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Abstract 

Despite the importance of programming to modern society, the cognitive and neural bases of 

code comprehension are largely unknown. Programming languages might ‘recycle’ 

neurocognitive mechanisms originally used for natural languages. Alternatively, comprehension 

of code could depend on fronto-parietal networks shared with other culturally derived symbol 

systems, such as formal logic and math. Expert programmers (average 11 years of programming 

experience) performed code comprehension and memory control tasks while undergoing fMRI. 

The same participants also performed language, math, formal logic, and executive control 

localizer tasks. A left-lateralized fronto-parietal network was recruited for code comprehension. 

Patterns of activity within this network distinguish between “for” loops and “if” conditional code 

functions. Code comprehension overlapped extensively with neural basis of formal logic and to a 

lesser degree math. Overlap with simpler executive processes and language was low, but 

laterality of language and code covaried across individuals. Cultural symbol systems, including 

code, depend on a distinctive fronto-parietal cortical network. 
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Introduction 

In 1800, only twelve percent of the world’s population knew how to read, but today the world 

literacy rate is over eighty-five percent (https://ourworldindata.org/literacy). The ability to 

comprehend programming languages may follow a similar trajectory. Although only an 

estimated .5% of the world’s population is currently proficient at computer programming, the 

number of jobs that require programming continues to grow. Coding is essential in scientific fields 

and in areas as diverse as artistic design, finance, and healthcare. As many industries incorporate 

artificial intelligence or other information technologies, more people seek to acquire programming 

literacy. Yet the cognitive and neural mechanisms supporting coding remain largely unknown. 

Apart from its intrinsic and societal interest, programming is a case study of “neural recycling” 

(Dehaene & Cohen, 2007). Computer programming is a very recent cultural invention and the 

human brain is not evolutionarily adapted to support it. Studying the neural basis of code offers 

an opportunity to investigate how the human brain enables cultural inventions. 

Hypotheses about how the human brain accommodates programming range widely. One recently 

popular view is that code comprehension recycles language processing mechanisms (Fedorenko, 

Ivanova, Dhamala, & Bers, 2019; Fitch, Hauser, & Chomsky, 2005; Pandža, 2016; Portnoff, 2018; 

Prat, Madhyastha, Mottarella, & Kuo, 2020). Computer languages borrow letters and words from 

natural language. In some programming languages, like Python, the meanings of the borrowed 

symbols (e.g., if, return, print) relate to the meanings of the same symbols in English. As 

in natural languages, the symbols of code combine generatively according to a set of rules (i.e., 

a formal grammar). Moreover, the grammars of language and that of code share common features, 

including recursive structure (Fitch et al., 2005). A recent study reported that individual differences 

in learning a second language predict aptitude in learning to program among novices (Prat et al., 

2020). One possibility then is that coding recycles neurocognitive mechanisms involved in 

language processing (Peitek et al., 2018; Siegmund et al., 2014). 

On the other hand, other culturally derived symbol systems, such as formal logic and math do not 

appear to depend on the same neural network as natural language. Like code, formal logic and 

mathematics borrow symbols from natural language and are also hierarchical and recursive (e.g. 

(7*(7*(3+4))). Unlike language, however, culturally derived symbol systems are explicitly taught 

later in life. Computer coding, mathematics and logic, also involve manipulation of arbitrary 

variables without inherent meaning (e.g. X, Y, input, ii) according to a set of learned rules 

(McCoy & Burton, 1988). Each symbol system, including code, has its own conventionalized 

variables and its own set of rules. In the case of code, the rules also differ somewhat across 

programming languages. The deductive rules of programming also share specific features with 

formal logic. For example, connectives (e.g., “if…then”, “and”, “or”, “not”) occur in both domains 

and have related meanings. Consider a function containing an if conditional written in Python, 

def fun(input): 

 result = "result: " 

 if input[0]=="a": 

result += input[0].upper() 
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return result 

 

The value of the “result” variable depends on whether the “input” meets the specific conditions 

of the if statement. Similarly, in the logical statement “If both X and Z then not Y” the value of 

the result (Y) depends on the truth value of the condition “both X and Z”. One prediction, then, is 

that coding depends on similar neural resources to other culturally-derived symbol systems such 

as formal logic and math. 

Rather than recruiting perisylvian fronto-temporal areas, mathematics and logic recruit a fronto-

parietal network, including the dorsolateral prefrontal cortex and the intraparietal sulcus (IPS) as 

well as putative symbol representations (i.e. numberform area) in inferior temporal cortex (Amalric 

& Dehaene, 2016; Coetzee & Monti, 2018; Goel et al., 2007; Monti, Parsons, & Osherson, 2009). 

This fronto-parietal network overlaps partially with the so called central executive/working memory 

system, which is implicated in a variety of cognitive tasks that involve maintaining and 

manipulating information in working memory, processes that are part and parcel of understanding 

and writing code (Brooks, 1977; Duncan, 2010; Letovsky, 1987; Miller & Cohen, 2001; Soloway 

& Ehrlich, 1984; Weinberg, 1971; Zanto & Gazzaley, 2013)(for a review of the cognitive models 

of code comprehension, see (Von Mayrhauser & Vans, 1995)). The central executive system is 

usually studied using simple rule-based tasks, such as the multisource interference task (MSIT), 

Stroop and executive working memory (Banich et al., 2000; Bunge, Klingberg, Jacobsen, & 

Gabrieli, 2000; Bush & Shin, 2006; January, Trueswell, & Thompson-Schill, 2009; Milham et al., 

2001; Woolgar, Thompson, Bor, & Duncan, 2011; Zanto & Gazzaley, 2013; Zhang, Kriegeskorte, 

Carlin, & Rowe, 2013). Logic and math activate a similar network but also have unique neural 

signatures. Within the prefrontal cortex, logic recruits more anterior regions associated with more 

advanced forms of reasoning and symbol manipulation (Coetzee & Monti, 2018; Ramnani & Owen, 

2004). 

