
 

Supplementary Information 

Supplementary Figures 
 

Trajectories and benchmarking results on immune (human) 
 

 
Supplementary Figure 1: Visualization of the best and worst performers on the immune 
cell human integration task ordered by overall score on the set of cells belonging to the 
erythrocyte lineage. The plots show Force Atlas 2 (Conos) and UMAP (all other methods) 
layouts for the unintegrated data (left), the top 4 performers (upper rows a and b), and the worst 
4 performers (lower rows a and b). (a) shows the order of cells by diffusion pseudotime, while 
(b) shows cell identity annotations. 
 



 

 
Supplementary Figure 2: Diffusion maps of diffusion pseudotime (dpt) trajectories on 
integrated immune cell human data. Shown are the dpt values of the 4 best (upper row) and 4 
worst (lower row) integration methods, ordered by the overall score. (a) shows diffusion maps of 
the unintegrated data, while the color gradient represents the order of cells by dpt value on the 
integrated data. (b) shows diffusion maps of the integrated data, where the color gradient 
represents the dpt value. 
 
 
 
 
 
 
 
 
 



 

 
Supplementary Figure 3: Visualization of the best and worst performers on the immune 
cell human integration task ordered by trajectory score on the set of cells belonging to 
the erythrocyte lineage. The plots show Force Atlas 2 (Conos) and UMAP (all other methods) 
layouts for the unintegrated data (left), the top 4 performers (upper rows a and b), and the worst 
4 performers (lower rows a and b). (a) shows the order of cells by diffusion pseudotime, while 
(b) shows cell identity annotations. 
 



 

 
Supplementary Figure 4: Overview of benchmarking results by overall score for the 
human immune cell task. Metrics are divided into batch correction (blue, purple) and bio 
conservation (pink) categories. Overall scores are computed by a 40:60 weighted mean of these 
category scores (see Methods for further visualization details). 



 

Trajectories across species  

 
Supplementary Figure 5: Visualization of the best and worst performers on the immune 
cell human mouse integration task ordered by trajectory score on the set of cells 
belonging to the erythrocyte lineage. The plots show Force Atlas 2 (Conos) and UMAP (all 
other methods) layouts for the unintegrated data (left), the top 4 performers (upper rows a, b 
and c), and the worst 4 performers (lower rows a, b and c). Plots are coloured by (a) diffusion 
pseudotime, (b) cell identity annotations, and (c) species. 



 

Benchmarking results 

Immune (human/mouse) 

 
Supplementary Figure 6: Overview of benchmarking results by overall score for the 
human/mouse immune cell task. Metrics are divided into batch correction (blue, purple) and 
bio conservation (pink) categories. Overall scores are computed by a 40:60 weighted mean of 



 

these category scores (see Methods for further visualization details). Methods that failed to run 
are omitted. 

Simulation 1 

 



 

Supplementary Figure 7: Overview of benchmarking results by overall score for the 
simulation 1 task. Metrics are divided into batch correction (blue, purple) and bio conservation 
(pink) categories. Overall scores are computed by a 40:60 weighted mean of these category 
scores (see Methods for further visualization details). 

Simulation 2 

 



 

Supplementary Figure 8: Overview of benchmarking results by overall score for the 
simulation 2 task. Metrics are divided into batch correction (blue, purple) and bio conservation 
(pink) categories. Overall scores are computed by a 40:60 weighted mean of these category 
scores (see Methods for further visualization details). 

Pancreas 

 



 

Supplementary Figure 9: Overview of benchmarking results by overall score for the 
pancreas task. Metrics are divided into batch correction (blue, purple) and bio conservation 
(pink) categories. Overall scores are computed by a 40:60 weighted mean of these category 
scores (see Methods for further visualization details). 

Lung 

 



 

Supplementary Figure 10: Overview of benchmarking results by overall score for the lung 
atlas task. Metrics are divided into batch correction (blue, purple) and bio conservation (pink) 
categories. Overall scores are computed by a 40:60 weighted mean of these category scores 
(see Methods for further visualization details). Methods that failed to run are omitted. 
 

Mouse brain 

 
Supplementary Figure 11: Overview of benchmarking results by overall score for the 
mouse brain RNA task. Metrics are divided into batch correction (blue, purple) and bio 
conservation (pink) categories. Overall scores are computed by a 40:60 weighted mean of these 
category scores (see Methods for further visualization details). Methods that failed to run are 
omitted. Note that kBET was not run on this task due to computational limitations. 



 

Embeddings 

Immune (human) 

 
Supplementary Figure 12: Visualization of the best and worst performers on the immune 
cell human data. The plots show Force Atlas 2 (Conos) and UMAP (all other methods) layouts 
for the unintegrated data (left), the top 4 performers (upper rows a and b), and the worst 4 
performers (lower rows a and b). Plots are coloured by (a) batch labels, and (b) cell identity 
annotations. 

Immune (human/mouse) 
 
 



 

 
Supplementary Figure 13: Visualization of the best and worst performers on the immune 
cell human mouse integration task. The plots show Force Atlas 2 (Conos) and UMAP (all 
other methods) layouts for the unintegrated data (left), the top 4 performers (upper rows a and 
b), and the worst 4 performers (lower rows a and b). Plots are coloured by (a) batch labels, (b) 



 

cell identity annotations, (c) tissue, and (d) species. Tissue abbreviations are: PB - peripheral 
blood, PBMCs - peripheral blood mononuclear cells. 

Simulation 1 

 
Supplementary Figure 14: Visualization of the best and worst performers on the 
simulation 1 task. The plots show Force Atlas 2 (Conos) and UMAP (all other methods) layouts 
for the unintegrated data (left), the top 4 performers (upper rows a and b), and the worst 4 
performers (lower rows a and b). Plots are coloured by (a) batch labels, and (b) cell identity 
annotations. 

Simulation 2 
 



 

 
Supplementary Figure 15: Visualization of the best and worst performers on the 
simulation 2 task. The plots show Force Atlas 2 (Conos) and UMAP (all other methods) layouts 
for the unintegrated data (left), the top four performers (upper rows a and b), and the worst four 
performers (lower rows a and b). Plots are coloured by (a) batch labels, and (b) cell identity 
annotations. 



 

Pancreas 

 
Supplementary Figure 16: Visualization of the best and worst performers on the pancreas 
integration task. The plots show Force Atlas 2 (Conos) and UMAP (all other methods) layouts 
for the unintegrated data (left), the top 4 performers (upper rows a and b), and the worst 4 
performers (lower rows a and b). Plots are coloured by (a) batch labels, and (b) cell identity 
annotations. 



 

Lung 

 
Supplementary Figure 17: Visualization of the best and worst performers on the lung 
atlas integration task. The plots show Force Atlas 2 (Conos) and UMAP (all other methods) 
layouts for the unintegrated data (left), the top 4 performers (upper rows a and b), and the worst 
4 performers (lower rows a and b). Plots are coloured by (a) batch labels and (b) cell identity 
annotations. 
 
 



 

Mouse Brain 

 
Supplementary Figure 18: Visualization of the best and worst performers on the mouse 
brain RNA integration task. The plots show Force Atlas 2 (Conos) and UMAP (all other 
methods) layouts for the unintegrated data (left), the top 4 performers (upper rows a, b, and c), 
and the worst 4 performers (lower rows a, b, and c). Plots are coloured by (a) batch labels, (b) 
cell identity annotations, and (c) brain regions. Brain region abbreviations are: AMY - amygdala, 
HC - hippocampus, TH - thalamus, HTH - hypothalamus, CTX - cortex, OB - olfactory bulb, STR - 
striatum, CB - cerebellum, MB - midbrain, MD - medulla, SN - substantia nigra, ENT - 
entopeduncular nucleus, GP - globus pallidus and nucleus basalis, PO - pons, and SC - spinal 
cord (unknown regions could not be inferred in the original publication of Rosenberg et al.1).  

