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ABSTRACT 

Knowledge of genomic features specific to the human lineage may provide insights into brain-related 

diseases. We leverage high-depth whole genome sequencing data to generate a combined annotation 

identifying regions simultaneously depleted for genetic variation (constrained regions) and poorly 

conserved across primates. We propose that these constrained, non-conserved regions (CNCRs) have 

been subject to human-specific purifying selection and are enriched for brain-specific elements. We 

find that CNCRs are depleted from protein-coding genes but enriched within lncRNAs. We 

demonstrate that per-SNP heritability of a range of brain-relevant phenotypes are enriched within 

CNCRs. We find that genes implicated in neurological diseases have high CNCR density, including 

APOE, highlighting an unannotated intron-3 retention event. Using human brain RNA-sequencing 

data, we show the intron-3-retaining transcript/s to be more abundant in Alzheimer’s disease with 

more severe tau and amyloid pathological burden. Thus, we demonstrate the importance of human-

lineage-specific sequences in brain development and neurological disease. We release our annotation 

through vizER (https://snca.atica.um.es/browser/app/vizER). 
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INTRODUCTION 
 

Humans are perceived to be particularly vulnerable to neurodegenerative disorders relative to other 

primates on both a pathological and phenotypic level1-5. This is exemplified in Alzheimer’s disease, in 

which a similar phenotype is not seen in ageing non-human primates, nor are the characteristic 

neurofibrillary tangles on pathological examination1,6. Likewise, Parkinson’s disease does not 

naturally occur in non-human primates, whose motor deficits do not respond to levodopa 

administration and a Lewy body pathological burden is not present5,7. This has led to the hypothesis 

that the same evolutionary changes driving encephalisation which have steered the development of 

characteristic human features may predispose to disorders that affect the brain2,5,6. In the case of 

Alzheimer’s disease, it is postulated that the accelerated evolution of intelligence, brain size and aging 

predispose to selective advantages, which in later life, have deleterious effects on cognition through 

the very same pathways8. Therefore, identifying the genomic changes unique to the human lineage 

may not only provide insights into the evolution of human-lineage-specific phenotypic features, but 

also into the pathophysiology underlying uniquely human diseases. 

 

Previous studies attempting to identify human-lineage-specific variation and functional elements in 

the human genome have focused on genomic conservation as calculated by aligning and comparing 

genomes across species. But, conservation measures alone do not fully identify regions with evidence 

of human-specific purifying selection. This is because a large part of the genome is evolving neutrally 

and sufficient phylogenetic distance is required to detect these changes9. Furthermore, alignment 

methods do not reliably detect substitutions that preserve function9. Conversely, some genes such as 

those implicated in immune system function may be subject to rapid evolutionary turnover even 

among closely-related species9.  For these reasons, analysing conservation alone has limited capacity 

to capture human-specific genomic elements9.  

 

The increasing availability of whole genome sequencing (WGS) has opened new opportunities to 

address this issue. Using intra-species whole-genome comparisons10,11, we are better able to 
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appreciate sequence differences between individuals of the same species, and identify genomic 

regions in humans containing significantly fewer genetic variants than expected by chance, designated 

as constrained genomic regions. This form of analysis, which is based on the assumption that most 

selection is negative or purifying (i.e., those which remove new deleterious mutations), has been 

crucial for classification of exonic variation and attribution of pathogenicity12. However, many 

genomic regions would be expected to be both constrained and conserved; such regions have been 

maintained by natural selection across species, including humans. This means that metrics reflecting 

constraint alone cannot identify human-specific elements as the same regions could also be conserved 

in other species.  

 

This has led previous analyses to combine these metrics of sequence constraint and conservation to 

identify genomic regions with evidence for human-specific selection13,14. Ward and Kellis 

successfully applied this approach to demonstrate that a range of transcribed and regulatory non-

conserved elements showed evidence of lineage-specific purifying selection14. However, this analysis 

was limited by the availability of WGS data and metrics on human genetic variation were derived 

from the 1000 Genomes pilot data, which sequenced with only two to six times coverage15. Advances 

in sequencing technology have increased the feasibility of deep sequencing of human populations 

leading to a much more detailed understanding of genetic variation between humans10. In fact, the 

recent sequencing of the genomes of 10,545 human individuals at a coverage of 30 to 40 times 

identified 150 million single nucleotide variants of which 54.7% had not been reported in dbSNP16 or 

the most recent phase 3 of the 1000 Genomes Project17. The availability of this information has 

already enabled more accurate identification of relatively constrained regions of the genome, which 

has led to the development of the context dependent tolerance score (CDTS)11. CDTS is derived from 

estimating how the observed genetic variation compares to the propensity of a nucleotide to vary 

depending on its surrounding context using the high-resolution profiles determined from deep 

sequencing data11. Yet, this information has not been combined directly with improved conservation 

data to identify regions with evidence for human-specific selection. 
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In this study, we make full use of these resources to develop a novel, granular genomic annotation 

which efficiently captures information on intra-species constraint and inter-species conservation 

simultaneously and identifies constrained, non-conserved regions (CNCRs). We use this annotation to 

test the hypothesis that CNCRs are not only specific to the human lineage, but given the 

encephalisation of humans, that CNCRs will be enriched within brain-specific functional and 

regulatory elements as well as risk loci for neurological disease. We show that these regions are 

enriched for SNP-heritability for a range of neurological and psychiatric phenotypes. Furthermore, by 

calculating CNCR density within the boundaries of known genes, we develop a gene-based metric of 

human-specific constraint. This analysis highlights APOE and leads to the identification of an intron-3 

retaining transcript of APOE, the usage of which is correlated with Alzheimer’s disease pathology and 

APOE-ε4 status. This approach provides direct support for the role of human-specific CNCRs in brain 

development and complex neurological phenotypes. 
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MATERIALS & METHODS 
 

GENERATION OF AN ANNOTATION FOR THE IDENTIFICATION OF CNCRS 

We generated a combined annotation to capture information on intra-species constraint and inter-

specifies conservation simultaneously, using CDTS together with phastCons20 scores (Figure 1). The 

previously-validated map of sequence constraint (http://www.hli-opendata.com/noncoding)  generated 

using 7,794 whole genome sequences11 was used to assign a single CDTS score to each non-

overlapping 10 base pair (bp) region throughout the genome (build GRCh38, 248,925,226 bins). The 

phastCons20 score, which calculates the likelihood ratio of negative selection based on the total 

number of substitutions during evolution of an element between species18, was used as a measure of 

inter-species conservation (http://hgdownload.cse.ucsc.edu/goldenPath/hg38/phastCons20way/)18. 