The goal of the current study was to ask whether computer code comprehension has a consistent 

neural signature across people and if so whether this signature is similar to other culturally derived 

symbol systems (i.e., logic and math) or similar to natural language. Only a handful of studies 

have looked at the neural basis of coding (Duraes, Madeira, Castelhano, Duarte, & Branco, 2016; 

Floyd, Santander, & Weimer, 2017; Ikutani & Uwano, 2014; Peitek et al., 2018; Siegmund et al., 

2014). Thus far results have been largely inconsistent, possibly due to the complexity of the tasks 

and absence of control conditions. Moreover, no prior study has directly compared the neural 

basis of code to other cognitive domains. 

A group of expert programmers (average 11 years of programming experience) performed a code 

comprehension task while undergoing functional magnetic resonance imaging (fMRI). We chose 

a comprehension task rather than code writing or debugging partly because it could in principle 

be analogous to understanding language vignettes and because it is arguably simpler. On each 

real code trial, participants saw a short function definition, followed by an input and a possible 

output, and judged whether the output was valid. In fake code control trials, participants performed 

a memory task with arbitrary text. A fake function was generated by scrambling a real function 

per line at the level of word/symbol. Each fake function preserved the perceptual and lexical 

elements of a real function, but was devoid of syntactic structure. The real code condition 
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contained two subtypes or ‘control structures’, for loops and if conditionals. We used multi-

voxel-pattern analysis to decode for from if functions in order to test whether the code-

responsive cortical system encodes code-relevant information. Finally, we examined the overlap 

of code comprehension with language (sentence comprehension), formal logic and mathematical 

tasks. We also tested overlap of code with the MSIT to determine whether the overlap with 

culturally derived symbol systems (i.e. logic and math) is more extensive than overlap with simpler 

experimentally defined rule-based tasks. 

Methods 

Participants 

Seventeen individuals participated in the study, one did not complete the tasks due to 

claustrophobia, and another was excluded from analyses due to excessive movement (> 2mm). 

We report data from the remaining fifteen individuals (3 women, age range 20-38, mean age = 

27.4, SD = 5.0). All participants had normal or corrected to normal vision, and no known cognitive 

or neurological disabilities. Participants gave informed consent according to procedures approved 

by the Johns Hopkins University Institutional Review Board.  

All participants had at least 5 years of programming experience (range: 5-22, mean=10.7, 

SD=5.2), and at least 3 years of experience working with the programming language Python 

(range: 3-9, mean=5.7, SD=1.8). 

Behavioral pre-test 

In addition to self-reported programming experience, Python expertise was evaluated with two 

out-of-the-scanner Python exercises (one easier and one more difficult) the week prior to the fMRI 

experiment. These exercises also served to familiarize participants with the particular Python 

expressions that would be used during the fMRI experiment. 

The easier exercise consisted of three phases: 1. test, 2. recap and 3. re-test. During the first 

phase of the exercise (test), we evaluated participants’ knowledge of every built-in Python function 

that would occur during the fMRI experiment. Participants were asked to type the output of a 

single line of Python print() statement (e.g., for “print(”3.14”.split(“1”))” one should 

type “[‘3.’, ‘4’]”). On average participants answered M=82.9% (SD=6.9%) of the questions 

correctly (range: 70% - 96%). Since even expert programmers may not have used a particular 

function in the recent past, the “recap” phase of the exercise explicitly reviewed the definitions 

and purposes of all of the functions and expressions that would be used during the fMRI 

experiment. During the final re-test phase, participants were once again asked to type the output 

of a single line of Python for each function (M=92.0% (SD=7.5%), range: 72.4% - 100%). 

The more difficult exercise evaluated the participants’ knowledge about when and how to use 

Python functions and expressions. Each participant answered sixteen questions, each consisting 

of a code snippet with a blank. A prompt was presented alongside the code snippet to explain 
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what the snippet should output if executed. The participant was asked to fill in the blank in order 

to complete the code (see the supplementary material for an example). The questions were 

designed by the experimenter to cover some of the objectives specified in the exam syllabus of 

the Certified Associate in Python Programming Certification held by the Python Institute 

(https://pythoninstitute.org/certification/pcap-certification-associate/pcap-exam-syllabus/). On 

average, the participants got 64.6% (SD=16.6%) of the questions correct (range: 37.5% - 93.75%). 

fMRI task design and stimuli 

Code Comprehension Experiment 

In the real code comprehension trials, participants were presented with user-defined Python 

functions. Python comprehension was compared to a fake code control trials that consisted of 

incomprehensible scrambled Python functions (described in further detail below). To help 

participants distinguish between real and fake code trials, real code appeared in white text and 

fake code in yellow text. 

Each trial consisted of three phases: function (24 seconds), input (6 seconds), and question (6 

seconds) (Figure 1). First, participants viewed a Python function for 24 seconds, followed by a .5 

second fixation-cross delay. During the input phase, the original code function re-appeared on 

the screen with a potential input below consisting of a single line character string (6 seconds). 