 
 
 
 

https://paperpile.com/c/ugpLT1/kIVM


 

Performance summary 

 
Supplementary Figure 19: Scatter plots summarizing integration performance on all 
tasks. The x-axis shows the overall batch correction score and the y-axis shows the overall bio 
conservation score. Each point is an individual integration run. Point colour indicates method, 
size the overall score and shape the output type (embed, gene, graph). Filled points use the full 
feature set while unfilled points use selected highly variable genes. Points marked with a cross 
use scaled features. Horizontal lines indicate reference points. Red dashed lines show 
performance calculated on the unintegrated dataset and solid blue lines the median 
performance across methods for each dataset. 
  



 

Scalability 

 
Supplementary Figure 20: Scalability of each data integration method, separated by 
preprocessing variant. a) CPU time in seconds for each method (colored dots) and data 
integration task. b) Maximum memory usage for each method and scenario. Colored lines 
denote linear fit of log-scaled time/memory vs log-scaled dataset size for each data integration 
method and pre-processing combination. 



 

Usability 

 
Supplementary Figure 21: Usability assessment of data integration methods. The usability 
of each data integration method was assessed via nine categories (labels on the left), plotted as 
a heatmap, and ordered by overall usability score. On the right-hand side criteria with poor 
scores across methods are highlighted for each category. The overall usability score was 
computed as the mean of all category scores and plotted on top in a barplot. 
 
 
 



 

ATAC results 

ATAC small benchmarking results 

 
Supplementary Figure 22:  Benchmarking results for the small mouse brain task based 
on scATAC-seq. Metrics are divided into batch correction (blue, purple) and bio conservation 
(pink) categories (see Methods for further visualization details). Overall scores are computed by 
a 40:60 weighted mean of these category scores. Methods that failed to run are omitted. 



 

ATAC small embeddings 

 
Supplementary Figure 23:  Visualisation of all small ATAC tasks. The plots show Force 
Atlas 2 (Conos) and UMAP (all other methods) layouts for the unintegrated scenario and the 
best method to the worst method from left to right then top to the bottom. For each method, 
there are two plots colored by batch labels and cell identity annotations. 



 

ATAC large embeddings 

 
Supplementary Figure 24: Visualisation of all large ATAC tasks. The plots show Force Atlas 
2 (Conos) and UMAP (all other methods) layouts for the unintegrated scenario and the best 
method to the worst method from left to right then top to the bottom. For each method, there are 
two plots colored by batch labels and cell identity annotations. 



 

iLISI comparison 
 

 
Supplementary Figure 25: Comparison of graph iLISI and iLISI scores - All scores are 
unscaled, but shifted by -1. For graph-based output (marked with a star in the legend and a 
filled square in the plot), iLISI does not work because these methods do not provide a Euclidean 
distance measure. For visualisation, the results for graph-based methods are the same on both 
x- and y-axis, but were computed with graph iLISI. We compared the two metrics in the 
pancreas (a) and immune cell human (b) data scenarios. Both scores correlate well on full- and 
embedding-based data integration methods (circles and crosses), i.e. Pearson correlation 
coefficient is 0.978 for the pancreas task and 0.984 for the immune cell human task.  
 



 

Trajectories - addendum 

 
Supplementary Figure 26: Visualization of the best and worst performers on the immune 
cell human mouse integration task ordered by overall score. The plots show Force Atlas 2 
(Conos) and UMAP (all other methods) layouts for the unintegrated data (left), the top 4 
performers (upper rows a, b and c), and the worst 4 performers (lower rows a, b and c). Plots 
are coloured by (a) diffusion pseudotime, (b) cell identity annotations, and (c) species. 



 

Supplementary Table 1: Data integration methods 
Supplementary Table 1: Data integration methods available in order of first preprint 
publication. Methods that perform only time-series data integration are omitted. The collection 
is  (based on manual literature review and scrna-tools.org2; (last retrieved: Feb 2020) 

Method Method 
principle 

DOI/arXiv ID/url Github First preprint 
Date 

MNN Mutual nearest 
neighbours 

10.1038/nbt.409
1 

https://github.co
m/chriscainx/mn
npy 
 
https://github.co
m/MarioniLab/sc
ran 

July 18, 2017 

Seurat v2 Canonical 
correlation 
analysis (CCA) 

10.1038/nbt.409
6 

https://github.co
m/satijalab/seur
at 

July 18, 2017 

SAUCIE Sparse, 
regularized 
autoencoder 

10.1038/s41592
-019-0576-7 

https://github.co
m/Krishnaswam
yLab/SAUCIE/ 

December 19, 
2017 

scVI Conditional 
variational 
autoencoder 

10.1038/s41592
-018-0229-2 

https://github.co
m/YosefLab/scV
I 

March 30, 2018 

Scanorama SVD + Mutual 
nearest 
neighbours 

10.1038/s41587
-019-0113-3 

https://github.co
m/brianhie/scan
orama 

July 17, 2018 

BBKNN KNN graph 
integration 

10.1093/bioinfor
matics/btz625 

https://github.co
m/Teichlab/bbkn
n 

August 22, 2018 

scMerge Factor analysis 
model on stably 
expressed 
genes 

10.1073/pnas.18
20006116 

https://github.co
m/SydneyBioX/s
cMerge 

September 12, 
2018 

CONOS PCA + KNN 
integration 

10.1038/s4159
2-019-0466-z 

https://github.co
m/hms-dbmi/con
os 

November 2, 
2018 

https://paperpile.com/c/ugpLT1/kq57
https://github.com/chriscainx/mnnpy
https://github.com/chriscainx/mnnpy
https://github.com/chriscainx/mnnpy


 

LIGER Integrative 
non-negative 
matrix 
factorization 

10.1101/459891 https://github.co
m/MacoskoLab/li
ger 

November 2, 
2018 

Seurat v3 CCA + Mutual 
nearest 
neighbours 

10.1016/j.cell.20
19.05.031 

https://github.co
m/satijalab/seur
at 

November 02, 
2018 

Harmony PCA + 
clustering-based 
correction 

10.1038/s41592
-019-0619-0 

https://github.co
m/immunogeno
mics/harmony 

November 04, 
2018 

scGen Conditional 
variational 
autoencoder 
(cell identity 
labels required) 

10.1038/s41592
-019-0494-8 

https://github.co
m/theislab/scgen 

November 29, 
2018 

RISC Principal 
component 
regression 

10.1101/483297 N/A November 29, 
2018 

scAlign Bidirectional 
mapping 
through deep 
learning 

10.1186/s13059
-019-1766-4 

https://github.co
m/quon-titative-b
iology/scAlign 

December 22, 
2018 

scPopCorn Simultaneous 
optimisation of 
subpopulations 
across samples 

10.1016/j.cels.2
019.05.007 

https://github.co
m/ncbi/scPopCo
rn 

December 28, 
2018 

scANVI Semi-supervised 
variational 
inference with 
deep generative 
models 

10.1101/532895 https://github.co
m/chenlingantel
ope/Harmonizati
onSCANVI 

January 29, 
2019 

BUSseq Fits a Bayesian 
hierarchical 
model 

10.1101/533372 https://github.co
m/songfd2018/B
USseq-0.99.0 

January 29, 
2019 

FastMNN PCA + Mutual 
nearest 
neighbours 

https://marionila
b.github.io/Furth
erMNN2018/the
ory/description.h
tml 

https://github.co
m/MarioniLab/sc
ran 

June 3, 2019 



 

scBatch Sample distance 
matrix 
adjustment 

10.1093/bioinfor
matics/btaa097 

https://github.co
m/tengfei-emory/
scBatch 

June 13, 2019 

Bermuda Autoencoder 
with transfer 
learning 

10.1186/s13059
-019-1764-6 

https://github.co
m/txWang/BER
MUDA 

July 2, 2019 

SMNN Supervised 
mutual nearest 
neighbors 

10.1101/672261 https://github.co
m/yycunc/SMNN 

September 20, 
2019 

BEER Removal of PCs 
with batch 
effects 

10.1038/s41421
-019-0114-x 

https://github.co
m/jumphone/BE
ER 

September 24, 
2019 

trVAE Conditional 
variational 
autoencoder 

arXiv:1910.0179
1 

https://github.co
m/theislab/trvae 

October 4, 2019 

MOFA2 Multi factor 
analysis model 

10.1101/837104 https://github.co
m/bioFAM/MOF
A2 

November 9, 
2019 

scadKNN Autoencoder (+ 
KNN 
classification) 

