
Supplemental file 1 for kASA

Silvio Weging

May 20, 2020

Contents

1 Evaluation of synthetic data 2

2 Pseudocode of the identification algorithm 6

3 Versions and system specifications 11

4 Information loss of the amino-acid-like encoding 12

1

1 Evaluation of synthetic data

We evaluated the identification quality for our synthetic tests from two per-
spectives: Read and Taxon.

The former is done by checking whether the original taxon of a read was
identified correctly by ID. If the ID matched the one defined for that read,
it was marked as a correctly identified and assigned read otherwise only as
assigned (decreasing both sensitivity and precision). Only the best hits were
considered. For kASA the json array for every read containing the ”Top hits”
was used. This array is calculated by normalisation of the k -mer scores to
[0, 1] and including everything with a normalised value ≥ 0.8. This value
seemed to correspond best to what would intuitively be considered ”rele-
vant” when reporting several results for one read. If two or more taxonomic
IDs matched the read or the LCA-based algorithms gave a higher taxonomic
rank as result (while containing the correct ID) the read was additionally con-
sidered ambiguous but correctly assigned. If the taxonomic path given by
backtracking the LCA-path did not contain the correct ID, it was considered
incorrectly assigned. We added genomic reads from species not inside the
database/indices to test every tools ability to ”ignore” reads. This is mea-
sured with the specificity via checking, if a nonassignable read was correctly
not assigned. The formulas are as follows:

Sensitivity :=
|Correctly assigned reads|

|Reads|

Precision :=
|Correctly assigned reads|
|Assigned Reads|

F1 score := 2 · Sensitivity · Precision

Sensitivity + Precision

Specificity :=
|Correctly unassigned reads|
|Nonassignable Reads|

Because of this setup, tools reporting everything from their index with the
same score would get an artificially high F1 score. To counter this, we added
the perspective of each taxon which can be done via a binary classification.
The ”original read taxon” is the one we know, the ”reported taxon” is the
one the tool returns for that read.

• True positives (TP) - The original read taxon did expect the reported
taxon and got it.

2

• True negatives (TN) - The original read taxon did not expect the re-
ported taxon and it was (correctly) not reported.

• False positives (FP) - The original read taxon did not expect the re-
ported taxon but got it anyway.

• False negatives (FN) - The original read taxon did expect the reported
taxon but it was not reported.

With this, we can calculate the four values for every expected taxon and
derive the Matthews correlation coefficient:

MCC :=
(TP ∗ TN − FP ∗ FN)√

(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)

We then averaged these MCCs for every file and got our measure how
often a tool reports only what’s necessary.

The evaluation was performed by a script for each output, because no
standard for tool-outputs exists. Mutations include insertions, deletions and
single point mutations all with the same probability. Indices where these
mutations occur per read are drawn randomly via python. The seed is fixed
for the purpose of recreating data. Read length was fixed to 100 and per
genome, |bases|

100
reads were generated. Positions in the genome from which

reads were sampled were also drawn randomly.

Please see our GitHub site for further details on how to recreate our re-
sults: https://github.com/SilvioWeging/kASA_snakemake.

3

https://github.com/SilvioWeging/kASA_snakemake

The following figures show the results of our benchmark for all tested
tools and k ’s from 7 to 12 for kASA.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty
_a

ll

Kraken2
Clark
KrakenUniq
Centrifuge
kASA_12
kASA_11
kASA_10
kASA_9
kASA_8
kASA_7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

_a
ll

Kraken2
Clark
KrakenUniq
Centrifuge
kASA_12
kASA_11
kASA_10
kASA_9
kASA_8
kASA_7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

_a
ll

Kraken2
Clark
KrakenUniq
Centrifuge
kASA_12
kASA_11
kASA_10
kASA_9
kASA_8
kASA_7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0

M
CC

_a
ll

Kraken2
Clark
KrakenUniq
Centrifuge
kASA_12
kASA_11
kASA_10
kASA_9
kASA_8
kASA_7

4

Since for a k of 7, kASA performs best in the above figures, we tested
how the specificity is affected by our approach. The next figures show, that
it is inversely correlated with mutation percentage. This is due to short
similarities with negatives in our benchmark. However, if a threshold is
applied, specificity returns to acceptable values. For the test data with zero
mutations, a threshold of 0.4 on the relative score was able to yield almost
perfect specificity without lowering sensitivity or precision. However for data
sets with a higher number of mutations, the ROC is still acceptable but
sensitivity suffers visibly.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

ifi
cit

y

Kraken2 Clark KrakenUniq Centrifuge kASA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Mutation Percentage

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

ifi
cit

y_
al

l

Kraken2
KrakenUniq
Clark
Centrifuge
kASA_12
kASA_11
kASA_10
kASA_9
kASA_8
kASA_7

0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty

0.001
0.01

0.03
0.05

0.07
0.09

0.2
0.3
0.4

0.010.030.050.070.09
0.2

0.3
0.4

5
10

5

2 Pseudocode of the identification algorithm

Customised set intersection algorithm used for a comparison of NGS data
with the index. It computes both the profile and the identification file per
read. After the pseudocode, an example is shown in 1 which displays the
workings of the algorithm.