PhastCons20 was used as it compares the human genome to the genomes of less divergent species (16 

other primates and three mammals). For each 10bp bin labelled with a CDTS value, we assigned the 

corresponding mean phastCons20 score. Bins without a conservation score due to insufficient species 

in the alignment were not considered (0.218% of the genome). For the remaining 248,381,744 bins, 

we ranked both CDTS and mean phastCons20 scores across the whole genome such that the highest 

ranks represented the most constrained and conserved regions respectively. We calculated the log2 

ratio of the rank of constraint to the rank of conservation for each 10bp bin (termed constrained, not 

conserved score, CNC score). This resulted in scores with a distribution centred at 0 signifying no 

fold change between the ranks of the two metrics (Supplementary Figure 1). Finally, we defined 

CNCRs as genomic regions that were among the 12.5% most constrained, with a CNC score of ≥ 1 

(i.e. a two-fold higher ranking in constraint than conservation). We use this definition for CNCRs 

throughout this study.  

 

 

INVESTIGATING THE RELATIONSHIP BETWEEN CNCRS AND EXISTING ANNOTATION  
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To investigate the relationship between CNC scores for genomic regions and genomic features, we 

calculated the distribution of CNC scores across genomic features defined by GENCODE v.5319 and 

Ensembl v.9220. We restricted our analysis to the 12.5% most constrained regions only (31,115,616 

ten bp bins) and segregated these regions into equally-sized deciles ranked on the basis of CNC scores 

such that the highest decile (90 – 100 decile) represented a high CNC score containing the most 

constrained and least conserved sequences. Each 10bp region was then assigned a single overlapping 

genomic feature. To avoid conflicts arising from overlapping GENCODE and Ensembl definitions, 

we preferentially assigned a single genomic feature to a given region by prioritising features11 as 

described in Supplementary Table 1.   

 

ENRICHMENT OF COMMON-SNP HERITABILITY IN BRAIN-RELATED PHENOTYPES 

FOR CNCRS 
 

Stratified linkage disequilibrium score regression (LDSC) was used to assess the enrichment of 

common-SNP heritability for a range of complex diseases and traits within our annotation21,22.  

Stratified LDSC makes use of the increased likelihood of a causal relationship in a block of SNPs in 

linkage disequilibrium (LD) to correct for confounding biases that include cryptic relatedness and 

population stratification in a polygenic trait22. Using established protocols 

(https://github.com/bulik/ldsc/wiki), we tested whether SNPs located within our annotation 

contributed significantly to SNP-heritability after controlling for a range of other annotations 

described within the baseline mode (v.1.2). This analysis generates a coefficient z-score, from which 

we calculated a one-tailed coefficient p-value. Stratified LDSC regression analyses were also run to 

incorporate background SNPs defined as all SNPs in the genome that include a CDTS and 

phastCons20 annotation, to avoid over-estimation of the contribution to SNP-heritability. We assessed 

the annotation for SNP-heritability enrichment in complex brain-related disorders and phenotypes of 

intelligence23, Alzheimer’s disease24, Parkinson’s disease (excluding 23&Me participants)25, 

schizophrenia26 and major depressive disorder (excluding 23&Me participants)27 (Supplementary 

Table 2). We considered SNPs within CNCRs and its two constituent groups (Figure 1) which fall 
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either into constrained only or non-conserved only annotations as defined respectively by: (i) CNCRs 

annotation: SNPs with a given CNCR density; (ii) Constrained annotation: SNPs located within the 

12.5% most constrained regions of the genome irrespective of conservation score; (iii) Non-conserved 

annotation: SNPs located within relatively non-conserved genomic regions with a conservation rank 

determined by the rank of the first quartile phastCons20 score at a CNC score of 1 (rank ≤ 

25,623,592) (irrespective of constraint score). We provide Bonferroni-corrected p-values, which 

account for the number of annotation categories and GWASs tested (total of 15 conditions).  

 

GENERATION OF A GENE-BASED METRIC FOR CNCRS AND GENE SET ENRICHMENT 

ANALYSIS 
 

To generate a metric of human-specific constraint, which could be applied to a gene rather than a 

10bp region, we calculated the density of CNCRs within each gene, the length of which was defined 

by the transcription start and stop sites for that gene (GRCh38.v97). We used g:ProfileR (R 

Package)28 for gene set enrichment analysis. We used the three sets of tested annotations 

incorporating genes that fell into CNCRs, constrained regions and non-conserved regions in the gene 

set enrichment analysis as previously described for LDSC annotation and as defined in Figure 1. The 

background gene list in all analyses comprised 49,644 genes from all regions of the genome with a 

CDTS and phastCons20 annotation. The correction method was set to g:SCS to account for multiple 

testing28. We used REViGO29 to summarise the significant GO terms, and to derive the term 

frequency, which is a measure of GO term specificity.  

 

To further characterise CNCR density within genes associated with disease, we first studied 

phenotype relationships of all Mendelian genes within the Online Mendelian Inheritance in Man 

(OMIM) catalogue (http://api.omim.org)30. We compared the CNCR density of all neurologically-

relevant OMIM genes to all genes within CNCR annotation. Secondly, in order to investigate the 

CNCR density within genes associated with complex disorders, we used the Systematic Target 

OPportunity assessment by Genetic Association Predictions (STOPGAP) database, a catalogue of 
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human genetic associations mapped to effector gene candidates derived from 4,684 GWASs31. We 

selected for genes associated with SNPs that surpassed a genome-wide significant p-value of 5×10-8 

and which fulfilled medical subject heading for associated neurological/behavioural diseases. We 

used these sets to identify potential genes of interest associated with brain-related disorders which 

carry a high CNCR density.  