10.1109/BIBM47
256.2019.89829
69 

N/A November 18, 
2019 

scPhere Variational 
autoencoder 

10.1101/853457 https://github.co
m/klarman-cell-o
bservatory/scPh
ere 

November 25, 
2019 

Dmatch Kernel density 
matching with 
external 
reference 

10.1101/2020.0
1.05.895136 

https://github.co
m/qzhan321/Dm
atch 

January 6, 2020 

scDGN Adversarial 
networks (cell 
identity labels 
required) 

10.1101/2020.0
1.06.896621 

https://github.co
m/SongweiGe/s
cDGN 

January 7, 2020 

sstGPLVM Gaussian 
process latent 
variable model 
with t-distributed 
noise 

10.1101/2020.0
1.14.906313 

https://github.co
m/architverma1/
sc-manifold- 
alignment 

January 14, 
2020 



 

BATMAN Minimum weight 
matching on 
bipartite graph 

10.1101/2020.0
1.22.915629 

https://github.co
m/mandricigor/b
atman 

January 23, 
2020 

CSS Represent cells 
by similarity to 
clusters in 
individual 
samples 

10.1101/2020.0
2.27.968560 

https://github.co
m/quadbiolab/si
mspec 

February 28, 
2020 

 

Supplementary Table 2: Metrics runs 
Supplementary Table 2: Applicability of metrics to data integration outputs. Specifically 
metrics for beyond-label conservation cannot be run on all outputs such as corrected graph 
outputs and ATAC tasks. The asterisk (*) denotes that no relevant trajectories were found in the 
ATAC tasks and none were input into the simulation tasks. 

Metric Graph Embedding Feature RNA ATAC Simulation 

PCR batch       

Batch ASW       

Graph connectivity       

Graph iLISI       

kBET       

Normalized Mutual 
Information 

      

Average Rand Index       

Cell type ASW       

Graph cLISI       

Isolated label F1       

Isolated label ASW       



 

Cell cycle conservation       

HVG conservation       

Trajectory conservation     * * 

 

  



 

Supplementary Note 1: Extending kBET for fair 
assessment of graph-based integration results 
 
Evaluating how well batch effects are removed in an integration task is complicated by different               
output formats. Any evaluation metric that can compare graph-based outputs and joint            
embeddings or corrected feature matrices, must work on the integrated graph (a connectivity             
matrix). For joint embeddings or corrected feature matrices, such a graph is computed by finding               
k nearest neighbors based on pairwise distances between cells in the embedding. This process              
results in a graph where each node has the same out-degree (edges leading outwards). In               
contrast, a graph-based integration method can output an integration graph with varying k per              
neighborhood. This neighborhood size variance is particularly noticeable in the outputs           
generated by Conos3. 
 
We use the kBET4 metric to assess batch removal for kNN-based outputs. Here, the choice of k                 
determines the statistical power of the test per neighborhood. Thus, having a variable k means               
that the rejection of the null hypothesis is less likely in certain regions. As a result, it is important                   
to have a consistent minimal k across all tested neighborhoods in all integration outputs. While               
we can adapt the parameter k in our data processing pipeline for methods that output               
embeddings or corrected feature spaces, it is inherent to the method for graph-based integration              
methods. In order to benchmark data integration in a consistent manner, we chose to use only                
the recommended defaults for each method. Thus, we must adapt the input for kBET rather               
than changing the parameters of the methods that we run to fairly evaluate batch removal               
across integration output formats. 
 
The output of a graph-based integration method is a graph that encodes the biological signal               
that is shared across batches. Here, the graph structure, rather than the individual edge, is the                
important signal. Thus, to increase the number of nearest neighbours we can obtain per cell, we                
use the local structure in the network to increase the density of the connectivity matrix.               
Motivated by previous work on diffusion along kNN-graphs in scRNA-seq analysis5,6, we achieve             
this by running a diffusion process on the graph. Specifically, we simulate an N-step diffusion               
process where N is selected to obtain a minimum of k non-zero connectivity per cell. This                
process is described by the equation: 

, M =  ∑
N

i=1
T i  

 
where M is the diffusion-extended connectivity matrix, and T is the row-normalized connectivity             
matrix. 
 
The above diffusion process is performed at two points in our extended kBET metric. Firstly, we                
perform graph diffusion on the initial connectivity matrix of graph-based outputs before running             

https://paperpile.com/c/ugpLT1/UXv2n
https://paperpile.com/c/ugpLT1/SXA4V
https://paperpile.com/c/ugpLT1/RrQ2b+cAg3I


 

kBET. This diffusion run ensures that we have a minimum of k nearest neighbors per node.                
Here, k is chosen to match the number of nearest neighbors calculated for other outputs (k=50).                
Secondly, we perform graph diffusion after the connectivity matrix is subsetted to a particular              
cell identity label. After subsetting, we may obtain multiple connected components in the             
subsetted graph, especially in poorly integrated datasets. In this setting we first assess which              
connected components are sufficiently large to evaluate via kBET. A sufficiently large connected             
component is one with at least 3*k nodes, where k is chosen by the kBET default of the median                   
number of cells per batch within the subsetted data. Note that we enforce minimum and               
maximum k thresholds of 10 and 100. Graph diffusion is performed in all sufficiently large               
connected components (for all integration outputs) to give a consistent number of nearest             
neighbors per cell. Cells in connected components that are not sufficiently large are given              
scores of 1, indicating poor batch integration. Furthermore, cell identity labels where fewer than              
75% of cells are in sufficiently large components are given a kBET score of 1 to denote poor                  
batch mixing. 

  



 

Supplementary Note 2: Graph LISI extends LISI to        

graph-based integration results 

In order to evaluate batch removal in data integration in a consistent manner, we need metrics                
that can be applied to all output formats. As corrected expression or accessibility matrices and               
joint embeddings can both be processed to produce integrated graphs, we specifically require             
metrics that work on graph structures. The only previously published metric for batch removal              
that works on graphs is kBET. However, to ensure a robust evaluation of batch removal, it is                 
important to base this assessment on multiple metrics.  

Local inverse simpson index (LISI)7 scores are typically computed on nearest neighbour lists.             
These neighbour lists are obtained from a kNN graph algorithm computed with k=90             
neighbours. Integrated graph outputs, such as those produced by BBKNN8 and Conos3, return             
integrated graphs often with far fewer neighbours. As these methods do not also output joint               
embeddings, we cannot simply generate new kNN graphs to produce longer neighborhood lists.             
Thus, the classical LISI metric cannot be applied to integrated graph outputs. 

Here, we extended the classical LISI metric to work on integrated graphs in our graph LISI                
metric. In graph LISI, we replace the distance measurement on joint embeddings with a graph               
distance to compute large nearest neighbour lists also when nodes only have few nearest              
neighbours. Specifically, we used Dijkstra’s algorithm9 on the connectivity matrix to compute            
shortest paths from one cell to all other cells. Thereby, the shortest path length serves as an                 
approximation for the distance on an embedding that is typically used in kNN graph algorithms.               
As integrated data often form a single, connected graph, such that every cell is connected to all                 
other cells. Using Dijkstra’s algorithm, we obtain sufficiently large neighbourhood sizes to            
compute the LISI for every cell in the largest connected component. In case there are smaller                
connected components for which we cannot measure graph distances to other cells, these cells              
belong to an outlier group, which has not been integrated well. Thus, we assign a LISI of 1 to                   
these cells, which reflects the worst possible score. In accordance with the original LISI, we               
compute the median over all cells to obtain the LISI score. Finally, the LISI score is scaled in                  
two steps to the unit interval (see Methods).  