Participants were instructed to use the input to mentally derive the output of the code function 

during the input phase. After the input phase there was a .5 second fixation-cross delay followed 

by a proposed output along with the prompt “TRUE?” Participants were asked to determine 

whether the output was correct within 6 seconds. All trial phases had a shortening bar at the 

bottom of the screen indicating the remaining time during that particular phase of the trial. Each 

trial was followed by a 5-second inter-trial interval during which the text “Your response is 

recorded. Please wait for the next trial” was shown on the screen. 

Each real code function consisted of five lines. The first line (def fun(input):) and the last 

(return result) were always the same. The second line always initialized the result variable, 

and the third and fourth lines formed a control structure (either a for loop or an if conditional) 

that may modify the value of the result. Real code trials were divided into two sub-conditions, for 

and if, according to the control structures the functions contained. Each condition included two 

variants of the for or if functions (see supplementary material for details). All functions took a 

letter string as input and performed string manipulation. 

Fake code trials were analogous to the real code trials in temporal structure (i.e. function, input, 

question). However, no real code was presented. Instead, participants viewed scrambled text and 

were asked to remember it. During the function phase of a fake code trial, participants saw a 

scrambled version of a Python function. Scrambling was done within line at word and symbol level 

(Figure 1, bottom row). Because fake functions were derived from real functions, the words, digits 

and operators that existed in real functions were preserved but none of the lines comprised an 

executable Python statement. During the input phase, an additional fake input line appeared 

below the fake function. The fake input line didn’t interact with the fake function, the participants 
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only had to memorize this line. During the question phase, a new character line appeared along 

with the prompt “SAME?” Participants judged whether this line had been presented during the 

function and input phases (including the additional input line), or it came from a different fake 

function. The answer was “true” on half of the real and fake code trials.  

There were 6 task runs, each consisting of 20 trials, 8 real if code, 8 real for code and 4 fake 

code trials. Each participant saw a total of 48 for functions (24 per variant), 48 if functions (24 

per variant), and 24 fake functions. After each run of the task, participants saw their overall percent 

correct and average response time. Participants were divided into two groups such that the 

variants of the functions were balanced across groups, and the same participant never saw 

different variants of the same function. The order of the presentation of the functions was pseudo-

randomized and balanced across participants. In total, 192 real functions (96 per group) and 48 

fake functions (24 per group) were used in the experiment. All the functions are listed in Table S1 

of the supplementary material. We permuted the order of the functions systematically such that 

each participant saw a unique order (see supplementary material for the algorithm of the 

permutation). 

Localizer Tasks 

During a separate MRI session, participants took part in two localizer experiments. A single 

experiment was used to localize responses to language, math and formal logic using each 

condition as the control for the others: language/math/logic localizer. The task design was 

adapted from Monti et al. 2009, 2012 (Kanjlia, Lane, Feigenson, & Bedny, 2016; Monti et al., 2009; 

Monti, Parsons, & Osherson, 2012). On language trials, participant judged whether two visually 

presented sentences, one in active and one in passive voice, had the same meaning (e.g. “The 

child that the babysitter chased ate the apple” vs “The apple was eaten by the babysitter that the 

child chased”). On math trials, participant judged whether the variable X had the same value 

across two equations (e.g. “X minus twenty-five equals forty-one” vs “X minus fifty-four equals 

twelve”). On formal logic trials, participant judged whether two logical statements were consistent, 

where one statement being true implied the other also being true (e.g. “If either not Z or not Y 

then X” vs “If not X then both Z and Y”).  

Each trial began with a 1-second fixation cross. One pair member appeared first, the other 3 

seconds later. Both statements remained on screen for 16 seconds. Participants pressed the right 

or left button to indicate true/false. The experiment consisted of 6 runs, each containing 8 trials of 

each type (language/math/logic) and 6 rest periods, lasting 5 seconds each. All 48 statement 

pairs from each condition were unique and appeared once throughout the experiment. In half of 

the trials, the correct answer was “true”. Order of trials was counterbalanced in two lists across 

participants. 

Note that although all of the tasks in the language/math/logic localizer contain language stimuli, 

previous studies show that sentences with content words lead to larger responses in the 

perisylvian fronto-temporal language network than spoken equations or logical statements with 

variables (Kanjlia et al., 2016; Monti et al., 2009, 2012). The perisylvian fronto-temporal language 

network shows enhanced activity for stimuli that contain meaningful lexical items and sentence 
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level syntax (e.g., (Fedorenko et al., 2016)). Furthermore, previous studies found that responses 

to language, logic and math when compared to each other were similar to what was observed for 

each domain relative to independent control conditions (e.g. sentences relative to lists of non-

words for language, and hard vs. easy logic problems) (Kanjlia et al., 2016; Monti et al., 2009, 

2012). 

The multi-source interference task (MSIT) was adapted from Bush and Shin (Bush & Shin, 2006) 

to engage executive control processes and localize the multiple demand network. On each trial, 

a triplet of digits was shown on the screen, and two of the digits were the same. The participant 

pressed buttons (1, 2, or 3) to indicate the identity of the target digit which is different from the 

two distractors. For example, for “131” the correct response is “3”; for “233” it is “2”. The 

participants always pressed button “1”, “2”, and “3” with their index, middle, and ring fingers, 

respectively. 

MSIT consisted of “control” blocks and “interference” blocks, each containing 24 trials (1.75 

seconds each). On interference trials, the location of the target digit was never consistent with the 

identity of the digit (e.g., trials such as “133” or “121” never existed), thus giving rise to an 

interference. On control trials, the distractors were always “0”, and the target digit was always at 

the same location as its identity. In other words, there were only three kinds of control trials, “100”, 

“020”, and “003”. 