 

SEQUENCING OF APOE TRANSCRIPTS IN HUMAN BRAIN  
 

Focussing on a human-specific event identified within APOE from the preceding analyses, we used 

Sanger sequencing of cDNA reverse transcribed from pooled human hippocampus poly-A-selected 

RNA (Takara/Clontech 636165) to support the presence of the human-specific intron-3 retention 

event identified within APOE (GRCh38: chr19:44907952-44908531). For the reverse transcription, 

we used 500 ng of input RNA, with 10 mM dNTPs (NEB N0447S), VN primers and strand-switching 

primers (Oxford Nanopore Technologies SQK-DCS109), 40 units of RNaseOUT inhibitor (Life 

Technologies 10777019) and 200 units of Maxima H Minus reverse transcriptase with 5X reverse 

transcription buffer (ThermoFisher EP0751). PCR amplification of the cDNA was performed using 

primer pairs designed to span across intron-3 and exon 4 (P2-4) and intron-3 alone (P5) of APOE 

(ENST00000252486.9) (Supplementary Table 3). PCR was performed using Taq DNA polymerase 

with Q-solution (Qiagen) and enzymatic clean-up of PCR products was performed using Exonuclease 

I (ThermoScientific) and FastAP thermosensitive alkaline phosphatase (ThermoScientific). Sanger 

sequencing was performed using the BigDye terminator kit (Applied Biosystems) and sequence 

reactions were run on ABI PRISM 3730xl sequencing apparatus (Applied Biosystems). 

Electropherograms were viewed and sequences were exported using Sequencher 5.4.6 (Gene Codes). 

Sequences were aligned against the human genome (hg38) using BLAT and visually inspected for 

confirmation of validation. 

 

ANALYSIS OF PUBLIC RNA-SEQUENCING DATA  
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We used publicly-available short read RNA-sequencing data from human brain post-mortem samples 

provided by Genotype-Tissue Expression Consortium (GTEx) v.7.132 and the Religious Orders Study 

and Memory and Aging Project (ROSMAP) Study33 and to quantify the human-specific intron-3 

retention event in APOE highlighted by our analysis. For GTEx data, we used pre-aligned files 

available from recount2 (https://jhubiostatistics.shinyapps.io/recount/)34. Both studies within 

ROSMAP are longitudinal clinicopathological cohort studies of aging and/or Alzheimer's disease. We 

downloaded BAM files for ROSMAP bulk-RNA sequencing data from the Synapse repository 

(https://www.synapse.org/#!Synapse:syn4164376) for analysis. To quantify the intron-3 retention 

event, we calculated the coverage of intron-3 expression normalised for the coverage across the entire 

APOE gene, as defined by the transcription start and end sites. To quantify splicing of intron-3, we 

calculated the number of exon-3 to exon-4 junction reads (defined as reads mapping with a gapped 

alignment), normalised for all APOE junction reads detected and currently within annotation. We used 

a ratio of the normalised coverage to normalised junction count over intron-3 as an estimate of the 

proportional use of the intron-3-retaining transcript, such that a high ratio is associated with a higher 

usage of intron retention within both GTEx and ROSMAP data. Based on existing ROSMAP results35 

and principal component analysis of fragments per kilobase million (FKPM) data, we incorporated 

covariates to account for the effect of batch, RNA integrity number (RIN), postmortem interval 

(PMI), study index, ethnicity, age at death and sex on estimates of intron-3-retaining transcript usage. 

Using the resulting mixed linear model, we compared the intron-3 retention normalised coverage to 

junction ratio across clinical disease states, pathological states and APOE status in 634 post-mortem 

brain samples.  

 

DATA AVAILABILITY 

We release our annotation of CNC score as an interactive visualisable track via online platform vizER 

and provide a publicly-downloadable table of CNCR density for genes within our annotation 

(https://snca.atica.um.es/browser/app/vizER). 
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RESULTS 
 

GENOMIC REGIONS WITH HIGH CONSTRAINT, BUT NOT CONSERVATION WERE 

ENRICHED FOR REGULATORY, NON-CODING GENOMIC FEATURES 
 

CNC scores, which combine information from CDTS and phastCons20, were used to capture 

evidence of disparity between constraint and conservation within a genomic region (Figure 1). We 

investigated the relationship between CNC scores and known genomic features within the most 

constrained portion of the genome (top 12.5%). This analysis demonstrated clear patterns of 

enhancement and depletion for genomic elements across CNC scores, which significantly differed 

from similar analyses performed using constraint metrics alone11 (Figure 2a). Among constrained 

genomic regions with the highest CNC scores (90-100 decile, signifying high constraint, but low 

conservation) we saw a depletion for coding elements of 27-fold relative to genomic regions with the 

lowest CNC scores. This contrasts with the pattern using constraint metrics alone where the most 

constrained genomic regions are highly enriched for coding exons11. On the other hand, promoter, 

promoter-flanking, and non-coding RNA features were over-represented in the highest compared to 

the lowest CNC deciles by 4.7, 1.9 and 1.5-fold respectively. Thus, genomic regions with high CNC 

scores are enriched for regulatory, non-coding genomic features.  

 

GENES WITH THE HIGHEST DENSITY OF CNCRS ARE ENRICHED FOR LONG NON-
CODING RNA 
 

Next, we applied a CNC score cut-off of ≥ 1 (signifying a two-fold higher ranking in constraint than 

conservation) to define a set of genomic regions which were constrained, but not conserved (termed 

CNCRs). Next, we wanted to investigate whether CNCRs could be used to identify specific genes of 

interest. With this in mind, we used CNCR density to identify gene sets which might be expected to 

contribute most to human-specific phenotypes. Consistent with the findings above, we found that as 

the CNCR density threshold was increased to define the gene sets of interest, there was a marked 
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reduction in the proportion of protein-coding genes (β-coefficient between proportion and CNCR 

density = -1.061 and false discovery rate (FDR)-corrected p = 0.00162), and an increase in the 

proportion of long non-coding RNA (lncRNA, β-coefficient 0.385 and FDR-corrected p = 0.0161), 

and microRNA-encoding genes (miRNA, β-coefficient 0.394 and FDR-corrected p = 0.00116) 

(Figure 2b). Interestingly, this relationship was not clearly observed when considering unprocessed 

snRNA and other RNAs (Figure 2b). In order to determine whether the relationship between CNCR 

density and gene biotype was driven by sequence constraint or conservation, we also generated 

comparator gene lists based on constrained-only and non-conserved regions alone. Importantly, 

lncRNA and protein-coding gene proportions do not follow the same directionality with increasing 

density when constraint or non-conservation alone is considered (Figure 2b). Thus, this analysis 

highlighted the specific importance of lncRNAs as compared to other classes of non-coding RNAs in 

driving human-specific patterns of gene expression. 