On corrected feature matrices (expression or accessibility) and joint embeddings, we construct a             
kNN graph connectivity matrix via Euclidean distances on the embedded space or on a PCA               
representation using the compute nearest neighbours function in Scanpy10 (sc.pp.neighbors).          
Here, we deliberately choose n_neighbors=15 as a basis for several reasons. Firstly, graph iLISI              
with n_neighbors = 15 compared favourably to the original iLISI implementation in contrast with              
graph LISI using n_neighbors = 90 on the unintegrated pancreas scenario (data not shown).              
Secondly, Dijkstra’s algorithm runs faster the fewer neighbours are used to create the kNN              

https://paperpile.com/c/ugpLT1/UbYV
https://paperpile.com/c/ugpLT1/BtZq
https://paperpile.com/c/ugpLT1/UXv2n
https://paperpile.com/c/ugpLT1/Zte6
https://paperpile.com/c/ugpLT1/uVt3


 

graph for corrected feature matrices and joint embeddings as the algorithm scales linearly with              
the number of edges11. Thirdly, we want to ensure a fair comparison of all output types. As                 
mentioned above, graph-based outputs tend to have smaller neighbourhood sizes. Thus, we            
can create similar initial conditions for graph LISI using comparable neighbourhood sizes across             
output types.  

We compared graph iLISI results to the original iLISI on two integration tasks (pancreas and               
human immune cells, see Supplementary Fig. 25). We computed graph iLISI scores on a              
connectivity matrix with 15 nearest neighbours for corrected feature matrix and joint embedding             
integration outputs, and on the integrated graph for graph-based outputs. For visualisation of the              
graph LISI results for graph-based outputs, we used the same scores for both x- and y-axis (as                 
the original iLISI does not apply for integrated graphs). It must be noted that we display iLISI                 
scores after step 1 of the scaling, i.e. the shift by -1, such that the worst possible score is 0.                    
Both scores strongly correlate for non-graph integration outputs (Pearson correlation coefficient           
for the pancreas task is 0.978 and 0.984 for the immune cell human task). Thus, we conclude                 
that graph LISI is a reasonable metric to assess batch removal (as graph iLISI) and cell type                 
preservation (as graph cLISI), respectively, on graph structures.  

  

https://paperpile.com/c/ugpLT1/nvOd


 

Supplementary Note 3: Detailed analysis of 

Integration tasks 

3.1 Immune cells  
For the immune cell atlas, we investigated two separate integration tasks: the first, considering              
only human samples (n=10); the second, merging human and mouse samples (n=23). In both              
cases, two tissues were considered: peripheral blood and bone marrow.  
 
3.1.1 Human 
In the human immune cell integration task, six challenges can be identified: (1) inter-sample              
variability arising from the different donors; (2) integration across single-cell protocols (10X and             
smart-seq2 in Villani’s sample); (3) capturing consistent cell populations across tissues of origin;             
(4) separation of cell subtypes that are transcriptomically similar; (5) preservation of            
tissue-specific cell annotations as separate clusters; and (6) conservation of the trajectory of             
erythrocyte development across batches. Challenges (1) and (2) can be solved by removing             
batch effects across samples and across platforms, respectively, while preserving biological           
variation. Successfully solving challenge (3) can be achieved by correctly grouping cell types             
that are found across tissues (e.g., CD8+ and CD4+ T cells, CD20+ B cells, CD14+ and CD16+                 
monocytes). In challenge (4), we are interested in evaluating whether cell types that share a               
similar transcriptome (e.g., CD8+ and CD4+ T cells; CD14+ and CD16+ monocytes) can be              
recapitulated in separate subclusters. Challenge (5) concerns in particular cell annotations that            
are bone marrow specific, such as monocyte progenitors, erythroid progenitors, erythrocytes           
and CD10+ B cells. Finally, challenge (6) can be addressed by conserving the trajectory from               
hematopoietic stem and progenitor cells (HSPCs) via megakaryocyte progenitors and erythroid           
progenitors, to erythrocytes. It should be noted that we are evaluating the preservation of a               
global trajectory structure from two points of view: (i) by considering the whole dataset and               
focusing on the presence/absence of a trajectory which can be visually recognized            
(Supplementary Fig. 12); and (ii) by considering only cell types belonging to the trajectory and               
assessing whether the cells are placed in a continuum that is consistent with the calculated               
pseudotime score (Supplementary Fig. 1-3). Furthermore, our trajectory metric calculates local           
conservation of the order of cells in the trajectory per batch compared to unintegrated data. 
In the low dimensional embedding plots of the top 4 performing methods (Scanorama             
(embedding), Conos (unscaled, HVG), Harmony and BBKNN; Fig. 2 b,c), all methods appear to              
have resolved inter-sample and inter-platform batch effects. Moreover, most methods          
succeeded in capturing consistent cell populations across tissues. Some batch structure           
remained for Conos, which tended to conserve batch-dependent substructures of CD8+ and            
CD4+ T cells. Scanorama incorrectly separated plasmacytoid dendritic cells (from Smart-seq2           



 

data from Villani) into two clusters, placing one cluster near plasma cells and the other with                
dendritic cells. In contrast, BBKNN placed plasma cells, plasmacytoid dendritic cells, and            
monocyte-derived dendritic cells into a continuum, rather than maintaining a clear separation            
between the clusters. Nevertheless, the separation of cell subtypes is successfully overcome by             
the four methods. Particularly, Scanorama and Harmony performed well on this challenge,            
keeping a clear distinction between CD8+ and CD4+ T cells, and NKT and NK cells.               
Furthermore, a clear separation between tissue-specific cell types is achieved in all top             
methods.  
The top-performing methods can be distinguished based on trajectory results: while BBKNN            
and Scanorama conserved the order of cell identity clusters within the trajectory (Figs. 2 b,c               
and Supplementary Fig. 1,2), Harmony shows diversity in erythrocyte endpoints but orders            
progenitor cells in a correct continuum, and Conos (unscale, HVG) does not correctly order the               
progenitor cell populations. Interestingly, optimal trajectory conservation results are typically          
obtained when integrating using full gene sets and unscaled data (Supplementary Fig. 3). This              
preprocessing scheme generates the best trajectory conservation in Scanorama (embedding),          
Conos, and MNN outputs. 
We also analysed the poorest preprocessing combinations for the poorest performing methods            
(Conos (scaled, HVG), Seurat v3, trVAE, and LIGER; Supplementary Fig. 12) to evaluate the              
result of poor data integration. Here, trVAE failed to integrate data between 10X and              
Smart-seq2 data, whereas the other three methods succeeded. Furthermore, trVAE tended to            
overcorrect the data, losing the separation between different T cells and NK/NKT cells. In              
contrast, Seurat v3 successfully removed inter-individual and inter-platform variability and          
preserved the phenotypic transition between similar cell types. The shortcomings of the            
worst-performing Seurat v3 approach lie in the conservation of fine-grained biological variation.            
For example, challenge (3) was only partially solved, since monocyte-derived dendritic cells are             
overlapping with other cell types. In addition, Seurat v3 failed to preserve tissue-specific cell              
types such as CD10+ B cells. LIGER, which successfully integrated cross-platform batch            
effects, instead failed to preserve cell types shared between tissues such as CD20+ B cells and                
CD4+/CD8+ T cells (challenges (3) and (4)). Likewise, LIGER output contained overlapping            
erythrocytes, CD14+ monocytes, and CD4+ T cells, completely losing their identity. Similarly,            
Conos (scaled, HVG) produced an integrated dataset, which, despite integrating batch effects,            
failed to preserve cell type identity for CD10+ B cells, erythroid progenitors and erythrocytes.              
Furthermore, none of the poorest performing methods, but trVAE, conserved the trajectory of             
erythrocyte development (Supplementary Fig. 1).  
 
