The 

larger the dot, the higher the number of SNVs supporting the bi-allelic call. The brighter the 

color, the closer to 1 is the average of the allelic ratios (minor/major) of all bi-allelic SNVs. 

When both alleles are expressed at the same level the allelic ratio is equal to 1. Empty dots 

indicate detected genes with no evidence of bi-allelic expression, while white dots indicate 

undetected genes. d, BrewerIX SNV summary panel for Meg3 in the case study shown in c. A 

barplot for each sample is reported with as many bars as the number of SNVs per gene. Solid 

colors represent actual SNV with both loci expressed, blue and red are the reference and the 

alternative/minor allele. Transparent colors indicate SNVs detected with no evidence of bi-

allelic expression, while grey-scale colors indicate SNVs that do not meet the minimal 

coverage. e, Experimental validation of the indicated SNVs by PCR followed by Sanger 

sequencing. The SNVs of interest are highlighted by a red box. See Supplementary Table 4 for 

a list of all SNVs validated. Each SNVs was detected in two independent experiments, using 

either Forward or Reverse sequencing primers.  f, BrewerIX gene summary panel results on 

bulk RNAseq data generated by Yagi and colleagues29. Murine ESCs were expanded in either 

2i/L or S/L conditions, while mouse embryonic fibroblasts (MEF) serve as controls. g, 

BrewerIX gene summary panel results from bulk RNAseq data of mESCs cultured in 2i/L or 

S/L (two biological replicates) by Kolodziejczyk and colleagues35. See Fig. 2a for matching 

single-cell RNAseq samples. 
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FIGURE 2
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Figure 2. Analyses of single-cell RNAseq data of mouse embryonic and human adult cells 

a, Analysis of single-cell RNAseq data from mESCs cultured in 2i/L or S/L, matching those 

shown in Fig. 1g. Results are summarised as percentages (degree of blue) of cells in which a 

given gene was expressed bi-allelically. Gray indicates undetected genes. Number of cells 

analyzed: 2i/L 384, S/L 288. b, Average allelic ratio (AAR) defined as the average of 

minor/major ratios across single cells for all genes in chromosome X in male and female 

embryonic cells detected by single-cell RNAseq30. Number of cells for male (M) and female 

(F) for each developmental stage: mid2cell 6M, 6F; late2cell 4M, 6F; 4cell 3M, 11F; 16cell 

27M, 23F; earlyblast 28M, 15F. See also Supplementary Fig. 6.  c, Distribution of AAR for 

imprinted genes across mouse developmental stages. Genes with AAR >= 0.2 are labelled. 

Number of cells for developmental stage: zygote 4, early2cell 8, mid2cell 12, late2cell 10, 

4cell 14, 8cell 47, 16cell 58, earlyblast 43, midblast 60, lateblast 30, fibroblast 10. See also 

Supplementary Fig. 7. d, Analysis of single-cell RNAseq data16 from 772 human fibroblasts 

and 48 lymphoblastoid cells from 5 female individuals (IND1-5). Results are summarised as 

percentages (degree of blue) of cells in which a given gene was expressed bi-allelically. Gray 

indicates undetected genes. Number cells: IND1 229, IND2 159, IND3 192, IND4 192 and 

IND5 48. e, Results of X chromosome genes on samples described in d. f, BrewerIX gene 

summary panel results from bulk RNAseq data from human breast cancer samples. LN 

indicates matching metastatic lymph nodes. g, Analysis of single-cell RNAseq data from 

breast cancer samples, matching those analyzed in f. Number of cells: BC03_nonTumor 18, 

BC03_Tumor 15, BC03LN_nonTumor 43, BC03LN_Tumor 10, BC04_nonTumor 8, 

BC04_Tumor 47, BC06_nonTumor 10, BC06_Tumor 8, BC07_nonTumor 24, BC07_Tumor 

26, BC07LN_nonTumor 26, BC07LN_Tumor 26. 
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