6

Algorithm 1: Identify

input : The index and the sorted input with converted k -mers and
ranges

output: Scores and counts

// Part One

list of matched read IDs per k: rIDs k ← [];
list of matched tax IDs per k: tIDs k ← [];
list of last known k-mer per k: known k ← [];

for Every entry with range in input do
reset all lists;
k-mers [lower,upper] = gather all k-mers with the same range;
for All k-mers in k-mers[lower,upper] do

x← current k-mer;
if range invalid then

continue;
currKMerShifted ← x with lowest value for k;
start ← lower ;
end ← upper ;
do once

if currKMerShifted is in range then
use binary search to find the start ;

else
continue;

if x has been seen before then
for all k ’s do

add read ID to rIDs k if xk matches entry in knownk;
continue;

else
seen before ← x;

// Part Two

// see below

// Part Three

// see below
return Scores and counts

7

// Part One

// see above

for Every entry with range in input do
for All k-mers in k-mers[lower,upper] do

// Part Two

for y in index from start to end do
for all k’s from lowest to highest do

xk ← x shortened for this k ;
yk ← y shortened for this k ;
if xk < yk then

for all remaining k’s from k to highest do
add read ID to rIDs k if xk matches entry in
knownk but avoid duplicates;

break out of the y loop and get next x ;

else
if xk == yk then

if xk matches entry in knownk then
add tax ID from y to tIDs k and read ID to
rIDs k but avoid duplicates;

else
// all possible matches for old xk

found -> save

for all entries in tIDs k do
count unique or non-unique match;
for all entries in rIDs k do

save match of read ID and tax ID ;
reset rIDs k and add the current read ID ;
reset tIDs k and add the current tax ID ;
knownk ← xk;

else
// xk > yk
iterate y further through index and add tax IDs
to tIDs k if yk matches entry in knownk;

stop if no full match occurs;
break out of k loop;

if highest k was reached then
get next y ;

// Part Three

// see below

8

for Every entry with range in input do
for All k-mers in k-mers[lower,upper] do

// Part One and two

// <see above>

// Part Three

// look for any remaining y in case there are no

more x left

for any y left in range do
for k from lowest to highest do

if yk matches entry in knownk then
add tax ID to tIDs k ;

else
break;

if at least one k matched then
get next y ;

else
break;

// all possible matches for old xk found -> save

for all entries in tIDs k do
if size of tIDs k == 1 then

save unique match;
else

save non-unique match;
for all entries in rIDs k do

save match of read ID and tax ID ;
return Scores and counts

9

ABCBBB
ADDDDD
ADDDDD
CCCCCC
CCCDDD
CDDDDD
DEFJKL

ABCAAA
ACCCCC
ADDDDD
ADDDDD
BBBBBB
CDDDDD
DEFGHI
DEMNOP
DQRSTU

Input Index
1 2

3

4

5

6

7

8

9

10

11

12

1314

15

16

Figure 1: Schematic of the identification algorithm with a more complex
example. The arrow in the middle together with the numbers show the order
of execution. Rectangles around the letters mean matching letters. Color
is used in the first k -mers to show how known k -mers are matched (step 3
matches with the ”A” from step 2).

10

3 Versions and system specifications

Table 1: Versions of used tools.
Tool Version or date
Clark 1.2.5

Centrifuge 1.0.4 2020-10-02
Kraken2 2.0.8 2019-25-04
Kraken 1.1.1

KrakenUniq 0.5.8

HPCC - iDiv EVE

• DELL R640

• CPU: 2x 20-Core Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz

• RAM: 1480GB DDR4 up to 2993MT/s

• Connected via InfiniBand(TM)

Desktop

• CPU: Intel(R) Core(TM) i7 7700K

• RAM: 16GB DDR4 - 2800 MHz

• SSD: Samsung 970 EVO(M.2)

Laptop

• CPU: Intel(R) Core(TM) i7-6500U

• RAM: 8GB DDR3 - 1600 MHz

• SSD: Samsung T5(USB 3.1G2)

11

4 Information loss of the amino-acid-like en-

coding

LetA be an alphabet of size n with 1 ≤ n ≤ 28, n ∈ N and B := {A,C,G, T}.
Let furthermore S be a word consisting of at least three letters from B, so
S ∈ B∗ and |S| ≥ 3.