3.1.2 Human and mouse 
Integrating mouse and human samples adds a higher level task to the challenges that              
characterize human samples alone: cross-species integration. In particular, this translates into           
two separate challenges: (1) cross-species integration inside the same tissue of origin; and (2)              
cross-species integration between tissues. Furthermore, we are interested in assessing if the            
methods are able to identify, in the low dimensional embedding plots (Supplementary Fig. 13,              
26), a cross-species trajectory of erythrocyte differentiation. As in the case of human samples              



 

alone, we can also evaluate integration success by removal of sample and protocol batch              
effects while preserving tissue-specific cell identities and cell subtypes. 
Considering the embedding plots of the top four performing methods (Scanorama, scVI, BBKNN             
(unscaled, HVG) and ComBat; Supplementary Fig. 13), it is striking that none of the methods               
successfully overcame the batch effect derived from the two species. However, we observed a              
partially successful integration occurring in specific cases: (i) Scanorama resolved cross-species           
and cross-tissues batch effects for NK cells; (ii) scVI correctly placed B cells, NK cells, CD8+ T                 
cells, monocytes and erythrocytes in adjacent, partially overlapping clusters, which are shared            
across tissues and species; (iii) BBKNN placed a human cluster of erythroid progenitors and              
erythrocytes in close proximity to the mouse counterpart; and (iv) BBKNN and ComBat both              
placed human B cells adjacent to their mouse counterparts. This indicates that, despite the              
strong batch effect, these methods were able to capture similar gene expression profiles for cell               
populations that are shared across species. On the other hand, all top performing methods              
showed successful batch effect removal for human samples. On the mouse data, all methods,              
apart from scVI, failed to integrate the two bone marrow studies (Dahlin and MCA), with a clear                 
separation still visible for shared cell types such as neutrophils. This separation of mouse bone               
marrow studies also affected our trajectory analysis: although scVI, Scanorama, BBKNN, and            
ComBat preserved the mouse differentiation trajectory in terms of cell placement, a cluster of              
MCA erythrocytes was separated from the main trajectory in the latter three integration outputs.              
Moreover, when considering only the cell subset of erythroid differentiation (Supplementary           
Fig. 26), none of the methods were able to reconstruct pseudotime across species. Three              
methods (Scanorama, scVI, and BBKNN) could however partially maintain a separate ordering            
of cell labels for human and mouse cells (with BBKNN being successful only for human cells).                
Interestingly, also the best trajectory conservation results only contained a separated           
reconstruction of the pseudotime trajectory by species (Supplementary Fig. 5). Specifically, all            
methods were able to preserve pseudotime and cell type placement for the mouse cells, while               
the human trajectory, with fewer cells, proved more challenging.  
A different scenario is depicted by the four poorest-performing methods: BBKNN (scaled, full             
features), Conos, Harmony, and LIGER (Supplementary Fig. 13). While Conos overcorrected           
the data, removing batch variation due to species but also biological cell type variation,              
Harmony, BBKNN, and LIGER represent interesting cases. Harmony exhibited a similar           
behavior to the previously described best performing methods: despite failing the cross-species            
integration, it placed human CD8+ T cells and B cells in the vicinity of their mouse counterparts                 
in a subset of batches; however, cell types such as CD8+ T cells, CD4+ T cells, NKT and NK                   
cells were separated into multiple clusters, even when belonging to the same donor (e.g., 10X               
sample). This represents an inconsistent integration output, even within the same tissue (e.g.,             
mouse bone marrow, where cells were separated by study and protocol), which is particularly              
difficult to handle on unseen data. Nevertheless, mouse peripheral blood and mouse bone             
marrow are partially integrated, when belonging to the same study (MCA). BBKNN generated a              
highly connected integration output, which correctly integrated some cell types shared between            
tissues and species (e.g., B cells, CD4+ and CD8+ T cells, monocytes and NK/NKT cells), but                
merged others even inside the same tissue (e.g., basophils and megakaryocyte progenitors in             
mouse bone marrow). LIGER represents a particularly interesting case, being the only method             



 

which consistently integrated across species and other batch effects while conserving broad cell             
type structure (e.g., erythrocytes, B cells, NKT and NK cells, monocytes). However, LIGER also              
removed biological variation between cell types, especially transcriptomically similar cell          
populations (e.g., CD4+ and CD8+ T cells). Indeed, even the conserved broad cell type clusters               
were heterogeneous, merging distinct cell types (e.g., neutrophils and monocytes). Moreover,           
smaller clusters, such as plasmacytoid dendritic cells and basophils, can no longer be detected.  
Finally, trajectory structure is generally poorly conserved across the bottom performing           
methods. BBKNN and Harmony partially succeeded at reconstructing the ordering of cells            
(Supplementary Fig. 26), yet especially for Harmony this is not well represented in the global               
placement of clusters in a UMAP. 

3.2 Simulation 1 
Simulation 1 consists of six batches designed to replicate an experiment consisting of multiple              
samples from a single tissue (with seven cell types), produced using different technologies. This              
simulation presents several challenges for integration. The simulated batches differ in number of             
cells (1000 - 3000), cell type proportions (0 - 35%) and counts per cell (30 - 100% of baseline).                   
Integration methods must attempt to remove the technical differences between batches while            
maintaining differences between cell types and retaining cell types that are only present in some               
batches. 
 
Most of the methods performed well on this task, resulting in embeddings that showed distinct               
clusters by cell type but little evidence of separation between batches (Supplementary Fig. 14).              
This extended down to the worst performing method BBKNN (scaled/full feature). In general             
methods were able to improve batch correction without a significant loss of bio-conservation             
(and in several cases an improvement) (Supplementary Fig. 19). Group 7 represented a rare              
cell type that is only present in two of the six batches at low proportion. While Seurat v3 and                   
Scanorama placed this group close to another cell type they were still able to be separated. The                 
worst performing methods failed in different ways. While the trVAE embedding didn’t clearly             
separate cell types they could still be distinguished with the exception of Group 7 which is mixed                 
with other cell types. In contrast, MNN (unscaled/full feature) undercorrected on this task. The              
embedding showed clear separation between cell types but within those groups the different             
batches could still clearly be distinguished. The scVI (unscaled/full feature) embedding also            
showed undercorrection with multiple clusters for some cell types and separation between            
batches within multiple clusters. Interestingly MNN (unscaled/HVG) was one of the best            
performers, suggesting that the undercorrection may be a result of including additional features             
in the integration. 

3.3 Simulation 2 
Simulation 2 is designed to replicate a more complex experiment with a nested design and               
includes four batches, each of which has three subbatches. This design is analogous to a               
multi-center experiment where each center processes multiple batches (possibly using different           



 

technologies). In this scenario the between center batch effect (batch) can be expected to be               
larger than the batch effect between samples from the same center (subbatch). The extra level               
of variation presents a challenge for integration methods which must remove the batch and              
subbatch effects while retaining differences between cell types. The number of groups in             
Simulation 2 has been reduced to four. 
 
As would be expected given the more complex scenario we observed a greater spread of               
performance on Simulation 2 compared to Simulation 1 (Supplementary Fig. 19). The top             
performing methods (Seurat v3, Harmony) were able to improve both batch correction and             
bio-conservation compared to the unintegrated dataset. The scaled/full feature version of Conos            
received the best bio-conservation score at the cost of a slightly worse batch correction score.               
All three of these methods produced embeddings with clearly separated cell types, however             
some separation of subbatches within these groups is still visible (Supplementary Fig. 15). In              
this scenario the worst performing methods tended towards undercorrection and were unable to             
remove either the batch or subbatch effects. These methods received low scores for both batch               
correction and bio-conservation. The embeddings show partial integration where cell type           
groups are nearby each other but not fully merged resulting in regions of the cell type but with                  
distinct clusters by subbatch. Encouragingly, even the worst-performing methods did not           
overcorrect the data such that different cell types were merged together. The scVI result              
(unscaled/full feature) presents an exception to this rule: it overcorrected, removing much of the              
separation between cell types. 