 

SIGNIFICANT ENRICHMENT OF HERITABILITY FOR NEUROLOGICALLY-RELEVANT 

PHENOTYPES 
 

Given the enrichment of regulatory features within genomic regions with a high CNC score, we 

postulated that such regions could also be enriched for disease risk.  In order to study this, we 

investigated CNCRs for evidence of enriched heritability for a range of complex neurologically-

relevant phenotypes (Supplementary Table 4). After Bonferroni correction for multiple testing, we 

found that CNCRs exhibited significant enrichment in heritability for intelligence (coefficient p = 

4.19×10-24); Parkinson’s disease (coefficient p = 4.65×10-5); major depressive disorder (coefficient p 

= 2.95×10-8) and schizophrenia (coefficient p = 5.26×10-19), but not for Alzheimer’s disease (Figure 

3). While a significant enrichment in heritability for intelligence, major depressive disorder and 

schizophrenia were also observed in the constrained regions alone (and to a lesser extent, non-

conserved regions), we note that the regression coefficient for CNCRs was at least two-fold larger for 

the CNCR annotation compared to the constrained annotation (Supplementary Table 4). Similarly, 

significant enrichment in heritability for Parkinson’s disease was only observed in CNCRs. Thus, by 
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combining metrics for both constraint and conservation in our annotation, we derived an independent 

annotation that shows a higher level of enrichment in heritability for neurologically-related 

phenotypes than annotations based on constraint or conservation alone.  

 

THE PROPORTION OF ENRICHED GENE SETS WITH NEUROLOGICALLY-RELATED GO 

TERMS INCREASES IN GENES WITH THE HIGHEST DENSITY OF CNCRS  
 

To investigate these findings further, we defined gene sets based on their CNCR density and analysed 

their GO term enrichment. We assessed gene sets defined across a range of CNCR densities (> 0.0 to 

≥ 0.5 at 0.1 increments). We found that the proportion of neurologically-associated GO terms with 

significant enrichments (g:SCS-corrected p < 0.05) increased among gene sets with increasing CNCR 

gene densities (Supplementary Figure 2). Importantly, a similar analysis of gene sets defined by 

constraint alone or non-conservation alone did not contain any neurologically-enriched GO terms 

(Figure 4).  We identified the gene set with the highest proportion of nervous system-related terms at 

a CNCR genic density of 0.3 (Supplementary Figure 2). The only GO terms specific to a tissue 

process were related to the nervous system (Figure 4, Supplementary Table 5) and spanned terms 

such as neuronal development (GO:0048663, corrected p = 5.46×10-7) and spinal cord differentiation 

(GO:0021515, corrected p = 3.64×10-7). The remaining significantly enriched GO terms related to 

ubiquitous processes including protein targeting (GO:0045047, p = 9.93×10-4) and DNA binding 

(GO:0043565, p = 4.81×10-4). Of note, analysis of gene sets defined on the basis of constraint alone 

revealed no enrichment of neurologically-associated terms, but instead significant enrichment of 

vascular system-related GO terms (GO:0048514 blood vessel morphogenesis, corrected p = 3.96×10-

37 and GO:0072358 cardiovascular system development, p = 8.53×10-36). As might be expected based 

on the rapid and potentially divergent evolutionary pressures, the analysis of gene sets defined on the 

basis of non-conservation alone demonstrated the significant enrichment of immune and skin-related 

GO terms (GO:0002250 adaptive immune response, p = 4.02×10-10 and GO:0043588 skin 

development, p = 2.33×10-4). Taken together, these results demonstrate that using CNCR density, 
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genes important in nervous system development and implicated in neurological disease can be 

identified.  

CNCR ANNOTATION HIGHLIGHTS AN INTRON-3 RETAINING TRANSCRIPT OF APOE 
 

Next, we investigated the distribution of CNCR density across Mendelian genes associated with a 

neurological phenotypes (as defined within OMIM30) and genes implicated in complex brain-relevant 

phenotypes (as defined within STOPGAP31). We noted that the median CNCR density was 

significantly higher in OMIM genes with a neurological phenotype compared to all other genes 

(median CNCR density of neurological OMIM genes = 0.0924, IQR = 0.0567 – 0.143; median CNCR 

density of all other genes =  0.083, IQR = 0.043 – 0.153; Wilcoxon rank sum test p = 1.8×10-6). While 

genes associated with complex brain-relevant phenotypes did not have a significantly higher CNCR 

density when compared to all other genes, we still identified 31 genes with a CNCR density of greater 

than 0.2 and seven genes with a CNCR density of greater than 0.3 (APOE, PHOX2B, SSTR1, HCFC1, 

HAPLN4, CENPM and IQCF5).  Of these genes, APOE had the highest CNCR density with a value of 

0.552.  

 

Given the high CNCR density of APOE, its importance as a disease locus for Alzheimer’s disease and 

other neurodegenerative diseases36 and the long-standing interest in the lineage specificity of APOE8,37 

(specifically the differences in the �4 allele  between humans and non-human primates1), we chose to 

focus on this gene.  We tested whether intragenic analysis of APOE could identify specific exons or 

transcripts of interest. We compared CNCR density, constraint and conservation scores across the 

length of the gene showing that CNCRs provide a highly granular annotation (Figure 5). Using this 

approach, we identified a region of high CNCR density within intron-3 of APOE. Although no intron-

3 retaining transcript is currently annotated in Refseq and Ensembl, an intron-3 retention event has 

previously been reported and implicated in the regulation of APOE expression38,39. To validate the 

existence of this transcript, we performed Sanger sequencing of polyA-selected RNA derived from 

human hippocampal tissue. This demonstrated that no recursive splicing occurred as the full-length 

intron-3 sequence was retained and flanked by both exon-3 and exon-4 (Supplementary Figure 3). 
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In order to obtain further insights into the biological significance of the intron-3 retaining APOE 

transcript, we leveraged publicly-available RNA-sequencing data covering 11 regions of the human 

central nervous system provided by the GTEx v.732. Using an annotation-independent approach to 

identify genomic regions producing stable transcripts40,41, we identified a region of significant 

expression encompassing intron-3 of APOE and the flanking coding exons in all brain tissues (Figure 

6a). These data not only support the existence of an intron-3 retaining APOE transcript that is not 

entirely attributable to pre-mRNA transcripts or driven by background noise in sequencing, but also 

provide a means of estimating its usage across the human brain.  