The participant performed 2 runs of MSIT. Each run began with 15 seconds of fixation, followed 

by 4 control blocks and 4 interference blocks interleaved, and ended with another 15 seconds of 

fixation. Both an interference block and a control block lasted for 42 seconds. The order of the 

blocks was balanced both within and between participants. The order of the trials were arranged 

such that all 12 interference trials appeared exactly twice in an interference block, and all 3 control 

trials appeared exactly 6 times in a control block. Two same trials never came in succession, and 

the order of the trials was different across all 8 blocks of the same kind. 

Data acquisition 

MRI data were acquired at the F.M. Kirby Research Center of Functional Brain Imaging on a 3T 

Phillips Achieva Multix X-Series scanner. T1-weighted structural images were collected in 150 

axial slices with 1mm isotropic voxels using the magnetization-prepared rapid gradient-echo (MP-

RAGE) sequence. T2*-weighted functional BOLD scans were collected in 36 axial slices (2.4 x 

2.4 x 3mm voxels, TR = 2s). We acquired the data in one code comprehension session (6 runs) 

and one localizer session (2 runs of MSIT followed by 6 runs of language/matth/local judgment), 

with the acquisition parameters being identical for both sessions. 

The stimuli in both the code comprehension and localizer sessions were presented using stand-

alone PsychoPy3 software (https://www.psychopy.org/). The stimuli were projected to a rear 

projection screen cut to fit the scanner bore with an Epson PowerLite 7350 projector. The 

resolution of the projected image was 1600 x 1200. The participant viewed the screen via a front-

silvered, 45∘inclined mirror attached to the top of the head coil. 
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fMRI data preprocessing and general linear model (GLM) analysis 

Data were analyzed using Freesurfer, FSL, HCP workbench, and custom in-house software 

written in Python. Functional data were motion corrected, high-pass filtered (128 s), mapped to 

the cortical surface using Freesurfer, spatially smoothed on the surface (6-mm FWHM Gaussian 

kernel), and prewhitened to remove temporal autocorrelation. Covariates of no interest were 

included to account for confounds related to white matter, cerebral spinal fluid, and motion spikes.  

The four real function code (for1, for2, if1, if2) and fake code conditions were entered as 

separate predictors in a GLM after convolving with a canonical hemodynamic response function 

and its first temporal derivative. Only the images acquired during the twenty-four-second function 

phase were modeled. 

For the localizer experiment, a separate predictor was included for each of the three conditions 

(language, math, and logic) modeling the 16 seconds during which the statement pair was 

presented, as well as a rest period (5 seconds) predictor. In the MSIT task, the interference 

condition and the control condition were entered as separate predictors. 

Each run was modeled separately, and runs were combined within each subject using a fixed-

effects model (Dale, Fischl, & Sereno, 1999; Smith et al., 2004). For the group-level analysis 

across participants, random-effects models were applied, and the models were corrected for 

multiple comparisons at vertex level with p < 0.05 false discovery rate (FDR) across the whole 

brain. A nonparametric permutation test was further implemented to cluster-correct at p < 0.01 

family-wise error rate. 

ROI definition 

For each participant, 4 code-responsive functional ROIs were defined to be used in the MVPA 

analysis. First, random-effects whole-brain univariate analysis for the real > fake code contrast 

revealed 4 major clusters in the left hemisphere: the intraparietal sulcus (IPS), the posterior middle 

temporal gyrus (pMTG), the lateral prefrontal cortex (PFC), and the early visual cortex (Occ). 

These clusters were used to define group search spaces. Each search space was defined by 

combining parcels from Schaefer et al. that encompassed each cluster (400-parcel map, 

(Schaefer et al., 2018)). Next, individual functional ROIs were defined within these clusters by 

taking the top 500 active vertices for the real > fake contrast within each participant. 

MVPA 

MVPA was used to distinguish for and if functions based on the spatial activation pattern in 

code-responsive ROIs. Specifically, we used the support vector machine (SVM) implemented in 

the Python toolbox Scikit-learn (Chang & Lin, 2011; Pedregosa et al., 2011). 

For each participant, the spatial activation pattern for each function was defined as the beta 

parameter estimation of a GLM with each function entered as a separate predictor. Within each 

ROI in each participant, the 96 spatial patterns elicited by the real functions were collected. 

Normalization was carried out separately for for condition and if condition such that in either 
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condition, across all vertices and all functions, the mean is set to 0 and standard deviation to 1. 

The purpose of the normalization is to eliminate the difference in the baselines in both conditions 

while preserving the spatial patterns. 

The whole dataset was split into a training test (90%, 86 functions) and a testing set (10%, 10 

functions), where in each set, half of the patterns came from for functions. A linear SVM 

(regularization parameter C = 5.0) was trained on the training set and tested on the testing set. 

Classification was carried out on 100 different train-test splits, and the average accuracy value 

was recorded as the observed accuracy. 

We tested the classifier performance against chance (50%) using a combined permutation and 

bootstrapping approach (Schreiber & Krekelberg, 2013; Stelzer, Chen, & Turner, 2013). We 

derived the t-statistic of the Fisher-z transformed accuracy values against chance (also Fisher-z 

transformed). The null distribution for each participant was generated by first shuffling the 

condition labels 1,000 times, then computing the mean accuracy derived from the 100 train-test 

split of each shuffled dataset. Then, a bootstrapping method was used to generate an empirical 

distribution of the t-statistics. In each of the 106 iterations of the bootstrapping phase, one Fisher-

z transformed null accuracy value (out of 1,000) per participant was randomly selected, and a one 

sample t-test was applied to the null sample. The empirical p-value of the real t-statistic was 

defined as the proportion of the null t-statistics greater than the real value. 