3.4 Pancreas 
The human pancreas task consists of nine batches from six datasets. We have several              
challenges in the dataset: Firstly, we integrated different experimental protocols with varying            
sequencing depth. Data from the CEL-seq and CEL-seq2 are UMI counts, which were             
converted to transcript numbers through binomial statistics. Thus, the resulting values can be             
considered as UMI-count-like. inDrop is a UMI-based 3’ biased protocol, SMARTer is a             
full-length protocol and was already RPKM-normalised, while SMART-Seq2 and Fluidigm C1           
are full-length and highly sensitive protocols, which do not contain UMIs. Secondly, we have a               
nested batch effect as we consider four different donors from the inDrop dataset as separate               
batches, while all other datasets are treated as single batches. Thirdly, the datasets differ in               
data complexity, ranging from four major endocrine cell types in the SMARTer dataset to 14               
different cell types in the inDrop dataset. In addition, T cells were only found in the inDrop                 
dataset. We distinguished two subtypes of stellate cells (activated and quiescent), which should             
ideally be placed in close proximity to one another, but should not overlap. Likewise, the               
immune cell types (mast cells, macrophages, and T cells) should be placed in close proximity in                
the embedding plots. This collection of datasets was used in several data integration method              
publications to benchmark methods, which helps the reader to compare our results to the              
respective original literature3,7,12–15. 
Overall, the top performing methods integrated all batches correctly, accounting for both nested             
batch effects and different scales of the protocols, while separating cell types (see             
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Supplementary Fig. 9,16). Seurat v3 and Conos were not affected by the nested batch              
structure, as all cells were evenly distributed within each cell type. In contrast, BBKNN and               
Scanorama (embedding, scaled/HVG) showed patches or bands of cells from the same batch,             
indicating an incomplete removal of the batch effect. For example, alpha cells in BBKNN and               
Scanorama (embedding) integration results contained batch substructure separating SMARTER         
cells from the remaining alpha cells in Scanorama (embedding), while the inDrop batches             
separated slightly from the other batches in BBKNN. We observed a similar grouping of the               
batches in beta cells. Thus, Conos and Seurat v3 visually corrected the nested batch effect               
better than BBKNN and Scanorama (embedding).  
Examining the distribution of rare cell types (e.g., epsilon cells, T cells, macrophages, mast cells               
and Schwann cells), we observed several differences across the top performing methods. For             
instance, epsilon cells were partially merged with quiescent stellate cells in Seurat v3 and have               
submerged in the Conos FA plot. In contrast, BBKNN and scanorama (embedding) separated             
the cells from other cell types. The subtypes of stellate cells partially overlapped in Seurat v3                
(also with Schwann cells), while they are placed in close proximity but separately in all other top                 
performing methods. 
Interestingly, Seurat v3, BBKNN, and Conos indicated transition states (e.g., between alpha and             
ductal cells in Seurat v3 and delta and beta cells in BBKNN) that were not present in the                  
unintegrated datasets, nor have these transitions been reported in the literature. Therefore, the             
indicated transitions are spurious and a result of mild overcorrection. Only the Scanorama             
embedding data integration showed clearly distinct cell types in the UMAP plot, which matches              
its high bio-conservation scores (Supplementary Fig. 16 and Supplementary Data 3). In            
general, Seurat v3 and Conos removed the nested batch effects, while conserving most of the               
strong biological signal in the pancreas datasets. BBKNN and Scanorama (embedding)           
accounted less well for the nested batch effect structure but better conserved rare cell types.  
Interestingly, the corrected feature matrix of Scanorama (unscaled/full feature) was among the            
worst-performing methods, being only slightly better than unintegrated data. Specifically, inDrop           
donors, fluidigmC1 and SMARTer, CEL-seq and CEL-seq2 were integrated, respectively, in           
separate clusters for each cell type. In the LIGER UMAP plots we observed a good batch effect                 
removal and a broad conservation of major cell types (e.g., alpha, beta, gamma and delta cells),                
however these cell types mix in the embedding. Furthermore, rare cell types were merged and               
no longer detectable in the LIGER UMAP plot. trVAE removed the batch effect in the inDrop                
donors, but failed to do so in other datasets (fluidigmC1, SMARTer, SMARTSeq2); although the              
CEL-seq and CELseq2 datasets were placed in close proximity for each cell type, they form               
separate clusters nonetheless. MNN distinctly undercorrected the batch effect in the data: while             
cell types are proximal across batches, neither donors from inDrop datasets nor different             
protocols were integrated fully. 

3.5 Lung atlas 
The lung atlas integration task consists of three datasets taken from a single publication16.              
These datasets consist of 10X and Drop-seq data from lung transplants and biopsies. There are               
five particular challenges of the lung atlas integration task. These challenges encompass: (1)             
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Inter-individual variation between human donors, (2) Integration of drop-seq (ASKXXX donor           
IDs) and 10X data (ARMSXXX and XXXB/C donor IDs), (3) separation of neutrophil and basal               
cell subtypes with specific annotation, (4) detection of rare cell types shared by few donors               
(ionocytes), and (5) integration across sampling types and locations. Where challenges (1), (2),             
(3), and (4) are solved by removing all batch effects pertaining to donor and protocol variation                
while retaining detailed biological variation, it is more difficult to determine success for challenge              
(5). Specifically, donors with IDs XXXB/C and ASKXXX (where X denotes a digit) were obtained               
from lung transplants and tissue resections, whereas ARMSXXX donors were sampled via            
biopsies. While transplant samples typically probe the lung parenchyma, biopsies probe the            
airways. These sampling protocols result in cell type composition differences. For example,            
while biopsy samples contain basal 1, basal 2, ciliated and secretory cells, these are either               
absent (basal) or only present as minor cell populations in transplant donor data. Furthermore,              
while there are several cell type annotations that are present across samples (ciliated,             
secretory, endothelium, dendritic cells, and macrophages), these cell types can differ between            
sampling locations. Especially in secretory and endothelium cells it is expected that spatial             
location affects the transcriptome to make these cell types distinct between biopsy and             
transplant samples. Secretory cells from biopsy samples were originally labeled specifically as            
club cells, where transplant secretory cells contained no higher resolution annotation. Moreover,            
endothelial cells from lung parenchyma (transplant donors) will be predominantly respiratory           
endothelial cells that are involved in air exchange, while endothelial cells from airway walls have               
no such function. Thus, integration of secretory or endothelial cells into a single cluster              
represents a removal of biological signal. Yet, removing this signal may be intended if a low                
resolution overview of the data across batches is preferred. This overview may be preferable for  
tasks such as cell annotation transfer. 
The top 4 performers in this integration task were Conos, BBKNN, Scanorama, and scVI              
(Supplementary Fig. 10). These methods generally succeeded in integrating Drop-seq and           
10X datasets (Supplementary Fig. 17). Scanorama and scVI performed particularly well in this             
regard, whereas Conos and BBKNN still showed a separation by 10x and Drop-seq datasets              
within macrophages.  
A central aspect that differentiates the top performing methods was the merging and             
preservation of cell type information from challenges (3), (4), and (5). While all top performing               
methods preserved basal cell subtypes, neutrophil subtypes were merged by Conos and            
BBKNN. Scanorama retained some visual substructure between neutrophil subtypes but did not            
preserve the differences shown in the unintegrated case, whereas scVI separated neutrophil            
subtypes but merged IL1R2 neutrophils with the dendritic cell cluster. Distinguishing neutrophil            
subtypes is particularly challenging for data integration methods as these subtypes are            
predominantly present in exclusive donors. A similar separation of top 4 method performance is              
found considering ionocytes: while Scanorama and scVI retained a separate ionocyte cluster,            
this visual separation was not found in BBKNN embeddings, and only vaguely detectable in the               
Conos output. Considering cell identities that are shared between sampling locations, we found             
that no high performing integration method merged secretory cells from airway samples and             
tissue resections. While this may reflect negatively in our metrics, it also suggests a sensitivity to                
secretory cell subtypes. Overall, Scanorama tended to maintain the sampling location signal            



 

also in ciliated, endothelium, and dendritic cells, while the latter 3 cell types were merged by                
Conos, BBKNN, and scVI. Especially in endothelium cells, this can be regarded as removal of               
biological variation. In contrast, macrophages were best integrated by Scanorama. These cells            
are predominantly found in transplant samples and thus spatial location played a lesser role              
here. Conos and BBKNN also integrated these cells across donors, however the dataset             
substructure is still visible here (10X vs Drop-seq separation). Interestingly, scVI integrated            
macrophages well across platforms, but exhibited substructure in the macrophage population           
that did not exist in the unintegrated data; specifically separating a subset of macrophages              
mostly from a single donor (298C). 
Poor integration performance varied between methods. While LIGER strongly overcorrected the           
data by mixing cell types and batches (removing most of the biological variation in the data), the                 
poorest performing Conos, Seurat v3 and Scanorama gene results still showed distinguishable            
cell types. Conos and Seurat v3 both over-integrated the data: Conos created a strongly              
connected embedding in which most cell types were overlapping and neutrophil subtypes and             
ionocytes are indistinguishable; and Seurat v3 merged basal 1 and basal 2 cells, and even               
alveolar type 1 and type 2 cells (otherwise noticeably distinct populations). Moreover, Seurat v3              
merged secretory and endothelium cells, ignoring differences in spatial location. Interestingly, B            
cells, which were mainly from a single donor (ASK454), exhibited substructure within this batch              
in the unintegrated data, but were merged by Seurat v3. This suggests that Seurat v3 performed                
a stronger dimensionality reduction than other methods and thus also merged signals that may              
be variable within a single batch. Indeed, the original annotations were also generated via a               
Seurat analysis pipeline16. The Scanorama gene run on full features performed poorly as it              
failed to integrate any of the three datasets (the dominant nested batch effect). It also separated                
small clusters of data points from the rest, likely due to fitting of spurious signals in the full gene                   
set data. 