 

Thus, in order to compare usage of this transcript across different CNS regions, we calculated the 

ratio of normalised intron-3 expression (a measure of intron-3 retaining transcripts) to the normalised 

expression of exon-3/exon-4 spanning reads (a measure of transcripts splicing out intron-3). We see 

that there is evidence of the usage of the intron-3 retaining APOE transcript in all central nervous 

system regions from GTEx data (Figure 6a). However, there are also significant differences among 

brain regions (Kruskal-Wallis p < 2.2e-16) with the usage of the intron-3 retaining event being highest 

in the spinal cord, substantia nigra and hippocampus (Figure 6a).  

 

In summary, we confirmed the existence of an unannotated human-specific non-coding transcript of 

APOE and identified differential usage of this transcript across the human brain. In this way, we 

demonstrate the utility of combining CNC scores with transcriptomic data, which we have made 

easier though the addition of a CNC score track within the platform vizER 

(https://snca.atica.um.es/browser/app/vizER). 

 

USAGE OF THE INTRON-3 RETAINING TRANSCRIPT OF APOE CORRELATES WITH 

ALZHEIMER’S DISEASE PATHOLOGY AND APOE GENOTYPE 
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We noted that among the brain tissues with the highest usage of the intron-3 retaining transcript of 

APOE are those that show selective vulnerability for neurodegeneration, namely the hippocampus in 

the context of Alzheimer’s disease, the substantia nigra in the context of Parkinson’s disease and the 

spinal cord in the context of amyotrophic lateral sclerosis. Given that APOE is one of the most 

important genetic risk factors for Alzheimer’s disease, we leveraged publicly-available RNA-

sequencing data from the ROSMAP studies to quantify the usage of the intron-3 retaining transcript of 

APOE in post-mortem dorsolateral prefrontal cortex brain tissue derived from individuals with 

Alzheimer’s disease (n = 222), mild cognitive impairment (MCI) (n = 158) compared to control 

individuals (defined as the final clinical diagnosis blinded to pathological findings, n = 202). We 

found that the proportion of the intron-3-retaining transcript was higher (p < 2.2e-16) in dorsolateral 

prefrontal cortex tissue from individuals with clinically-diagnosed Alzheimer’s disease and MCI 

patients versus control participants. Partitioning this further on the basis of pathology, we see an 

increase in intron-3 retaining transcript usage with more severe Braak and Braak pathology for 

neurofibrillary tangles (adjusted r2 0.678, p < 2.2e-16) (Figure 6b). Consistent with these findings, we 

also found a significant increase in transcript usage with lower CERAD stage, indicating higher 

amyloid plaque pathology (adjusted r2 0.673, p < 2.2e-16). Finally, we investigated the relationship 

between presence of the ε4 allele in APOE and usage of the intron-3 retaining transcript. We found a 

significant positive correlation between ε4 allele load and the proportion of intron-3 retaining 

transcript (adjusted r2 0.673, p < 2.2e-16) (Figure 6c). This association remained significant after 

partitioning APOE-ε4 status by disease and accounting for tau and amyloid burden, showing that this 

association is likely to be independent of disease state. Taken together, these findings suggest that 

usage of the intron-3 retaining transcript may be regulated by APOE-ε4 status and may be involved in 

mediating the effect of APOE genotype, supporting a role for the presence of this lncRNA in disease 

risk and progression. 
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DISCUSSION 
 

The core aim of this study was to test the hypothesis that capturing human lineage-specific regions of 

the genome could provide insights into neurological phenotypes and diseases in humans. We generate 

and use an annotation based on existing knowledge of sequence conservation and sequence constraint 

within humans, which we term CNCRs. We use this annotation to prioritise genomic regions, genes 

and transcripts based on a high density of human lineage-specific sequence as determined by our 

CNCR annotation. We demonstrate the utility of this approach by showing that: the genomic regions 

we identify are enriched for SNP-heritability for intelligence and brain-related disorders; the genes we 

identify are enriched for neurologically-relevant gene ontology terms and genes causing neurogenetic 

disorders; and the existence of an intron-3 retaining transcript of APOE, the usage of which is 

correlated with Alzheimer’s disease pathology and APOE-ε4 status. 

 

A major finding of this study is that CNCRs are enriched for regulatory, non-coding genomic regions. 

This is consistent with analyses performed by Ward and Kellis14, and highlights the potential 

functional importance of non-conserved and thus evolutionarily-recent non-coding regions subject to 

constraint. Furthermore, these findings suggest that CNCRs could provide a means of prioritising and 

potentially aiding the assessment of non-coding variants, an area of significant interest given that 88% 

of GWAS-derived disease-associated variants reside in non-coding regions of the genome42. We 

found evidence to support this view through heritability analyses for intelligence, Parkinson’s disease, 

major depressive disorder and schizophrenia with SNP-heritability not only enriched within CNCRs, 

but to a greater extent than would be expected using either conservation or constraint annotations 

alone. Considering heritability for intelligence, this phenotype is already known to also be enriched 

within annotations of brain-specific tissue expression and among several regulatory biological gene 

sets23, including neurogenesis, central nervous system neuron differentiation and regulation of 

synapse structure or activity42. These findings support our hypothesis that CNCRs identify genomic 

regions of functional importance with relevance to human brain phenotypes.  
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Our analyses of CNCR density within genes are consistent with these findings, highlighting both non-

coding genes and those implicated in neurologically-relevant processes and diseases. Interestingly, 

CNCR annotation specifically highlighted lncRNAs as opposed to other non-coding RNAs. In 

particular, we observed a proportional increase in lncRNA enrichment with higher genic CNCR 

density, which could not be replicated using measures of sequence constraint or conservation alone. 