Let code : B ×B ×B → A be a function with the following property:

code((b0, b1, b2)) = code((c0, c1, c2))⇒ b1 = c1,

(b0, b1, b2), (c0, c1, c2) ∈ B × B × B. (?)

code is usually neither surjective nor injective.
translate : B∗ → A∗×A∗×A∗ is now a function for translating the DNA

sequence S into three amino acid-like sequences with iterative application of
code. If code is applied with a shifted start, we get the conversion in three
frames described in the paper. So the resulting words w0, w1, w2 ∈ A∗ are
as follows:

wj :=

b |S|−j
3
c⊕

i=j

code(S [j + 3 · i, j + 3 · i + 3]), j = 0, 1, 2

where
⊕

is the string concatenation.

Observation 4.0.1. w0, w1, w2 are created from overlapping triplets, which
means that for a DNA sequence b0, b1, b2, b3, b4, ... the triplet of the first
frame b0, b1, b2 shares two letters b1, b2 with the second frame and one letter
b2 with the third frame. Furthermore, the second frame b1, b2, b3 shares b2, b3
with the third frame which starts with b2, b3, b4. b3 and b4 are now again the
bases forming the first and second letter in the first frame.

Lemma 4.1. Apart from the first and last letter of S, no information loss
occurs when using translate.

Proof. To show that no information loss occurs, except for the first and last
letter of S, we construct an appropriate inverse function translate−1. We
assume without loss of generality, that {w0, w1, w2} ∈ im(translate).

code−1 is created by determining each triplet b ∈ B × B × B associated
with the respective letter a ∈ A and storing it in a dictionary with a as key.
This means, that e.g. for w0 = a0, ..., al with 0 ≤ l < b |S|

3
c, code−1(a0)

is a set of ordered triples with the same middle component according to
prerequisite (?).

12

Following observation 4.0.1, the sets created by applying code−1 to the
letters of w0, w1 and w2 must contain at least one triplet, where the bases
match in the described positions (see Figure 2).

CGTATC
R V Y ICGT
CGC
CGA
CGG
AGA
AGG

TAT
TAC

GTT
GTC
GTA
GTG

ATT
ATC
ATA

?GTAT?
Figure 2: Translation and inversion.

Repeating this chained matching and checking reveals all interior bases
of S. Since the first base in the first frame and the last base of the last frame
are not necessarily unique and cannot be checked by the other frames, they
are considered ambiguous. Therefore the sequence S can be reconstructed
with just the amino-acid-like encoded frames except for the first and last
base.

Remark 4.1.1. The standard codon table cannot be constructed with code,
because prerequisite (?) is not satisfied (”S” has two middle bases). To fix
that, one must first split the amino acid ”S” into two letters (”AGT” and
”AGC”) and second give the stop codon ”TGA” an additional letter as well.
The default codon table used in kASA implements the additional stop codon
but does not introduce a new letter to split ”S” to be compatible with already
converted amino acid sequences. Benchmark results (see Figure 2 in the
paper) for both the standard codon table and one with a split ”S” did not
differ noticeably so an approximation of code (by the standard codon table)
is sufficient.

Remark 4.1.2. One can reconstruct the first and last base of S if we addi-
tionally restrict the alphabet A further: The first base of every triplet must be

13

unique to the assigned letter a ∈ A. Secondly, six instead of three frames are
used (so the reverse complement is translated as well). A possible function
code using a 16-letter alphabet maps each combination of the first two bases
in a triplet to a unique letter, so

code16((b0, b1, b2)) = code16((c0, c1, c2))⇒ b0 = c0 and b1 = c1,

(b0, b1, b2), (c0, c1, c2) ∈ B × B × B.

Remark 4.1.3. During the proof we made the assumption that the ordering
of the frames are as translate created them. However, should this ordering
be disturbed we can try to use the constructed translate−1 anyway because
the reconstruction will fail if the ordering is not correct. This is because
no other combination would generate S in full length in the reconstruction
process.

An implementation of the constructive proof can be found in https://

github.com/SilvioWeging/kASA/tree/master/scripts/reconstructDNA.

py.

14

https://github.com/SilvioWeging/kASA/tree/master/scripts/reconstructDNA.py
https://github.com/SilvioWeging/kASA/tree/master/scripts/reconstructDNA.py
https://github.com/SilvioWeging/kASA/tree/master/scripts/reconstructDNA.py

	Evaluation of synthetic data
	Pseudocode of the identification algorithm
	Versions and system specifications
	Information loss of the amino-acid-like encoding