3.6 Mouse brain (RNA) 
The mouse brain RNA integration task consists of 4 datasets produced using different protocols.              
The particular challenge of this task is its size, since we have almost 1 mio. cells to integrate.                  
Due to its size, we omitted the kBET metric for this task, as it did not scale to datasets of this                     
size. Furthermore, mouse brain data is captured across spatial locations, and consists of both              
single-cell and single-nucleus RNA-seq data. While we evaluated biological label conservation           
only on the broad cell type labels with our metrics (Supplementary Fig. 11; note label-free               
conservation was also measured), we also investigated the spatial arrangement of cells,            
especially as specific subtypes of neurons, for instance, are restricted to certain regions in the               
brain (Supplementary Data 3). Furthermore, the dataset from Zeisel et al.17 profiled, as the only               
study, cells from the Pons (PO) and the hypothalamus (HTH), while Saunders et al.18, as the                
only study, profiled the brain regions Entopeduncular Nucleus (ENT), Globus pallidus and            
nucleus basalis (GP), and distinguished frontal and posterior cortex. The other two studies only              
provided the label ‘cortex’ (CTX). It must be noted that the spatial information in the Rosenberg                
et al.1 dataset was inferred based on marker gene expression, which we opted to label as                
unknown instead (66,648 cells). Nonetheless, an ideal data integration method would remove            

https://paperpile.com/c/ugpLT1/FzMp
https://paperpile.com/c/ugpLT1/ibTK
https://paperpile.com/c/ugpLT1/8u34
https://paperpile.com/c/ugpLT1/kIVM


 

the batch effect and integrate the cell types resolved by their location in the brain. Here, we                 
combined three pieces of information (dataset, cell type, and location) to visually assess the              
quality of integration (Supplementary Fig. 18). We focused on the following aspects: first, we              
examined how all datasets integrate and if we observe an integration of single-nucleus RNA-seq              
(Rosenberg dataset) and scRNA-seq datasets; next, we examined how well cell types            
integrated and whether rare and abundant cell types could still be distinguished; likewise, we              
examined unexpected spurious connections, for example, transitions from neurons to          
endothelial cells; finally, we considered the spatial substructure within a cell type to check if cell                
types match spatially (e.g., cerebellar astrocytes, neurons from the hippocampus, and neurons            
from the cortex). 
The best performing methods BBKNN and Combat integrated the Saunders and Zeisel datasets             
well. However, BBKNN failed to integrate the Rosenberg single-nucleus RNA-seq dataset, while            
Combat integrated Rosenberg only partially. We observed differences in the integration for            
different cell types. ComBat integrated endothelial cells and brain pericytes from all datasets,             
while other cell types of the Tabula Muris19 and the Rosenberg dataset (e.g., oligodendrocytes,              
oligodendrocyte precursor cells and astrocytes) remained separated. Thus, we focused on the            
integration of Saunders and Zeisel datasets in the following. Both BBKNN and ComBat             
integrated rare cell types (e.g., ependymal cells, microglial cells and macrophages) well and             
oligodendrocytes and oligodendrocyte precursors partially well (placed in close proximity and           
overlap slightly). We observed different clusters of oligodendrocytes originating from different           
locations in the brain. In BBKNN, we observed two main clusters, one consisting of cells from                
the thalamus, hippocampus and the GP, the other consisting of cells from pons (PO), spinal               
cord (SC), and midbrain (MB). The latter regions have only been profiled in Rosenberg and               
Zeisel et al., which in turn did not integrate well in this setting. However, the distinction of two                  
major oligodendrocyte clusters may indicate regional differences of the cells. Such a            
substructure was not shown in the ComBat corrected data: while the complex neuronal structure              
was preserved in general, there was little overlap with respect to regions. For instance, neither               
cortical nor hippocampal neurons from Zeisel and Saunders overlapped in the UMAP. For             
astrocytes, the overlap for Zeisel and Saunders was better, however certain subtypes (e.g.,             
cerebellar astrocytes) were incorrectly separated. Brain pericytes and endothelial cells showed           
several subclusters based on their location. Here, we observed that endothelial cells and brain              
pericytes clustered together across locations and datasets. Based on the function and location             
close to blood vessels, these two cell types have highly similar transcriptional profiles, and the               
influence of the spatial location within the brain is less pronounced. Overall, although BBKNN              
did not integrate snRNA-seq (Rosenberg) and scRNAseq data well, two datasets were            
integrated while the spatial information of the cell types was preserved. Combat integrated the              
snRNA-seq partially, but the spatial information is less preserved compared to BBKNN. 
While scVI and Scanorama (using highly variable genes, scaled data, and embedding)            
successfully integrated three out of four datasets, some the cell types partially overlapped. Both              
scVI and Scanorama placed rare cell types as separate clusters, in which all datasets are well                
mixed (except for microglial cells from Tabula Muris, which cluster separately from the other              
datasets). In scVI, all cell types from Tabula Muris were placed in close proximity to the                
corresponding cell types from the other datasets. Both scVI and Scanorama showed transitions             
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between otherwise unrelated cell types: microglia and neurons or endothelial cells and neurons             
were connected. Cell types where transitions are expected (e.g., oligodendrocytes and           
oligodendrocyte precursor cells) were conversely only connected as expected by scVI.           
Concerning spatial information, all regions mixed equally in both methods, and neuronal brain             
regions such as cortex (CTX) and striatum (STR) were correctly integrated. Overall, scVI             
preserved more of the rare cell type information than Scanorama. We conclude that the batch               
effect across datasets, especially from the single-nucleus RNA-seq protocol, is stronger than            
the spatial signal.  
Among the worst performing integration runs, LIGER and Conos integrated all datasets, but             
neither rare cell types nor rare regions (e.g., olfactory bulb and olfactory ensheathing cells,              
macrophages and microglial cells) could be discerned. Furthermore, all populations overlapped           
in the center of the plot. Here, the plots show transitions between otherwise unrelated cell types.                
For instance, LIGER connected astrocytes and neurons or endothelial cells and neurons.            
Concerning spatial information, all regions except the cerebellum (CB) were mixed. Thus,            
LIGER corrected the bias of snRNA-seq and scRNA-seq protocols, but largely removed cell             
type and spatial information. While the poorest version of the Conos integration results             
integrated all datasets and coarsely accounted for the cell type separation, all cells were              
connected into a single, large component. Indeed, several subclusters connected unrelated cell            
populations (e.g., neurons and macrophages, astrocytes and endothelial cells, and microglial           
cells, neurons and astrocytes). Furthermore, oligodendrocyte precursor cells were split into two            
separate clusters (the cells from Rosenberg did not integrate with the datasets from Zeisel and               
Saunders for this population). Thus, Conos tended to mismatch cell populations. Scanorama            
(full feature/corrected feature matrix) failed to integrate the Rosenberg dataset, while integrating            
Tabula Muris partially and the two datasets Saunders and Zeisel well. In contrast to Scanorama,               
Harmony integrated the Rosenberg dataset partially (e.g., astrocytes, oligodendrocytes,         
ependymal cells, and endothelial cells), but failed to consistently integrate Zeisel and Saunders             
datasets. Furthermore, Scanorama (full feature) separated the rare cell types clearly while            
Harmony created partial overlaps. Information on brain regions was preserved in Scanorama            
and Harmony, in which cells from the same region per dataset clustered together. Upon closer               
inspection, Scanorama preserved the spatial substructure slightly better than Harmony. For           
example, cortical neurons did not integrate in a single cluster in Harmony, while they partially               
overlapped in the Scanorama plot. Overall, the poorest performing methods integrated           
snRNA-seq data fully (LIGER, Conos), partially (Harmony) or not at all (Scanorama gene),             
similar to the top performers. However, the cell type variation was strongly sacrificed with              
increasing batch correction.  
Overall, none of the methods created an ideal data integration and the distance from top 4 to                 
bottom 4 methods was less obvious than in other tasks. In particular, when spatial information               
was preserved, snRNA-seq was not integrated well with scRNA-seq. Vice versa, when all             
datasets were successfully integrated, the spatial distribution of the cells was lost. The batch              
effect (i.e., protocol differences across datasets) was dominant in neurons, while less apparent             
in the rare cell types. A possible explanation for this effect may be the experimental handling of                 
the cells. For example, endothelial cells and brain pericytes are small and approximately round              
and therefore easy to handle once they are isolated. In contrast, neurons are relatively large,               