This observation is in keeping with previous studies that have shown most lncRNAs are tissue-

specific with the highest proportion being specific to brain43.  Similarly, the enrichment for nervous 

system-related pathways within CNCRs, which is representative of recent purifying selection, is in 

keeping with the lowest proportion of positively-selected genes being present in brain tissues from 

previous studies of mammalian organ development44. We also find enrichment of spinal cord-

associated genes that may relate to the uniquely human monosynaptic corticomotoneuronal pathways 

implicated in human-specific dexterity and digital motor control45,46, the disruption of which may lead 

to amyotrophic lateral sclerosis47.  

 

We noted that APOE was among the genes with the highest CNCR density across the genome and 

carried the highest CNCR density of all genes implicated in complex brain-relevant phenotypes 

(defined within the STOPGAP database31). Given that genetic variation within this gene and 

specifically APOE-ε4 status is not only the principal genetic risk factor for Alzheimer’s disease48 but 

also associated with risk for other neurodegenerative disorders, stroke and reduced lifespan36, this 

finding provides evidence for the value of CNCR annotation. Furthermore, within APOE, the CNCR 

annotation highlighted an intron-3 retention event not currently within annotation but which has been 

previously reported38,39. Using Sanger sequencing of cDNA derived from control human hippocampal 

tissue, we confirm the presence of an intron-3 retaining APOE transcript. We estimate the usage of the 

transcript from short read RNA-sequencing data and find variable levels across different brain tissues 

within GTEx32 with the highest usage in the spinal cord, substantia nigra and hippocampus, reflecting 

the brain regions most susceptible to selective vulnerability in disease. Using human dorsolateral 

prefrontal cortex RNA-sequencing data, we find that the intron retention event is significantly more 

abundant in patients with Alzheimer’s disease than controls and in those with more severe Braak and 
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Braak pathology and amyloid burden as characterised by CERAD pathology. Furthermore, we see a 

dosage-dependent increase in the intron retention event with the APOE-ε4 allele that is independent of 

disease status. We propose that this novel transcript may be a means of regulating APOE in a disease 

state. 

 

Given that we use existing measures of constraint and conservation to identify CNCRs, this analysis is 

fundamentally limited by the quality of these data. While the constraint metrics we used were derived 

from high depth sequencing, this is still restricted given the relatively high number of private genetic 

variants we each carry. In addition, analysis was limited to the high-confidence regions covering 

approximately 84% of the genome, so a significant proportion remained unannotated with CDTS 

metrics11. Similarly, our study of the relationship between CNCRs and known genomic features is 

limited by the annotation quality in existing databases. We have endeavoured to overcome some of 

these problems by creating a more detailed annotation combining both GENCODE and Ensembl data. 

The SNP-heritability estimates using stratified-LDSC analysis are limited by the quality of LD 

information underpinning the heritability calculations21.  

 

Despite these limitations, we have been able to demonstrate the utility of CNCRs specifically in the 

identification of functionally important non-coding regions of the genome, genes and transcripts. We 

find that CNCRs across all forms of analyses highlight the significance of human lineage-specific 

sequences in the central nervous system and in the context of neurological phenotypes and diseases. 

We release our annotation of CNC scores via the online platform vizER 

(https://snca.atica.um.es/browser/app/vizER). Thus, the CNCR annotation we generate has the 

potential to provide additional disease insights beyond those explored within this study and as we 

anticipate the release of increasing quantities of WGS data in humans, will only improve in quality 

and value.  
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TITLES AND LEGENDS 
 

FIGURES 

Figure 1. Workflow of study and schematic demonstration of annotation groups. The workflow 

depicts the processes involved in creation of the annotation with set parameters for each of the three 

groups of annotations generated and the processes involved in hypothesis-testing. CNC scores = 

constrained, non-conserved scores; CNCRs = constrained, non-conserved regions, CDTS = context-

dependent tolerance score. Minus CDTS score is used as a lower score of CDTS corresponds to a 

more constrained region.  

Figure 2. Composition of the constrained genome, partitioned by constrained, non-conserved 

(CNC) scores (a) and proportion of biotypes of genes in our annotation (CNCRs) and in the 

comparator annotations (constrained and non-conserved regions) (b). The description for each 

genomic feature is shown in Supplementary Table 1. The barplot in Panel a shows the genomic 

features for the 12.5% most constrained regions with CNC scores portioned by decile, such that the 

highest decile (90 – 100) represents the most constrained and least conserved regions. Description of 

gene biotypes in Panel b are taken from Ensembl20. The heatmap demonstrates the proportion of 

genes of a certain biotype within the three separate annotations within each genic CNCR density cut-

off. Protein coding is defined by a gene that contains an open reading frame. The subclassified 

components of long non-coding RNA (lncRNA) found in the annotations are: Antisense – has 

transcripts that overlap the genomic span (i.e. exon or introns) of a protein-coding locus on the 

opposite strand; lincRNA (long interspersed ncRNA) – has transcripts that are long intergenic non-

coding RNA locus with a length >200bp; non-coding RNA is further subclassified into miRNA 

(microRNA); siRNA (small interfering RNA); snRNA (small nuclear RNA) and miscellaneous RNA 

(includes snoRNA (small nucleolar RNA), tRNA (transfer RNA)). Pseudogenes are similar to known 

proteins but contain a frameshift and/or stop codon(s) which disrupts the open reading frame. These 

can be classified into processed pseudogene – a pseudogene that lacks introns and is thought to arise 
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from reverse transcription of mRNA followed by reinsertion of DNA into the genome and 

unprocessed pseudogene – a pseudogene that can contain introns since produced by gene duplication.  

Figure 3. Stratified-LDSC analysis across five traits comparing CNCRs with its constituent 

constrained and non-conserved annotations. Panel a shows the regression coefficient. Panel b 

shows the regression coefficient -log(p-value) with the dotted line showing the Bonferroni-corrected 

p-value of 0.00333. GWASs were as follows: Intelligence2019 = intelligence GWAS, AD2018 = 

Alzheimer’s disease GWAS, PD2019.ex23&Me = Parkinson’s disease GWAS without 23 and Me 

data, MDD2018 = Major depressive disorders GWAS and SCZ2018 = schizophrenia GWAS 

(Supplementary Table 2).  

Figure 4. Summarised enriched gene sets for terms specific for neurological gene sets, other 

tissues and all tissues (non-neurological) as defined by Gene Ontology (GO). Plot comparing 

annotation of interest (CNCRs) and comparator annotations which only use constraint or non-

conserved metrics. Frequency, derived from REViGO29, the percentage of human proteins in UniProt 

which were annotated with a GO term, i.e. a higher frequency denotes a more general term.  