Overlap analysis 

For each participant, in each hemisphere, we used cosine similarity to quantify the overlap of the 

activated vertices between code comprehension and each of the four localizer contrasts: 

language (language > math), math (math > language), logic (logic > language), and multi-source 

interference (hard > easy). First, we generated the binary activation map for each contrast. A 

vertex was assigned the value 1 if the significance of its activation is above the 0.05 (FDR 

corrected) threshold, and 0 otherwise. Each binary map was regarded as a vector, and the cosine 

similarity between two vectors (e.g., code comprehension and logic) was defined as the inner 

product of the vectors divided by the product of their respective lengths (norms). The cosine 

similarities of code to each of the localizer tasks was then compared using repeated-measure 

ANOVA and post-hoc pairwise comparisons with false discovery rate (FDR) correction. 

The empirical lower bound was calculated separately for each localizer task to account for 

differences in the number of activated vertices across tasks. For each participant, for each 

localizer task, we computed the cosine similarity between the binary map for code comprehension 

and a shuffled binary map for each localizer task. This step was repeated 100 times to generate 

the null distribution of the similarity values.  

We used a bootstrapping approach to test whether each observed cosine similarity value was 

significantly above the empirical lower bound. For each localizer task, we randomly selected one 

similarity value from the null distribution of one participant and computed a null group mean 

similarity. This step was repeated 106 times to derive the null distribution of the null group mean 
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similarity. The empirical p-value of the real group mean similarity was defined as the proportion 

of the null values greater than the real value. 

We operationalized the empirical upper bound as the cosine similarity of code comprehension 

and itself. For each participant, we split the data for code comprehension in half, ran a GLM for 

each half, and derived two binary maps whose cosine similarity was computed. We averaged all 

the similarity values resulting from the 10 possible splits of the 6 runs and across all participants. 

Results 

Behavioral results 

Accuracy was similar across real and fake code trials (real M=92%, SD=0.045; fake M=0.90, 

SD=0.069; binary logistic mixed regression, real to fake odds ratio β = 1.27; Wald’s z statistic, z 

= 1.21; p = 0.23). Accuracy was also similar across if and for trials (if M=0.92, SD=0.076; 

for M=0.92, SD=0.056; if to for odds ratio β = 0.95; Wald’s z statistic, z = -0.28; p = 0.77). 

Participants were slower to respond to fake as compared to real code trials (real M=1.73 sec, 

SD=0.416; fake M=2.03 sec, SD=0.37; t(73) = 2.329, p = 0.023) and slower to respond to for as 

compared to if trials (for M=1.85 sec, SD=0.46; if M=1.60 sec, SD=0.44; t(58) = 2.127, p = 

0.038) (Figure S1). 

In the language/math/logic localizer task, participants performed least accurately on logic trials, 

followed by math and language (logic M=0.82, SD=0.13; math M=0.94, SD=0.028; language 

M=0.98, SD=0.023; one-way-ANOVA, F(2, 42) = 18.29, p < 0.001). Participants were slowest to 

respond to logic trials, followed by math trials, and fastest on the language trials (logic M=6.47 

sec, SD=2.42; math M=4.93 sec, SD=1.32; language M=4.03, SD=1.27; one-way-ANOVA F(2, 

42) = 7.42, p = 0.0017) (Figure S1). 

In the MSIT experiment, hard and easy conditions did not differ in terms of accuracy (hard M=0.97, 

SD=0.038; easy M=0.98, SD=0.034; t(28) = -1.363, p = 0.18), but the hard trials took significantly 

longer to respond to than the easy trials (hard M=0.792 sec, SD=0.092; easy M=0.506 sec, 

SD=0.090; t(28)=8.59, p < 0.001) (Figure S1). 

fMRI results 

Code comprehension experiment 

As compared to fake code, real code elicited activation in a left-lateralized network of regions, 

including the lateral PFC (middle/inferior frontal gyri, inferior frontal sulcus; mainly BA 44 & 46, 

with partial activation in BA 6, 8, 9, 10, 47), the parietal cortex (the IPS, angular and supramarginal 

gyri; BA 7) and the pMTG and superior temporal sulcus (BA 22 & 37). Activity was also observed 

in early visual cortices (Occ) (p < 0.01 FWER, Figure 2) (Table S2 in the supplementary material). 

MVPA analysis revealed that for and if functions could be distinguished based on patterns of 

activity within PFC (accuracy = 64.7%, p < 0.001), IPS (accuracy = 67.4%, p < 0.001) and pMTG 
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(accuracy = 68.4%, p < 0.001). for and if functions could also be distinguished within the early 

visual cortex (accuracy = 55.7%, p = 0.015), however, decoding accuracy was lower than in the 

other regions (F(3, 56) = 4.78, p = 0.0048) (Figure 3). 