 

fragile and have complex shapes (long, branched dendrites and axons). In the single-nucleus             
protocol, cell size was not a limiting factor as only nuclei were extracted from the cells.                
Saunders et al.18 used Drop-Seq, while both Zeisel and Tabula Muris datasets were created              
with the 10X Genomics protocol. Here, size limitations may play a role in the final data quality.                 
Therefore, partial integration of snRNA-seq and scRNA-seq happened on non-neuronal cell           
types. Interestingly, scVI and scanorama (hvg, embedding) were the only methods where we             
observed a successful integration of neurons of the cortex and striatum. Furthermore, BBKNN             
was ranked highly in particular for batch effect removal, while UMAPs indicated poorer             
performance than the metrics suggested (in particular for the Rosenberg snRNA-seq dataset). A             
contributing factor may be the lack of the kBET metric on this task, which only left 2 batch                  
removal metrics that could be calculated for graph-based outputs. Thus, BBKNN batch removal             
results in particular are likely to be less robust for the mouse brain RNA task than for other                  
tasks. We conclude that the mouse brain integration task was a particularly difficult challenge as               
the batch effect was inhomogeneous within each dataset and, particularly for neurons, overall             
stronger than the differences due to location of the cells. Thus, focussing on a particular cell                
type (such as neurons) potentially helps to obtain a cleaner integration, which matches subtypes              
and spatial locations more accurately.  

3.7 Small and large ATAC tasks 
The scATAC-seq data consist of 3 datasets. Each dataset was produced using a different              
protocol: single nucleus ATAC-seq from Fang et al.20, single cell combinatorial indexing from             
Cusanovich et al.21 and 10X Chromium for the 10X dataset. We generated two different              
integration tasks from these three datasets by largely changing the relative proportions of cells              
between datasets to generate a large ATAC task with strongly imbalanced cell populations             
between datasets (5%:20%:75% for 10x, Cusanovich et al. and Fang et al.) and a smaller ATAC                
task with more balanced cell contributions (13%:57%:30% for 10x, Cusanovich et al. and Fang              
et al.).  
Integration of scATAC-seq datasets posed a clear challenge to the methods developed for the              
integration of scRNA-seq dataset. Firstly, scATAC-seq data is binary compared to the gene             
expression data which contains counts of expressed genes. Secondly, scATAC-seq data can be             
collected for every position in the genome in comparison to scRNA-seq data which is only               
collected for genes. This poses a challenge on the selection of the features to be used as a                  
basis for data integration. Peaks of open chromatin typically have different (mainly)            
non-overlapping coordinates per batch and therefore integration based on peaks would prove            
difficult. For that reason, we use non-overlapping sliding windows (5000bp) as the canonical,             
unbiased unit for processing open chromatin data and as a basis for data integration. However,               
the number of windows in the genome is too large to use as a basis for the integration, as the                    
majority of the integration methods do not scale well with the number of considered features.               
Therefore we selected the top variable windows per batch. This posed a third challenge for               
integrating scATAC-seq datasets: the more batches/cells to integrate, the less shared highly            
variable windows there are between them, hindering the integration task. 
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The number of 5000bp non-overlapping sliding windows in the mouse genome is >500,000. We              
reduced this number by selecting, per batch, the 150,000 most highly variable windows for both               
the large and the small integration tasks. When merging batches (after discarding cells which              
are not covered by at least 500 windows) the number of cells was reduced to 67,612 and                 
25,960 for the large and small tasks, respectively, and the number of features per task was                
reduced to 57,447 and 57,070 for the large and small tasks, respectively. 
We observed that all integration methods underperform in the batch correction of the three              
scATAC-seq batches for both the small and large tasks. From visual inspection of the low               
dimensional embeddings, we observed a preference for integrating the 10X and the Fang et al.               
datasets over the Cusanovich et al. dataset (Supplementary Fig. 22, 23); only Seurat v3              
preferably integrated the Cusanovich et al. dataset with the 10x dataset (Supplementary Fig.             
24) in the large integration task. The 10X and the Fang et al. datasets shared a large number of                   
highly informative windows among them (approximately 85% of windows), while the Cusanovich            
et al. dataset shared a much lower number of highly informative windows with the other two                
datasets (approximately 45%). Also, a simple correlation between the percentage of the sum of              
open regions per window for the shared regions showed that the original data from 10X is highly                 
correlated to the original data from Fang et al. (R = 0.87), while the Cusanovich et al. raw data                   
matrix is lowly correlated with the raw 10X dataset (R = 0.18) and the Fang et al. dataset (R =                    
0.13). This likely explains why most methods showed better integration results between 10x and              
Fang et al. datasets. Seurat v3 instead integrated Cusanovich et al. with 10X best in the large                 
integration task, and Fang et al. with 10X in the small integration task. Thus, Seurat v3 was the                  
only method for which the relative proportion of cells per batch had an effect, since in the large                  
integration task we have a ratio of 5% (10X) : 20% (Cusanovich et al.) : 75% (Fang et al.) and in                     
the small integration task the ratios are 13% (10x) : 57% (Cusanovich et al.) : 30% (Fang et al.).                   
This was likely the case because Seurat v3 internally uses different data integration orders              
when more than two datasets are considered, depending on the size of the datasets. 
From the top performing methods (Harmony, ComBat, Seurat v3 and scVI; Fig. 4 and              
Supplementary Fig. 22-24), Seurat v3 and ComBat showed the least batch correction, with             
clearly separated batches on the UMAPs. These methods ranked low for batch correction (6th /               
7th and 4th / 5th for the small and big tasks, respectively), but instead had some of the highest                   
biological conservation scores. Both methods placed the same cell types from different datasets             
in close proximity, but clearly preserved separated cell clusters. BBKNN, Harmony and scVI             
instead were the top methods at batch effect removal. BBKNN outperformed in batch correction              
but at the expense of a very low biological conservation score, mainly due to the graph cLISI                 
score. This was most likely due to the internal optimization which enforced connections across              
batches for each cell. Because of that, isolated cell clusters were lost after the BBKNN               
integration, as can be observed in the respective UMAP (Figure 4 and Supplementary Fig.              
22-24). Harmony ranked second for batch correction, placing the same cell types from all three               
batches in close proximity on the UMAP; it thus achieved a better biological conservation score               
due to a higher cell type ASW. Finally, scVI showed a good compromise between batch               
correction and biological conservation (Fig. 4 and Supplementary Fig. 22).  
Across the large and small ATAC tasks, five methods consistently performed worse than the              
unintegrated datasets in the overall score: BBKNN, trVAE, LIGER, Scanorama, and Conos. The             



 

low overall performance of BBKNN, discussed above, was due to a very low cLISI score. For                
the large integration task, both Scanorama and Conos underperformed the unintegrated           
datasets in both batch correction and biological conservation. In the small task, LIGER and              
trVAE achieved some moderate batch integration with poor biological conservation. LIGER           
interestingly positioned microglia from the 10x and the Fang et al. datasets with Cerebellar              
granule cells from the Cusanovich et al. dataset, a cell type that was only present in the                 
Cusanovich et al. dataset and remained mostly correctly unmerged in other integration            
methods.  
Finally, trVAE and LIGER could not scale up to integrate the large ATAC-seq dataset, and MNN                
could not integrate the small dataset either.  
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