Figure 5. Annotation with CNCRs is highly granular and shows APOE to have a high density of 

CNCRs throughout its length especially in association with an intron-3 retention event in the 

human hippocampus. The first track represents the genomic location of APOE within Chromosome 

19. The second track shows the known transcripts, currently within annotation in Ensembl v.92. The 

mean coverage (log10 scale) in the hippocampus shown here is greater than zero (denoted by the grey 

shaded area) across intron-3 highlighting a potential novel expressed region. In the last track, CNC 

scores above the black dashed line and shaded in red fulfil criteria for a CNCR.  

Figure 6.  Quantification of intron retention usage by its normalised coverage to junction ratio 

across brain tissues within GTEx (a). Normalised coverage to junction ratio of the APOE intron-

3 retention event in bulk RNA sequencing data of post-mortem dorsolateral prefrontal cortex 

tissue samples from 634 individuals recruited within ROSMAP studies across Braak and Braak 

staging (b) and APOE �4 allele status (c).  In Panel a: red dashed horizontal line presents the 
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median normalised intron retention coverage to junction ratio within central nervous system tissues in 

GTEx. Number of samples within each of the tissue groups were as follows: amygdala – 72; anterior 

cingulate cortex – 84; caudate – 117, cerebellar hemisphere – 105; frontal cortex – 108; hippocampus 

– 94; hypothalamus – 96; nucleus accumbens – 113; putamen – 97; spinal cord – 71; substantia nigra 

– 63. In panels b and c, the blue line represents the linear regression fit with the grey shaded area 

representing +/- 95% confidence interval. Braak and Braak staging is a measure of severity of 

neurofibrillary tangle based on location. To improve the power of the study, we merged Braak and 

Braak stages I and II to “Braak mild stage”, Braak and Braak stages III and IV to “Braak moderate” 

and Braak and Braak stages V and VI to indicate “Braak severe” stage.  For number of APOE �4 

alleles, a heterozygous state is represented by “1” and homozygous state by “2”. 
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SUPPLEMENTAL DATA 
 

Supplementary Data Figure Titles and Legends 

 

Supplementary Figure 1. Kernal density plots of annotation metrics. Panel a depicts density plot 

of constraint (context dependent tolerance score (CDTS): a lower CDTS represents more constrained 

data). Panel b shows the density distribution of the mean phastCons20 scores per 10bp bin. Panel c 

shows the distribution of log2 ratio (CNC score),  of the reverse ranked CDTS (so a higher rank 

pertains to higher constraint but lower CDTS) and ranked phastCons20 scores, partitioned by regions 

of exon, intron and intergenic as defined by Ensembl v.92.  

Supplementary Figure 2.  Proportion of enriched neurologically-related GO terms in the gene 

set analysis compared between the annotation of interest (CNCRs) and the comparator 

annotation sets (a). Proportion of neurologically-related GO terms at CNCR density of 0.3 and 

above (b). 

Supplementary Figure 3. Sanger sequencing of human hippocampus cDNA using targeted 

primers within APOE, aligned to hg38. Primers as listed in Supplementary Table 3.  
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Supplementary Tables 

Supplementary Table 1. Annotation priority order for genomic feature. Genomic features are 

based on both Gencode and Ensembl. A priority order for annotation with a genomic feature is 

assigned to avoid conflict with overlapping features. The number of 10bp bins across the genome is 

also shown in the table. 

Supplementary Table 2. Genome-wide association studies used in the stratified LDSC analysis. 

The GWAS for Parkinson’s disease and major depressive disorder do not incorporate 23&Me data.  

Supplementary Table 3. Primer positions and sequences used to validate the APOE intron-3 

retention event.  

Supplementary Table 4. Results for heritability, enrichment, and regression coefficient from 

stratified LDSC analysis. The coefficient p-values are one-sided p-values calculated from the 

coefficient Z-score.  

Supplementary Table 5. Significantly enriched nervous system-related GO terms for CNCRs at 

density of 0.3. P-value relates to the p-value for enrichment calculated using g:Profiler and its own 

g:SCS correction method28.  
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FIGURES 

 

Figure 1. Workflow of study and schematic demonstration of annotation group 
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Figure 2. Composition of the constrained genome, partitioned by constrained, non-conserved 

(CNC) scores (a) and proportion of biotypes of genes in our annotation (CNCRs) and in the 

comparator annotations (constrained and non-conserved regions) (b). 

a 

b 
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Figure 3. Stratified-LDSC analysis across five traits comparing CNCRs with its constituent 

constrained and non-conserved annotations.  
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Figure 4. Summarised enriched gene sets for terms specific for neurological gene sets, other 

tissues and all tissues (non-neurological) as defined by Gene Ontology (GO).  
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Figure 5. Annotation with CNCRs is highly granular and shows APOE to have a high density of 

CNCRs throughout its length especially in association with an intron-3 retention event in the 

human hippocampus.  
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Figure 6.  Quantification of intron retention usage by its normalised coverage to junction ratio 

across brain tissues within GTEx (a). Normalised coverage to junction ratio of the APOE intron-

3 retention event in bulk RNA sequencing data of post-mortem dorsolateral prefrontal cortex 

tissue samples from 634 individuals recruited within ROSMAP studies across Braak and Braak 

staging (b) and APOE �4 allele status (c).   

 

 

a 

b c 
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SUPPLEMENTAL DATA 
 

Supplementary Figures 

 

  

  

 

Supplementary Figure 1. Kernal density plots of annotation metrics.  