Overlap between code comprehension and other cognitive domains 

The language/math/logic localizer task activated previously identified networks involved in these 

respective domains. Responses to language were observed in a left perisylvian fronto-temporal 

language network, to math in parietal and anterior prefrontal areas as well as posterior aspect of 

the inferior temporal gyrus, and finally to logic, like math, in parietal and anterior prefrontal areas 

as well as posterior aspect of the inferior temporal gyrus. Logic activated more anterior and more 

extensive regions in prefrontal cortex than math. The MSIT hard > easy contrast also activated a 

fronto-parietal network including the IPS, however, the activation in the lateral frontal cortex was 

posterior and close to the precentral gyrus. (Figure 4, see Table S2 in Supplemental Materials for 

full description of activation patterns associated with language, logic, math and MSIT). Note that 

although in the current experiment logic, math and language were compared to each other, the 

networks observed for each domain are similar to those previously identified with other control 

conditions (e.g. lists of non-words for language and hard vs. easy contrast in a logic task) 

(e.g.(Coetzee & Monti, 2018; Fedorenko, Behr, & Kanwisher, 2011)). 

Because code comprehension was highly left lateralized, overlap analyses focused on the left 

hemisphere. Right hemisphere results are reported in supplementary materials. Code 

comprehension (real > fake) overlapped significantly above chance with all localizer tasks: logic, 

math, language and MSIT (each task compared to chance p’s < 0.001 compared to code split-

half overlap p’s < 0.001) (Figure 4). The degree of overlap differed significantly across tasks 

(repeated-measures ANOVA: F(3,42) = 5.04, p = 0.0045). Code comprehension overlapped most 

with logic (logic > language), followed by math and least with MSIT and language (Figure 4). 

Overlap with logic was significantly higher than with all other tasks, while the overlaps with the 

other three tasks (language, math, MSIT) were statistically indistinguishable from each other 

(post-hoc paired t-tests, FDR-corrected p’s < 0.05) (Table S3 in the supplementary material). 

The overlap of code with logic and math was observed in the IPS, PFC and a posterior portion of 

the inferior temporal gyrus (IT). PFC overlap was localized to the anterior middle frontal gyrus 

(aMFG, BA 46) and posteriorly in the precentral gyrus (BA 6). Overlap of code and the MSIT (hard 

> easy) was also observed in the IPS, precental gyrus and a small portion of the inferior temporal 

sulcus. Although MSIT and code overlapped in frontal and parietal areas, like code with logic/math, 

the precise regions of overlap within these general locations differed. 

Finally, code overlapped with language (language > math) in portions of the inferior frontal gyrus 

and the posterior aspect of the superior temporal sulcus/middle temporal gyrus. The overlap 

between language and code was on average low, and the degree of overlap varied considerably 

across participants (cosine sim range: [0.105, 0.480]), with only half of the participants showing 

above chance overlap. Notably there was no relationship between overlap of code and language 

and level of expertise, as measured either by years of experience coding (regression against 

code-language overlap: R2 = 0, p = 0.99; regression against code-math overlap: R2 = 0.033, p = 
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0.52) or performance on coding assessments (regression against code-language overlap: R2 = 

0.033, p = 0.52; regression against code-math overlap: R2 = 0.064, p = 0.36). 

Lateralization 

The group activation map suggested that code comprehension is left-lateralized. Analyses of 

individual lateralization indices showed that indeed, code comprehension was as left-lateralized 

as language (Code lateralization index mean = 0.451, one-sample t-test against 0: t(14) = 5.501, 

p < 0.001; Language mean = 0.393, t(14) = 5.523, p < 0.001; paired t-test between code and 

language: t(14) = 1.203, p = 0.25). Moreover, lateralization indices of code and language were 

highly correlated across individuals (R2 = 0.658, p < 0.001) (Figure 5). 

Discussion 

A consistent network of left-lateralized regions was activated across individuals during Python 

code comprehension. This network included the intraparietal sulcus (IPS), several regions within 

the lateral prefrontal cortex (PFC) and the posterior-inferior aspect of the middle temporal gyrus 

(pMTG). This code responsive network was more active during real than fake code trials, even 

though for expert Python coders, the fake code task was more difficult (as measured by reaction 

time) than the real code task. Within this code-responsive neural network, spatial patterns of 

activation distinguished between for vs. if code functions, suggesting that this network 

represents code-relevant information and is not merely activated during the coding task due to 

general difficulty demands. In overlap analyses, the code comprehension network was most 

similar to the fronto-parietal system involved in formal logical reasoning and to a lesser degree 

math. By contrast overlap with the perisylvian fronto-temporal language network is low. 

Code overlaps with logic 

Code, logical reasoning, math and the MSIT task all activated aspects of the so-called fronto-

parietal executive control system. However, overlap of code with logic was most extensive, 

followed by math and finally the MSIT. The difference between the MSIT task on the one hand 

and code comprehension, logic and math on the other, was particularly pronounced in the frontal 

lobe. There only code, logic and math activated more anterior regions of prefrontal cortex, 

including BA 46 and BA 9, although logic-associated activation extended even more anteriorly 

than code. These findings suggest that neural overlap between logic and code is specific, and not 

fully accounted for by the general involvement of the central executive system. 