  

b 

 

c a 
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Supplementary Figure 2. Proportion of enriched neurologically-related GO terms in the gene 

set analysis compared between the annotation of interest (CNCRs) and the comparator 

annotation sets (a). Proportion of neurologically-related GO terms at CNCR density of 0.3 and 

above (b).  

a 

b 
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Supplementary Figure 3. Sanger sequencing of human hippocampus cDNA using targeted 

primers within APOE, aligned to hg38. 
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Supplementary Tables 

 

Annotation 
priority order 

Genomic feature Number of 
10bp bins 

Description 

1 Exon PCCDS 1,453,269 Exon, protein-coding sequence 
2 Exon NCRNA 1,156,726 Exon, non-coding RNA, e.g. lincRNA 
3 Exon PCUTR 892,210 Exon, protein-coding UTR 
4 Promoter 820,321 Promoter 
5 Promoter Flanking 1,074,641 Cluster with promoters or distal cis-regulatory elements 
6 Enhancer 251,636 Enhancer 
7 Intron, cis 108,670 Introns located in genes <10bp from splice-site 
8 Intron, trans 15,204,447 Introns located in genes >10bp from splice-site 
9 Intergenic 689,419 Not annotated in GenCode/ Ensembl 
10 H3K9me3 2,082,553 Only overlap with H3K9me3 
11 H3K27me3 777,409 Only overlap with H3K27me3 
12 Multiple histones 5,199,455 Overlap with a combination of histone marks 
13 Other 1,404,860 Includes open chromatin and unannotated features 

 

Supplementary Table 1. Annotation priority order for genomic feature. 
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Disease Author, Year, Reference n case 
Intelligence Savage, 201823 269,858 

Alzheimer’s disease (AD) Jansen, 201824 71,880 

Parkinson’s disease (PD) Nalls, 2019 (excluding 23&Me data)25  33,674 

Major depressive disorder (MDD) Wray, 2018 (excluding 23&Me data)27 59,851 

Schizophrenia (SCZ) Pardiñas, 201826 40,675 

 

Supplementary Table 2. Genome-wide association studies used in the stratified LDSC analysis. 
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Primer name 5’ – 3’ sequence Strand Chr: Start-End (hg38) 
P2_Fwd GGTTCTAGCTTCCTCTTCCC + 19:44908064-44908083 
P2_Rev CGCCTGCAGCTCCTTGGACAG - 19:44908627-44908647 
P3_Fwd CCTAGCTCCTTCTTCGTCTC + 19:44908337-44908356 
P3_Rev CTCGAACCAGCTCTTGAGG - 19:44909130-44909148 
P4_Fwd CCTTCTTCGTCTCTGCCTC + 19:44908344-44908362 
P4_Rev CTGCTCCTTCACCTCGTC - 19:44909037-44909055 
P5_Fwd GTGAGTGTCCCCATCCTGG + 19:44907953-4490771 
P5_Rev CTGCGGCCGAGAGGGCGGGAG - 19:44908512-44908532 

 

Supplementary Table 3. Primer positions and sequences used to validate the APOE intron-3 

retention event. 
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Annotation GWAS Proportion 
SNPs 

Proportion 
heritability Enrichment Enrichment 

p-value 
Regression 
Coefficient 

Coefficient 
Z-score 

Z- score 
-log P-value 

CNCR 
Intelligence 
2018 

0.03071 0.33916 11.04414 5.12E-20 2.96E-07 10.05909 23.37797 

Constrained 0.0547 0.441239 8.06649 3.20E-21 1.85E-07 9.413106 20.61827 

Non-conserved 0.12551 0.329821 2.627846 1.32E-05 6.28E-08 5.125337 6.828264 

CNCR 

AD 2019 

0.03071 0.398428 12.9741 0.009868 1.89E-08 1.960767 1.602875 

Constrained 0.0547 0.532373 9.732543 0.001961 1.12E-08 1.964995 1.607173 

Non-conserved 0.12551 -0.34052 -2.71312 0.216138 -8.51E-09 -1.58533 0.025233 

CNCR 
PD 2019 
(ex.23&Me) 

0.03071 0.334257 10.88446 0.001934 2.57E-08 2.76684 2.548194 

Constrained 0.0547 0.367301 6.714792 0.008806 1.32E-08 2.080212 1.726928 

Non-conserved 0.12551 0.149455 1.190777 0.856765 1.28E-10 0.036813 0.313975 

CNCR 
MDD 2018 
(ex.23&Me) 

0.03071 0.330293 10.7554 1.39E-07 1.13E-07 5.421715 7.529959 

Constrained 0.0547 0.403657 7.379441 1.51E-08 6.29E-08 4.940762 6.409951 

Non-conserved 0.12551 0.432541 3.446263 5.02E-04 3.84E-08 3.908254 4.332707 

CNCR 

SCZ 2018 

0.03071 0.33881 11.03275 2.50E-16 6.53E-07 8.829352 18.27867 

Constrained 0.0547 0.425132 7.772029 2.19E-17 4.04E-07 8.456392 16.86047 

Non-conserved 0.12551 0.308866 2.460883 8.75E-04 1.18E-07 3.576297 3.758833 

 

Supplementary Table 4. Results for heritability enrichment, and regression coefficient from 

stratified LDSC analysis. 
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GO ID GO term description P-value 

GO:0048663 neuron fate commitment 5.46E-07 

GO:0048665 neuron fate specification 0.0012 

GO:0021510 spinal cord development 0.00129 

GO:0021517 ventral spinal cord development 0.00175 

GO:0021515 cell differentiation in spinal cord 3.64E-07 

GO:0021953 central nervous system neuron differentiation 7.44E-05 

GO:0021522 spinal cord motor neuron differentiation 3.48E-04 

GO:0021520 spinal cord motor neuron cell fate specification 0.0479 

GO:0021527 spinal cord association neuron differentiation 0.00533 

GO:0021871 forebrain regionalization 7.91E-05 

GO:0021978 telencephalon regionalization 0.00313 

GO:0030902 hindbrain development 0.0337 

GO:0021536 diencephalon development 0.045 
 

Supplementary Table 5. Significantly enriched nervous system-related GO terms for CNCRs at 

density of 0.3. P-value relates to the p-value for enrichment calculated using g:Profiler and its own 

g:SCS correction method28. 
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WEB RESOURCES 
 

Description URL 
CDTS metrics  http://www.hli-opendata.com/noncoding 
phastCons20 metrics http://hgdownload.cse.ucsc.edu/goldenPath/hg38/phastCons20way/  
LDSC https://github.com/bulik/ldsc/wiki 
OMIM genes http://api.omim.org 
STOPGAP database https://github.com/StatGenPRD/STOPGAP/blob/master/STOPGAP_data/ 

stopgap.bestld.RData 
Recount2 https://jhubiostatistics.shinyapps.io/recount/ 
Synapse https://www.synapse.org/#!Synapse:syn4164376 
VizER https://snca.atica.um.es/browser/app/vizER 
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