Previous studies also find that the fronto-parietal network, including anterior prefrontal areas, are 

involved in logical reasoning (Prado, Chadha, & Booth, 2011; Tsujii, Sakatani, Masuda, Akiyama, 

& Watanabe, 2011). For example, anterior PFC is active when participants solve formal logical 

problems with quantifiers (e.g. all X are Y; Z is a X; therefore Z is Y) and connectives (e.g. if X 

then Y; not Y; therefore not X) and plays a key role in deductive reasoning with variables (Coetzee 

& Monti, 2018; Goel, 2007; Goel & Dolan, 2004; Monti et al., 2009; Reverberi et al., 2010; 

Reverberi et al., 2007; Rodriguez-Moreno & Hirsch, 2009) 
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A fronto-parietal network has also been consistently implicated in math (Friedrich & Friederici, 

2013; Maruyama, Pallier, Jobert, Sigman, & Dehaene, 2012; Piazza, Pinel, Le Bihan, & Dehaene, 

2007; Wendelken, 2015). Some of the parietal responses to math have been linked to the 

processing of quantity information (Eger et al., 2009; Nieder, 2016; Nieder & Miller, 2004; Piazza 

& Eger, 2016; Roitman, Brannon, & Platt, 2007; Tudusciuc & Nieder, 2009). For example, neurons 

in the IPS of monkeys code numerosity of dots (Nieder, 2016). However, much of the same fronto-

parietal network is also active during the processing of mathematical statements free of digits and 

arithmetic operations (Amalric & Dehaene, 2016, 2018; Wendelken, 2015). In the current study, 

both the anterior prefrontal areas and parietal areas involved in math also overlapped with code 

and logical reasoning. Some of this activation could therefore reflect common operations, such 

as the manipulation of rules and symbols in working memory. On the other hand, the lower overlap 

between coding and math as compared to overlap with coding and logic could be because only 

math involves quantitative processing. 

The present evidence suggests that culturally derived symbol systems (i.e., code comprehension, 

formal logic and math) depend on a common fronto-parietal network, including the executive 

system. As noted in the introduction, although each of these symbol systems has its unique 

cognitive properties, they also have much in common. All involve the manipulation of abstract 

arbitrary symbols without inherent semantic content (e.g. X, Y, input, result) according to 

explicit rules. In the current logical inference and code experimental tasks, mental representations 

of several unknown variables are constructed (for logic “X”, “Y”, and “Z”, for code “input” and 

“result”) and the relationships between them deduced according to rules of formal logic or code. 

There are also important differences between the rules of logical inference and programming. 

Take “if” conditional judgement for example again. In formal logic, the statement “if P then Q” 

doesn’t imply anything about what happens when P is false. On the contrary, in Python and most 

other programming languages, the statement  

if condition==True:  

 do_something() 

 

automatically implies that when the condition is false, the function “do_something()” isn’t 

executed, unless otherwise specified. Learning to program involves acquiring the particular set of 

conventionalized rules used within programming languages and a syntax that specifies how the 

programming language in question expresses logical operations (Dalbey & Linn, 1985; Pea & 

Kurland, 1984; Pennington, 1987; Robins, Rountree, & Rountree, 2003). We speculate that such 

knowledge is encoded within the fronto-parietal network identified in the current study. Future 

studies comparing coders with different levels of expertise should test whether learning to code 

modifies circuits within the code-responsive neural network identified in the current study. 

The involvement of the multiple-demand executive control system in code 

comprehension 

Code comprehension showed partial overlap with the MSIT task, particularly in the parietal cortex 

and in posterior frontal areas. Previous work has noted cognitive and neural similarity between 
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arbitrary small-scale working memory tasks, such as the MSIT, and formal symbol systems 

(Anderson, 2005; Qin et al., 2004). As noted in the introduction, the MSIT task is a classic localizer 

for the executive function system (e.g., Stroop, n-back and MSIT) (Duncan, 2010; Fedorenko, 

Duncan, & Kanwisher, 2013; Miller & Cohen, 2001; Woolgar et al., 2011; Zanto & Gazzaley, 2013; 

Zhang et al., 2013). Like code comprehension, most experimental tasks that activate the central 

executive system involve the maintenance, manipulation and selection of arbitrary stimulus 

response mappings according to a set of predetermined rules (Woolgar et al., 2011; Zhang et al., 

2013). For example, in the MSIT task among the many possible ways to map a visually presented 

digit triplet to a button press, the participants had to maintain in their working memory the rule to 

press the button whose index corresponds to the value of the unique digit in the triplet. In the 

difficult condition, participants use a less natural rule to make a response.  

Previous studies also showed that the fronto-parietal executive system was involved in rule 

maintenance and switching, as well as variable representation. In one task-switching study the 

fronto-parietal executive system was active when participants maintained a cued rule in working 

memory and the level of activity increased with the complexity of the rule maintained (Bunge, 

Kahn, Wallis, Miller, & Wagner, 2003). Patterns of neural activity within the executive system 

encoded which rule is currently being applied and activity is modulated by rule switching 

(Buschman, Denovellis, Diogo, Bullock, & Miller, 2012; Crittenden & Duncan, 2014; Xu et al., 

2017). Finally, studies with non-human primates found that neurons in the frontal lobe encode 

task-based variables (Duncan, 2010; Kennerley, Dahmubed, Lara, & Wallis, 2009; Nieder, 2013). 

Such processes, studied in the context of simple experimental tasks, may also play a role in code 

comprehension. 

Although formal symbol systems and simple rule-based tasks share cognitive elements, tasks 

such as the MSIT involve simple rules that specify stimulus response mappings, rather than 

mental manipulations of variables. An intriguing possibility is that the neural machinery supporting 

code comprehension, as well as other culturally derived symbol systems, is a subset of a system 

that originally evolved for the maintenance and manipulation of simpler variables and rules 

(Anderson, 2005; Qin et al., 2004). 

Code comprehension and language 

We find that the perisylvian fronto-temporal network that is selectively responsive to language, 

relative to math, does not overlap with the neural network involved in code comprehension. 

Previous studies also found that math and formal logic did not depend on classic language 

networks (Amalric & Dehaene, 2016; Monti et al., 2009). Lack of overlap between code and 

language is intriguing given the cognitive similarities between these domains  (Fedorenko et al., 

2019; Pandža, 2016; Peitek et al., 2018; Portnoff, 2018; Prat et al., 2020; Siegmund et al., 2014). 

As noted in the introduction, programming languages borrow letters and words from natural 

language, and both natural language and code have hierarchical, recursive grammars (Fitch et 

al., 2005) . 

One possible explanation for low overlap between the perisylvian fronto-temporal language 

network and code is that the language system is evolutionarily predisposed to support natural 
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language processing and not generalizable even to similar domains, like computer code and 

formal logic (Dehaene-Lambertz, Hertz-Pannier, & Dubois, 2006; Fedorenko et al., 2011). Timing 

could also play a role. The perisylvian fronto-temporal language network may have a sensitive 

period of development during which it is most capable of learning (Cheng, Roth, Halgren, & 

Mayberry, 2019; Mayberry, Davenport, Roth, & Halgren, 2018; Ramirez et al., 2016). By the time 

people learn to code, the network may be incapable of taking on new cognitive functions. Indeed, 

even acquiring a second language late in life leads to lower levels of proficiency and responses 

outside the perisylvian fronto-temporal system (Hartshorne, Tenenbaum, & Pinker, 2018; 

Johnson & Newport, 1989). These observations suggest that domain-specific systems, like the 

perisylvian fronto-temporal language network, are not always amenable for “recycling” by cultural 

inventions. The fronto-parietal system might be inherently more flexible throughout the lifespan 

and thus more capable of taking on new cultural skills (Riley, Qi, Zhou, & Constantinidis, 2018). 

Despite lack of direct overlap, lateralization patterns of language and coding were highly 

correlated across individuals i.e. those individuals with highly left-lateralized responses to 

sentences also showed highly left lateralized responses to code. This intriguing observation 

suggests that the relationship between code and language may be ontogenetic as well as 

phylogenetic. It is hard to imagine how code in its current form could have been invented in the 

absence of language (Fitch et al., 2005). Ontogenetically, code-relevant neural representations 

might be enabled by the language system, even though they are distinct from it. 

An analogous example comes from the domain of reading (Dehaene et al., 2010; McCandliss, 

Cohen, & Dehaene, 2003). Reading-relevant regions, such as the visual word form area (VWFA), 

are strongly co-lateralized with the perisylvian fronto-temporal language network across people 

(Cai, Paulignan, Brysbaert, Ibarrola, & Nazir, 2010). The VWFA has strong anatomical 

connectivity with the fronto-temporal language network even prior to literacy (Bouhali et al., 2014; 

Saygin et al., 2016). Analogously, code comprehension may colonize a left-lateralized portion of 

the central executive system due to its stronger (i.e., within hemisphere) connectivity with the 

perisylvian fronto-temporal language network. 

Conclusions 

A fronto-parietal cortical network is consistently engaged in expert programmers during code 

comprehension. Patterns of activity within this network distinguish between for and if functions. 

This network overlaps with other culturally derived symbol systems, in particular formal logic and 

to a lesser degree math. By contrast, the neural basis of code is distinct from the perisylvian 

fronto-temporal language network. Rather than recycling domain specific cortical mechanisms for 

language, code, like formal logic and math, depends on a subset of the domain general executive 

system, including anterior prefrontal areas. The executive system may be uniquely suited as a 

flexible learning mechanism capable of supporting an array of cultural symbol systems acquired 

in adulthood. 
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Figures 

 

Figure 1. The experiment design. The FAKE function (bottom row) in this figure is created by 

scrambling the words and symbols in each line of the REAL function (top row). Note that for the 

purpose of illustration, the relative font size of the text in each screen shown in this figure is 

larger than what the participants saw during the actual MRI scan. 

  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.24.096180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.24.096180


 

Figure 2. Whole brain contrasts. Areas shown are p<0.05 cluster-corrected p-values, with 

intensity (both warm and cold colors) representing uncorrected vertex-wise probability. In the 

maps for each localizer contrast, both warm and cold colors indicate activated vertices in the 

contrast, with the cold color labelling the overlap with the code contrast.  
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Figure 3. (a) The four search spaces (IPS, pMTG, PFC, OCC in the left hemisphere) within 

which functional ROIs were defined for the MVPA. (b) The MVPA decoding accuracy in the four 

ROIs. Error bars are mean ± SEM. *P<0.05. ***P<0.001.  
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Figure 4. (a) Brain map with the activated regions in the five contrasts reported in Figure 2 

overlain. The language network is shown in transparent blue, math in transparent red, and logic 

in transparent green. The regions activated in the MSIT contrast are enclosed in black outlines, 

and the code-responsive regions are enclosed in yellow outlines. (b) Cosine similarity between 

code contrast and each localizer contrast, in each hemisphere. Each dot represents the data 

from one participant. The dotted line on each bar indicates the null similarity between code 

contrast and the given localizer contrast. The yellow dashed line in each hemisphere indicates 

the empirical upper bound of the cosine similarity, the similarity between code comprehension 

and itself, averaged across participants. Error bars are mean ± SEM. *P<0.05. **P<0.01. 

***P<0.001 
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Figure 5. (a) The lateralization index of the code contrast and the localizer contrasts. Each white 

dot stands for one participant, and the enlarged dots represent the mean values. (b) The 

lateralization indices of code contrast and language contrast are highly correlated. 

 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.24.096180doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.24.096180

